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Abstract
We introduce and analyze BPALM and A-BPALM, two multi-block proximal alter-
nating linearized minimization algorithms using Bregman distances for solving 
structured nonconvex problems. The objective function is the sum of a multi-block 
relatively smooth function (i.e., relatively smooth by fixing all the blocks except 
one) and block separable (nonsmooth) nonconvex functions. The sequences gener-
ated by our algorithms are subsequentially convergent to critical points of the objec-
tive function, while they are globally convergent under the KL inequality assump-
tion. Moreover, the rate of convergence is further analyzed for functions satisfying 
the Łojasiewicz’s gradient inequality. We apply this framework to orthogonal non-
negative matrix factorization (ONMF) that satisfies all of our assumptions and the 
related subproblems are solved in closed forms, where some preliminary numerical 
results are reported.
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1  Introduction

For a nonempty, convex, and open set C ⊆ ℝ
n , we consider the structured nons-

mooth nonconvex minimization problem
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where we will assume the following hypotheses (see Sect. 3 for details):

Assumption 1  (requirements for composite minimization (1.1))  

A1	gi ∶ ℝ
ni → ℝ ∶= ℝ ∪ {∞} is proper and lower semicontinuous (lsc);

A2	h ∶ ℝ
n → ℝ is proper, closed, and multi-block Legendre;

A3	 f ∶ ℝ
n → ℝ is C1(��� ��� h) and (L1,… , LN)-smooth relative to h; here 

n =
∑N

i=1
ni;

A4	������� ≠ ∅ , C ∶= ��� h , C ∶= ��� ��� h , g ∶=
∑N

i=1
gi , and C ⊆ ��� g.

There is a huge number of algorithmic studies around solving the optimization 
problems of the form (1.1). Among all of such methodologies, we are interested in 
the class of alternating minimization algorithms such as block coordinate descent 
[15, 18, 42, 48, 53, 54, 61, 62], block coordinate [30, 32, 41], and Gauss-Seidel 
methods [11, 19, 36], which assume that all blocks are fixed except one and solve 
the corresponding auxiliary problem with respect to this block, update the latter 
block, and continue with the others. In particular, the proximal alternating minimi-
zation has received much attention in the last few years; see for example [6–10, 16]. 
Recently, the proximal alternating linearized minimization and its variants has been 
developed to handle (1.1); see for example [23, 51, 57].

Traditionally, the Lipschitz (Hölder) continuity of partial gradients of f in (1.1) 
is a necessary tool for providing the convergence analysis of optimization algo-
rithms; see, e.g., [23, 51]. It is, however, well-known that it is not the Lipschitz 
(Hölder) continuity of gradients playing a key role in such analysis, but one of its 
consequences: an upper estimation of f including a Bregman distance called descent 
lemma; cf. [13, 46]. This idea is central to convergence analysis of many optimiza-
tion schemes requiring such an upper estimation; see, e.g., [1–3, 12, 13, 24, 37, 38, 
46, 59, 60]. In this paper, we propose a multi-block extension of the descent lemma 
given in [13, 46] and propose a Bregman proximal alternating linearized minimiza-
tion (BPALM) algorithm and its adaptive version (A-BPALM) for (1.1).

1.1 � Contribution

Our contribution is summarized as follows: 

	 (i)	 (Relative smoothness with possibly nonconvex kernel) An extension of the rela-
tive smoothness [13, 46] for problems with block separable structure entails 
an application of multi-block convex kernel functions (see Definition 3.1) 
which is not necessarily a jointly convex function. This paves the way toward 
the development of non-Euclidean alternating minimization methodologies.

(1.1)��������
x=(x1,…,xN )∈C

�(x) ≡ f (x) +

N∑
i=1

gi(xi),
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	 (ii)	 (Bregman proximal alternating linearized minimization) We introduce 
BPALM, a multi-block generalization of the proximal alternating linearized 
minimization (PALM) [23] using Bregman distances, and its adaptive version 
(A-BPALM). To do so, we extend the notion of relative smoothness [13, 46] to 
its multi-block counterpart to support a structured problem of the form (1.1). 
Owing to multi-block relative smoothness of f, our algorithm does not need 
to know the local Lipschitz moduli of partial gradients ∇if  ( i = 1,… ,N ) and 
their lower and upper bounds, which are hard to provide in practice.

	 (iii)	 (Efficient framework for ONMF) Exploiting a suitable kernel for Bregman 
distance, it turns out that the objective of orthogonal nonnegative matrix fac-
torization (ONMF) is multi-block relatively smooth, and the subproblems of 
our algorithms are solved in closed forms making them suitable for large-scale 
data analysis problems. To the best of our knowledge, BPALM and A-BPALM 
are the first algorithms with rigorous convergence theory for ONMF.

1.2 � Related works

Closely related to our framework, there are two papers [43, 63]. However, we notice 
that [63] uses a sum separable kernel function which is a special case of our multi-
block kernel functions (see Example 3.2), and the paper provides a subsequential 
convergence theory. Regarding [43], an algorithm (named B-PALM) was proposed 
that is a special case of our BPALM when N = 2 , g1 = g2 = 0 , and f ∈ C2 . Hence, 
the proposed algorithms in [43] are not applicable to ONMF, which requires non-
negativity constraints. We stress that involving the block separable nonsmooth non-
convex functions gi and considering N > 2 make our analysis different from those of 
[43].

