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ABSTRACT

Accumulating empirical evidence shows that very large deep learning models learn
faster and achieve higher accuracy than their smaller counterparts. Yet, smaller
models have benefits of energy efficiency and are often easier to interpret. To
simultaneously get the benefits of large and small models we often encourage
sparsity in the model weights of large models. For this, different approaches have
been proposed including weight-pruning and distillation. Unfortunately, most
existing approaches do not have a controllable way to request a desired value of
sparsity as an interpretable parameter and get it right in a single run. In this work,
we design a new sparse projection method for a set of weights in order to achieve a
desired average level of sparsity without additional hyperparameter tuning which is
measured using the ratio of the `1 and `2 norms. Instead of projecting each vector
of the weight matrix individually, or using sparsity as a regularizer, we project all
vectors together to achieve an average target sparsity, where the sparsity levels of
the individual vectors of the weight matrix are automatically tuned. Our projection
operator has the following guarantees – (A) it is fast and enjoys a runtime linear
in the size of the vectors; (B) the solution is unique except for a measure set of
zero. We utilize our projection operator to obtain the desired sparsity of deep
learning models in a single run with a negligible performance hit, while competing
methods require sparsity hyperparameter tuning. Even with a single projection of a
pre-trained dense model followed by fine-tuning, we show empirical performance
competitive to the state of the art. We support these claims with empirical evidence
on real-world datasets and on a number of architectures, comparing it to other state
of the art methods including DeepHoyer.

1 INTRODUCTION

Deep learning models are increasingly getting bigger in size and in depth (number of layers) to
provide state of the art performance on a wide-range of tasks in computer vision He et al. (2016) and
natural language processing Vaswani et al. (2017). However, deploying big models in production
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systems or edge devices can be challenging as constrained on size and real-time inference are difficult
to meet for large models. To address this issue, the field employs two popular approaches: (i) pruning
the learned models using sparsity inducing regularizers such as l1 norm or l0-constraints Han et al.
(2015); Zhang et al. (2018) and (ii) using distillation Ba & Caruana (2014); Ren et al. (2020) to
transfer information from a larger teacher network to a smaller student network while maintaining
similar level of test performance. We will focus on the first approach, namely sparsity.

In this paper, we design a new sparse projection method for a set of feature vectors {xi ∈ Rni}ri=1 to
achieve a desired average sparsity level that is measured using the `1/`2 ratios ||xi||1

||xi||2 (see below for a
precise definition). This projection is inspired by the works of Hoyer (2004); Potluru et al. (2013);
Thom et al. (2015) in which each feature vector xi is independently projected, and used for sparse
dictionary learning. The key difference with our projection is that the feature vectors achieve an
average target sparsity level: some may end up dense, while others extremely sparse based on the
problem. Therefore, our approach has three main advantages: (1) only one sparsity parameter has to
be chosen, (2) the sparsity levels of the feature vectors are automatically tuned to achieve the desired
average sparsity hence allowing different feature vectors to have different sparsity levels, and (3) our
projection has more degrees of freedom hence will generate sparse feature vectors that are closer to
the ones we start out with.

We define a novel explicit grouped sparse projection (GSP), and derive several equivalent reformula-
tions. This measure of sparsity is highly interpretable making it simple for the user to set sparsity
requirements on the models (Section 2). Also, we provide an efficient algorithm (linear in the size
of the problem) to compute this projection, based on the Newton’s method (Algorithm 1). Finally,
we apply these new projections on several tasks utilizing deep networks (Section 3): a) We show
that models endowed with our sparsity get the intended level of sparsity in a single training run
and produce accuracy comparable to the competition that requires hyperparameter search. b) We
also show, that a single projection of large models achieves desired sparsity level at the accuracy
competitive with the baseline.

2 GROUPED SPARSE PROJECTION (GSP)

Formulation of grouped sparse projection Let us first present the sparse projection problem for
a single vector x, along with a reformulation that will be particularly useful to project to a set of
vectors. Given x ∈ Rn0 and a sparsity level s ∈ [0, 1], the sparse projection problem can formulated
as follows

min
x̃∈Rn

||x− x̃||2 such that sp (x̃) ≥ s. (1)

We note that the objective function can be rewritten as

||x− x̃||22 = ||x||22 − 2xT x̃+ ||x̃||22.

Let us introduce the auxiliary variables α = ||x̃||2 ≥ 0, and let us use the change of variables x̃ = αx̄
with ||x̄||2 = 1. Note that sp(x̃) = sp(αx̄) since sp(.) is invariant to scaling. Hence, α does not
appear in the sparsity constraints. Moreover, α can be optimized easily. We have

α∗ = arg min
α≥0

||x− αx̄||2 = max(0, x̄Tx),

since ||x̄||2 = 1. For α∗ > 0, we have

||x− α∗x̄||22 = ||x||22 − 2α∗x̄Tx+ (α∗)2 = ||x||22 − (x̄Tx)2.

We notice that the sign of the entries of x̄ can be chosen freely since the constraints are not influenced
by flipping the sign of entries of x̄. This implies that, at optimality,

• the entries of x̄ will have the same sign as the entries of x, and
• α∗ > 0 since x 6= 0 and x̄ 6= 0.

Therefore, equation 1 can be reformulated as

max
x̄∈Rn

0

x̄T |x| such that ||x̄||2 = 1, x̄ ≥ 0 and sp (x̄) ≥ s. (2)
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In fact, the optimal solution of equation 1 is given by x̃∗ = (|x|T x̄∗) sign(x) ◦ x̄∗ where x̄∗ is an
optimal solution of equation 2.

Given a set of non-zero vectors {xi ∈ Rni
0 }ri=1, the main goal of this paper is to find a set of non-zero

vectors {x̃i ∈ Rni
0 }ri=1 as close to {xi ∈ Rni

0 }ri=1 as possible and that has an average target sparsity
larger than a given s ∈ [0, 1]. Mathematically, we define this grouped sparse projection problem as
follows:

max
x̄i∈R

ni
0 ,1≤i≤r

r∑
i=1

x̄Ti |xi| (GSP)

such that ||x̄i||2 = 1, x̄i ≥ 0 and
1

r

r∑
i=1

sp (x̄i) ≥ s.

The main reason for the choice of this formulation is that it makes equation GSP much faster to
solve. In fact, as for equation 1 in Thom et al. (2015), we will be able to reduce this problem
to the root finding problem of a nonincreasing function in one variable. In particular, using the
objective function minx̃i∈R

ni
0 ,1≤i≤r

∑r
i=1 ||xi − x̃i||2 (or

∑r
i=1 ||xi − x̃i||22) would not allow such

an effective optimization scheme. In other words, we are not using the Euclidean distance to measure
the error, but rather the inner product between these two vectors. We formally define the problem in
Appendix A. We outlined the complete algorithm GSP in Algorithm 1 and present its formulation
and computational cost analysis in Appendix B.

3 EXPERIMENTS Algorithm 1 Grouped sparse projection (GSP)
1: INPUT: {xi ∈ Rni}ri=1, the average sparsity s ∈ [0, 1],

the accuracy ε, the parameter rl ∈ [1/2, 1)
2: OUTPUT: {x̃i ∈ Rni}ri=1, with average sparsity in [s−
ε, s+ ε]

3: µ = 0, µ̄ = µ̃, µ∗ = 0, ∆ = µ̄− µ.
4: while |g(µ∗)| > rε do
5: µold = µ∗.
6: // Newton’s step
7: µ∗ = µ∗ + k−g(µ∗)

g′(µ∗)

8: if µ∗ /∈ [µ, µ̄] then
9: // Bisection method if Newton’s step fails

10: µ∗ =
µ+µ̄

2
11: end if
12: if g(µ∗) > 0 then
13: µ = µ∗

14: else
15: µ̄ = µ∗

16: end if
17: (µ̄, µ) = NewtonPatch(µ̄, µ, µ∗, µold,∆, rl, g)
18: ∆ = µ̄− µ.
19: // D contains the set of discontinuous points
20: if ∆ < εµ∗ and |µ∗ − µ| < εµ∗ for some µ ∈ D

then
21: break;
22: end if
23: end while
24: α∗i = |xi|T x̄i(µ∗)
25: x̃i = sign(xi) ◦ (α∗i x̄i(µ

∗))

Pruning methods has been an area of
extensive investigation with the goal
of identifying and removing unimpor-
tant weights in deep neural networks.
Heuristic pruning methods typically
eliminate smaller weights to produce
sparse models. However, the down-
side of this approach is longer train-
ing time and also lack of guarantees of
optimality due to insufficient theoret-
ical understanding of these methods.
Other approaches formulate this as a
sparsity inducing optimization prob-
lem, using l1 regularization, and op-
timizing it using gradient-based algo-
rithms. Some authors have directly
optimized over the pseudo l0-norm by
utilizing stochastic approximation.

We use our sparse formulations to cre-
ate a sparse representation of feedfor-
ward, CNNs and ResNet models. Us-
ing our GSP operator we prune the
parameters, inducing sparsity in the
weights of these architectures.

3.1 LAYER SPARSITY

We use the Grouped Sparse Projection operator to project each layer of neural network architectures
separately. For our experiments we project each layer with the same sparsity parameter to reduce
complexity. Although as easily we could have imposed an exact and different sparsity level for each.
The layer-wise projection for the LeNet-300-100 fully connected network and the LeNet-5 CNN
network Lecun et al. (1998) on the MNIST dataset makes a convincing test of our GSP operator. We
further run tests on the CIFAR-10 dataset Krizhevsky et al. (2009) with ResNet models of depth 56
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(a) Lenet-300-100 Feed Forward Network.
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(b) Lenet-5 Convolutional Neural Network.

Figure 1: Sparsity vs Accuracy. Sparsity is not imposed on the baseline model.

(a) LeNet-300-100 and LeNet-5

Methods Nonzero weights left after pruning

LeNet-300-100 LeNet-5 CNN

Original dense model
total parameters 266.2k 430.5k

Han et al. (2015) 21.8k (8%) 36k (8%)
Zhang et al. (2018) 11.6k (4.37%) 6.1k (1.4%)

Lee et al. (2018) 13.3k (8%) 8.6k (2.0%)
Ma et al. (2019) 6.4k (2.40%) 5.4k (1.3%)

Yang et al. (2019) 4.6k (1.74%) 3.5k (0.8%)

GSP 10.6k (4%) 17.2k (4%)
GSP† 4.6k (1.76%) 4.7k (1.1%)

(b) ResNet-56 and ResNet-110

Architecture Sparsity% Accuracy% Drop%

DH Resnet-56 84.64 92.71 0.42
GSP Resnet-56 85.78 92.71 0.42
DH Resnet-110 83.94 92.76 1.24
GSP Resnet-110 85.90 92.86 0.76
GSP Resnet-110 90.72 92.45 1.17

Table 1: Table 1a: Element-wise pruning results on LeNet-300-100 Feed Forwards model and
LeNet-5 CNN model for GSP compared to recent network pruning techniques. † For this sparsity
range, GSP resulted in a slight accuracy loss of 0.15% and 0.29% for LeNet-300-100 and LeNet-5
respectively. Table 1b: Sparsity vs Accuracy for ResNet-56 and ResNet-110 for a single projection
followed by finetuning (Single-Shot), in comparison to a full pipeline of DeepHoyer (DH) in the
CIFAR-10 dataset. The last two columns report both the mean performance of the model and the
drop in performance compared to baseline accuracy of the pretrained model.

and 110 He et al. (2016) for single shot sparsity which we discuss in subsection - 3.2. The results of
these experiment are summarized in Table-1 and the details of these experimental are presented in the
Appendix C.

3.2 SINGLE SHOT WEIGHT PRUNING

GSP extracts the sparse set of vectors x̃i close to the set xi, s.t. i ∈ [m] where m is the number of
neurons in the layer. It can therefore also be used to make a model sparse by a single projection
step instead of having to repeatedly apply the projection steps during the training process. We take
a pretrained model for each task and project the model once layerwise with our choice of sparsity.
Then we finetune the surviving connections on the training dataset. This is in contrast to the popular
regularization based techniques which need to train alongside the sparsity inducing regularizer, then
prune the weights and finally finetune the surviving weights to generate the final sparse model. Thus
we cut the training of sparse models short by the whole regularization phase when pretrained models
are available.

We use this technique on LeNet-300-100 and LeNet-5 on the MNIST dataset and ResNet-56 and
ResNet-110 on the CIFAR-10 Dataset. We compare the pruning results with DeepHoyer Yang
et al. (2019) on ResNet-56 and ResNet-110 in Table-1(b) which relies on an extra sparsity inducing
regularizer phase with 164 epochs of training to first induce sparsity, and then relies on a pruning
threshold based parameter depending on the standard deviation of the weights, followed by finetuning
for similar number of epochs. In contrast, we use a preset sparsity value for GSP, project the model
once, and finetune the surviving weights. We also train the models with the DeepHoyer sparsity
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inducer Yang et al. (2019) and tweak their parameters to generate results in comparable sparsity
range. The results in Table 1 demonstrates that GSP still performs comparable or better in a single
shot than DeepHoyer for ResNet-56 and ResNet-110 on CIFAR-10 dataset.

4 CONCLUSIONS

In this paper, we have proposed a novel grouped sparse projection algorithm. It allows projecting a
set of vectors onto a set of sparse vectors whose average sparsity is defined via a single interpretable
parameter. The proposed projection algorithm was shown to be particularly useful in learning sparse
deep learning models. As demonstrated, at the extremely high sparsity values (> 0.90) the proposed
training in a single run produces deep models of desired level of sparsity with negligible drops in
performance. Somewhat surprisingly, GSP-imposed lower sparsity values noticeably improve model
performance over the baseline. Besides using GSP during the training, we demonstrate that a single
projection of a model trained without constraints results in performance comparable with the baseline
and competitive to other similar methods. Interpretability of sparsity, ability to obtain it in a single
training run, efficiency of the projection, and theoretical guarantees emphasise the potential of GSP
in making practical impact on sparse deep learning. However, our projection is not limited to the
listed applications and could also be used in dictionary learning, and other types of neural network
architectures such as Transformers.
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APPENDICES

A GROUPED SPARSE PROJECTION (GSP) AND HOYER SPARSITY

Problem Definition Given a vector x ∈ Rn, a meaningful way to measure its sparsity is to consider
the following measure Hoyer (2004): For x 6= 0, we define the sparsity of x as

sp(x) =

√
n− ||x||1||x||2√
n− 1

∈ [0, 1], (3)

We have that sp(x) = 0 ⇐⇒ ||x||2 = ||x||1 ⇐⇒ x(i) = c for all i and for some constant c,
while sp(x) = 1 ⇐⇒ ||x||0 = 1, where ||x||0 counts the number of nonzero entries of x. The
advantages of sp(x) compared to ||x||0 is that sp(x) is smooth. For example, with this measure, the
vector [1, 10−6, 10−6] is sparser than [1, 1, 0], which makes sense numerically as [1, 10−6, 10−6] is
very close to the 1-sparse vector [1, 0, 0]. Also, sp(x) is invariant to scaling (that is, sp(x) = sp(αx)

for any α 6= 0). Note that for any two vectors w and z, sp(w) ≤ sp(z) ⇐⇒ ||w||1
||w||2 ≥

||z||1
||z||2 .

Note also that sp(x) is not defined at 0, nor for n = 1. A property that will be useful later is its
nonincreasingness under the so-called soft thresholding operator: Given a vector x and a parameter
λ ≥ 0, it is defined as

st(x, λ) = sign(x) ◦ [|x| − λe]+,
where ◦ is the component-wise multiplication, and [.]+ is the projection onto the nonnegative orthant,
that is, max(0, .).

Lemma .1 (Lemma 3, Thom et al. (2015)). Let x ∈ Rn0 , and let λ̃ be the second largest entry of the
vector |x|. For λ ≤ λ̃, sp (st(x, λ)) is strictly decreasing.

Note that for λ between the largest and second largest entry of |x|, st(x, λ) is 1-sparse with
sp (st(x, λ)) = 1, hence sp (st(x, λ)) is constant. Interestingly, for x = c e for some constant
c, it is not possible to sparsify x (because we cannot differentiate between its entries) and st(x, λ)
is constant for all λ < c. We refer the reader to Thom et al. (2015); Hurley & Rickard (2009) for a
more detailed discussion on the sparsity measure in equation 3.

B ALGORITHM FOR GROUPED SPARSE PROJECTION

Let us reformulate equation GSP focusing on the sparsity constraint: we have
r∑
i=1

sp (x̄i) =

r∑
i=1

√
ni − ||x̄i||1√
ni − 1

=

r∑
i=1

√
ni√

ni − 1
−

r∑
i=1

||x̄i||1√
ni − 1

≥ rs.

Denoting ks =
∑r
i=1

√
ni√
ni−1 − rs and βi = 1√

ni−1 , equation GSP can be reformulated as follows

max
x̃i∈Rni ,1≤i≤r

r∑
i=1

x̄i
T |xi|

such that x̄i ≥ 0, ||x̄i||2 = 1∀i and
r∑
i=1

βie
T x̄i ≤ ks. (4)

We used ||x̄i||1 = eT x̄i since x̄i ≥ 0. Note that the maximum of equation 4 is attained since the
objective function is continuous and the feasible set is compact (extreme value theorem). Let us
introduce the Lagrange variable µ ≥ 0 associated with the constraint

∑r
i=1 βie

T x̄i ≤ ks. The
Lagrange dual function with respect to µ is given by

7
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`(µ) = max
xi≥0,||xi||2=1,i∈[r]

r∑
i=1

xTi |xi| − µ

(
r∑
i=1

βix
T
i e+ ks

)

= max
xi≥0,||xi||2=1,1≤i≤r

r∑
i=1

xTi (|xi| − βiµe) + µks. (5)

The dual problem is given by minµ≥0 `(µ). The optimization problem to be solved to compute `(µ)
is separable in variables xi’s, hence can be solved individually for each xi. Let us denote x̄i(µ) the
optimal solution of equation 5: For each i, there are two possible cases, depending on the value of µ:

1. |xi| − µβie � 0: the optimal x̄i(µ) is given by

x̄i(µ) =

[
|xi| − µβie

]
+∥∥∥[|xi| − µβie]+∥∥∥2

=
st(|xi|, µβi)∥∥ st(|xi|, µβi)

∥∥
2

.

This formula can be derived from the first-order optimality conditions. Note that this
formula is similar to that in Thom et al. (2015). The difference is that the xi’s share the
same Lagrange variable µ.

2. |xi| − µβie ≤ 0: the optimal x̄i(µ) is given by the 1-sparse vector whose nonzero entry
corresponds to the largest entry of |xi| − µβie, that is, of |xi|. Note that if the largest entry
of |xi| is attained for several indices, then the optimal 1-sparse solution x̄i∗ is not unique.
Note also that this case coincides with the case above for µ in the interval between the
largest and second largest entry of xi.

It is interesting to observe that for µ = 0, we have x̄i(0) = |xi|
||xi||2 . If x̄i(0) is feasible, that

is,
∑r
i=1 βie

T x̄i(0) ≤ ks, then it is optimal since the error of GSP is zero: this happens when
the xi’s are already sparse enough and does not need to be projected. Otherwise, the constraint∑r
i=1 βie

T x̄i ≤ ks will be active at optimality (it can be checked that otherwise x̄i can locally be
made closer to |xi|, aligning x̄i in the direction |xi|). Finally, unless the solution for µ = 0 is feasible
(which can be checked easily), we need to find the value of µ such that

g(µ) =

r∑
i=1

βie
T x̄i(µ)− ks = 0,

that is, find a root of g(µ). Let us denote µ̃ the smallest value of µ such that x̄i(µ) are all 1-sparse so
that eT x̄i(µ) = 1 hence

g(µ̃) =

r∑
i=1

βi − ks =

r∑
i=1

1
√
ni − 1

−
r∑
i=1

√
ni√

ni − 1
+ rs

= r(s− 1) ≤ 0. (6)

The value µ̃ is given by the second largest entry among the vectors |xi|/βi’s. In fact, if µ is larger
than the second largest entry of |xi|, then x̃i(µ) is 1-sparse (see above). If the largest and second
largest entry of a vector |xi| are equal, then g(µ) is discontinuous. This is an unavoidable issue when
one wants to make a vector sparse: if the largest entries are equal to one another, one has to decide
which one will be set to zero. For example, the vectors [1, 0] and [0, 1] are equally good 1-sparse
vectors to approximate [1, 1].

For 0 ≤ µ ≤ µ̃, the function g(µ) is strictly decreasing because the soft tresholding operator
increases the sparsity function sp(.) (Lemma .1). This implies that if g(µ) is not discontinuous
around g(µ) = 0, it has a single root, which we denote µ∗.

A possible way to find this root of g(µ) is to use bisection. However, this can be relatively slow with
linear convergence rate. Although g(µ) is not differentiable everywhere (it is not at the points where
an entry of x̄i(µ) becomes zero) and can be discontinuous, we observe that using Newton’s method,
with initial point µ = 0 performs very well (see below for some numerical experiments). Newton’s
method was also successfully used in Thom et al. (2015), and this is a standard methodology in
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optimization because points where the function is not differentiable typically form a set of measure
zero; see for example Kummer et al. (1988). The reason to choose µ = 0 as the initial point is
because g(µ) decreases initially fast (all entries of x̄i corresponding to a nonzero entry of xi are
decreasing) while it tends to saturate for large µ (see below for an example). In particular, we cannot
initialize µ at values larger than µ̃ since g(µ) is constant (g′(µ) = 0) for all µ ≥ µ̃.

Because g is not differentiable everywhere, we have added a safety procedure using the bisection
method (which is guaranteed to converge linearly with rate 1/2) when Newton’s method goes outside
of the current feasible interval [µ, µ̄] containing the solution µ∗ and which is updated at each step.
This is outlined in Algorithm-2. Moreover, because of discontinuity, Newton’s method could stagnate
locally and not converge (although in practice, we have not observed this behavior). For this reason,
we have also added a safety procedure that guarantees the algorithm to converge linearly: if the
feasible interval [µ, µ̄] has not decreased by at least a factor of 1/2 ≤ rl < 1, then bisection is used.

We have also added a procedure to detect discontinuity in which case the algorithm returns µ such
that g(µ + εµ) < 0 < g(µ− εµ), where ε is a desired accuracy (see below for an example). Note
that the discontinuous points can be precomputed and corresponds to the largest entries of the xi’s
when they are not uniquely attained. We will denote D the set of discontinous points of g(µ).

Algorithm 1 summarizes our algorithm. Note that the accuracy ε does not need to be high in practice,
say 0.001, since there will not be a significant difference between a vector of sparsity s and sparsity
s± 0.001.

Algorithm 2 NewtonPatch(µ̄, µ, µ∗, µold,∆, rl, g)

1: // Newton’s method fails linear convergence
2: if µ̄− µ > rl∆ and |µold = µ∗| < (1− rl)∆ then
3: // Bisection method used
4: µ∗ =

µ+µ̄

2
5: if g(µ∗) > 0 then
6: µ = µ∗

7: else
8: µ̄ = µ∗

9: end if
10: end if
11: Return: (µ̄, µ)

Computational cost The main computational cost of Algorithm 1 is to compute g(µ) and g′(µ) at
each iteration, which requires O(N) operations where N =

∑r
i=1 ni. Most of the computational

cost resides in computing the x̄i(µ)’s and some inner products. The computational cost per iteration
is therefore linear in the size of the data. In practice, we observed that Netwon’s method converge
very fast and does not require much iterations. Let us take ni = 1000 for all i = 1, 2, . . . , 100 and
generate each entry of the xi’s using the normal distribution N(0, 1). For each sparsity level, we
generate 100 such data points and Table 2 reports the average and maximum number of iterations
needed by Algorithm 1. In all cases, it requires less than 4 iterations for a target accuracy of ε = 10−4.

s0 s = 0.7 s = 0.8 s = 0.9 s = 0.95 s = 0.99

Average 20.86% 3.88 3.78 3.98 3.75 3.77
Maximum 21.01% 4 4 4 4 4

Table 2: Average and maximum number of iteration for Algorithm 1 to perform grouped sparse
projection of 100 randomly generated vectors of length 1000, with precision ε = 10−4. The column
s0 gives the average and maximum initial sparsity of the 100 randomly generated vectors xi’s.

Example 1. Let us take xi as the ith row of the matrix
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Figure 2: Function g(µ) for k = 0 and roots for s ∈ [0.8, 0.9].


1 2 14 9 −14 9 −1 5 −11 7

8 2 −6 −13 −24 −13 −6 1 4 −11

−3 −2 3 −1 −6 3 18 −2 −2 −19

 .

We have that the average sparsity of the xi’s is 33.03%. Projecting the xi’s to have an average sparsity
of 80% (s = 0.8) with accuracy 10−4, we obtain

0 0 14.68 0 −14.68 0 0 0 −2.31 0

0 0 0 −5.17 −27.37 −5.17 0 0 0 −1.13

0 0 0 0 0 0 17.31 0 0 −19.61


with 4 iterations of Algorithm 1 and with average sparsity 80.0001%. Now using s = 0.9, we obtain

0 0 14 0 −14 0 0 0 0 0

0 0 0 0 −24 0 0 0 0 0

0 0 0 0 0 0 16.29 0 0 −20.37


with 12 iterations of Algorithm 1 and with average sparsity 87.36%. The reason for this larger
number of iterations and inaccurate sparsity is that g(µ) is not continuous for this level of sparsity;
see Figure 2 for an illustration. In practice, this is not likely to happen when r is large because the
gap of g(µ) at a discontinuous point is smaller (the influence of a single vector xi is comparatively
less important).

In fact, the sparsity 90% cannot be achieved (any sparsity s between 87.36% and 93.75%): increasing
s to 92.5%, the entry −14 above is replaced by zero to get sparsity 93.75%.

C LAYER EXPERIMENT DETAILS

Since the GSP operator gives us the freedom to choose which layers to make sparse, we choose
the fully connected layers and the convolutional layers in the mentioned networks. For the fully
connected layers, we project the connections in each layer separately, with a target sparsity s. This
ensures the weights of that particular layer have a Hoyer Sparsity measure of s. For the convolutional
layers, we project each k × k filters treating each as a vector xi ∈ Rn in our formulation, where
n = k2 and all the filters in a particular layer are projected at once. All the models in this work were
implemented utilizing the PyTorch deep learning framework.
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(a) Lenet-300-100 Feed Forward Network.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.97 0.98
Sparsity

98.8

98.9

99.0

99.1

99.2

99.3

99.4

Ac
cu

ra
cy
 %

Baseline

(b) Lenet-5 Convolutional Neural Network.

Figure 3: Sparsity vs Accuracy for LeNet-300-100 and LeNet-5 over multiple random restarts.
Performance of the baseline model without imposed sparsity (hence constant value) is included for
comparison.

C.1 EXPERIMENTS ON MNIST

In this work, we used the MNIST handwritten dataset Lecun et al. (1998) consisting of greyscale
images of size 28× 28 pixels. For accessing the dataset we used the torchvision dataset API included
in the PyTorch library. The MNIST dataset was used for the experiments on LeNet-300-100 Feed
Forward Network and LeNet-5 Convolutional Neural Network. We utilized the full 60000 images in
the training set for learning our models and evaluated them on the 10000 images in the testing set.
We normalized both the training set and the testing set to have zero mean and a variance of one. For
optimization during the training process, we used the Adam optimizer Kingma & Ba (2014) with a
learning rate of 0.001 and decay rate of 0.1 for every 85 epochs.

For the experiments with intermittent projections during the training phase, we first update the models
using backpropagation and combine it with our sparse projection operator every 80 mini-batches for
150 epochs. Next, we set the s fraction of the lowest parameters of the model to zero where s is the
sparsity constraint set in the GSP algorithm. Note that since we do the projection in a set interval of
minibatches, the final model might have some weights close to zero but not exactly zero. Hence, to
maintain the sparsity constraints in induced layerwise projection, we need to prune the weights of the
layers after each projection, keeping the largest 1− s fraction of the parameters. Finally, we finetune
the surviving parameters for the remaining 150 epochs.

We perform multiple random restart experiments on the MNIST dataset for the LeNet-300-100 and
LeNet-5 models over a range of sparsity values and show a box plot for the accuracy at each sparsity
level. The results are shown n Fig-3(a) and 3(b). We notice an increase in model performance for
most of the sparsity values, and a negligible accuracy loss in the extremely sparse regime.

C.2 EXPERIMENTS ON CIFAR-10

We use the CIFAR-10 dataset Krizhevsky et al. (2009) to train and test the Resnet-56 and Resnet-110
models for our experiments. The CIFAR-10 dataset was accessed through the dataset API of the
torchvision package of PyTorch. We performed the standard preprocessing on the data which included
horizontal flip, random crop and normalization on the training set. With the CIFAR-10 dataset we
perform two different types of experiments. Similar to the experiments on the MNIST dataset, we
perform a layerwise induced GSP integrated with the training phase. We also perform single shot
pruning with a single projection of the model weights followed by the finetuning phase (as described
in the main paper). For the sparsity induced training experiments, we learn the weights of the Resnet
models for 164 epochs, performing a projection with the GSP every 200 iterations. The learning rate
was set at 0.1 at the start, and was then decayed by 0.1 at epochs 81 and 122. Similar to the MNIST
experiments, we prune the weights keeping the largest 1− s fraction of the parameters. Finally, we
finetune the model with the surviving parameters for 164 epochs.
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Methods Architecture Sparsity% Accuracy% Drop%

DH Resnet-56 84.64 92.71 0.42

Induced GSP Resnet-56 88.33 92.04 1.09
Resnet-56 89.50 91.62 1.51

One Shot GSP Resnet-56 85.78 92.71 0.42
DH Resnet-110 83.94 92.76 1.24

Induced GSP Resnet-110 95.18 92.67 0.95

One Shot GSP Resnet-110 85.90 92.86 0.76
Resnet-110 90.72 92.45 1.17

Table 3: Sparsity vs Accuracy for ResNet-56 and ResNet-110 for both layerwise and one-shot
GSP, in comparison to a full pipeline of DeepHoyer (DH) in the CIFAR-10 dataset. The last two
columns reports both the mean performance of the model and the drop in performance compared to
the respective baseline accuracy of the pretrained model used for that experiment.

Layerwise GSP induced training was carried out on the CIFAR-10 dataset with the Resnet-56 and
Resnet-110 models. For these experiments we separately projected the parameters of each layer
of the Resnet models every 200 mini-batches, right after the backpropagation step. The models
were trained with GSP induction for a total of 164 epochs. Then we fixed the nonzero weights and
finetuned the models for another 164 epochs. The results of these experiments along with those of
DeepHoyer Yang et al. (2019) and our single-shot GSP experiments are presented in Table 3 for
comparison.
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