1.3 � Organization

This paper has five sections, besides this introductory section. In Sect. 2, we describe 
some preliminaries, and in Sect. 3, we introduce the notion of multi-block relative 
smoothness, and verify the fundamental properties of Bregman proximal alternating 
linearized mapping. In Sect. 4, we introduce BPALM and A-BPALM and investigate 
their convergence analysis. In Sect.  5, we show that ONMF satisfies our assump-
tions, the related subproblems are solved in closed forms and report our numerical 
results. Finally, Sect. 6 delivers some conclusions.

2 � Notation and preliminaries

We denote by ℝ ∶= ℝ ∪ {∞} the extended-real line. For the identity matrix In , 
we set Ui ∈ ℝ

n×ni such that In = (U1,… ,UN) ∈ ℝ
n×n . For notation clarity, we will 

use bold lower-case letters (e.g., x , y , z ) for vectors in ℝ
∑

ni and use normal lower-
case letters (e.g., z, xi , yi ) for vectors in ℝni . The open ball of radius r > 0 centered 
in x ∈ ℝ

p is denoted as �(x;r) . For a set C ⊆ ℝ
p , C denotes its closure. The set 
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of cluster points of (xk)k∈ℕ is denoted as �(x0) . A function f ∶ ℝ
p → ℝ is proper 

f ≢ ∞ , in which case its domain is defined as the set ��� f ∶= {x ∈ ℝ
p}[f (x) < ∞] . 

For � ∈ ℝ , [f ≤ �] ∶= {x ∈ ℝ
p}[f (x) ≤ �] is the �-(sub)level set of f; [f ≥ �] and 

[f = �] are defined similarly. We say that f is level bounded if [f ≤ �] is bounded for 
all � ∈ ℝ . A vector v ∈ �f (x) is a subgradient of f at x, and the set of all such vectors 
is called the subdifferential �f (x) [55, Definition 8.3], i.e.

and �̂f (x) is the set of regular subgradients of f at x, namely

The Fenchel conjugate function f ∗ ∶ ℝ
p → ℝ of f ∶ ℝ

p → ℝ is given by

For a given nonempty closed convex set S ⊆ ℝ
p , the function �S ∶ ℝ

p → ℝ denotes 
the indicator function, namely �S(x) = 0 if x ∈ S and �S(x) = ∞ otherwise. Moreo-
ver, ����S ∶ ℝ

p → ℝ
p denotes the projection function given by 

����S(x) = ������
z∈S

‖z − x‖.

2.1 � Bregman proximal mapping

For a kernel function h ∶ ℝ
n → ℝ and a proper lower semicontinuous function 

g ∶ ℝ
n → ℝ , the Bregman proximal mapping is given by

which is a generalization of the classical one by using the Bregman distance (3.2) in 
place of the Euclidean distance; see, e.g., [28] and references therein. We note that

which implies �������h
𝛾g

⊂ ������ h, ���������h
𝛾g

⊂ ��� g ∩ ��� h . The func-
tion g is h-prox-bounded if there exists 𝛾 > 0 such that ��� z{g(z) +

1

𝛾
�h(z, x)} > −∞ 

for some x ∈ ℝ
n ; see for example [3].

2.2 � Kurdyka‑Łojasiewicz (KL) function

Let us consider the class of functions that are satisfying the celebrated Kurdyka-
Łojasiewicz inequality, which we present next.

Definition 2.1  (KL property) A proper and lsc function � ∶ ℝ
n1 ×… ×ℝ

nN → ℝ 
has the Kurdyka-Łojasiewicz property (KL property) at x⋆ ∈ ���𝜑 if there exist a 

�f (x) ={v ∈ ℝ
p}[∃(xk, vk)k∈ℕ s.t. xk → x, f (xk) → f (x), �̂f (xk) ∋ vk → v],

�̂f (x) ={v ∈ ℝ
p}[f (z) ≥ f (x) + ⟨v, z − x⟩ + o(‖z − x‖), ∀z ∈ ℝ

p].

f ∗(z∗) = ���{⟨z∗, x⟩ − f (x)}[x ∈ ℝ
p].

(2.1)����h
�g
(x) ∶= ������

z∈ℝn

{g(z) +
1

�
�h(z, x)}.

����h
𝛾g
(x) = {y ∈ ��� g ∩ ��� h | g(y) + 1

𝛾
�h(y, x) = ��� z{g(z) +

1

𝛾
�h(z, x)} < +∞},
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concave desingularizing function � ∶ [0, �] → [0,+∞[ (for some 𝜂 > 0 ) and neigh-
borhood �(x⋆;𝜀) with 𝜀 > 0 , such that 

	 (i)	 �(0) = 0;
	 (ii)	 � is of class C1 with 𝜓 > 0 on (0, �);
	 (iii)	 for all x ∈ �(x⋆;𝜀) such that 𝜑(x⋆) < 𝜑(x) < 𝜑(x⋆) + 𝜂 it holds that 

If � satisfies the KL property at each point of ��� �� , then � is called a KL function.
The first inequality of this type is given in the seminal work of Łojasiewicz [44, 45] 

for analytic functions, which we nowadays call Łojasiewicz’s gradient inequality. Later, 
Kurdyka [40] showed that this inequality is valid for C1 functions whose graph belong 
to an o-minimal structure (see its definition in [31]). The first extensions of the KL 
property to nonsmooth functions were given by Bolte et al. [20–22].

The following two facts constitute the crucial steps for establishing the global con-
vergence of the algorithms given in Sect. 4.

Fact 2.2  (uniformized KL property) [23, Lemma 6] Let Ω be a compact set and 
� ∶ ℝ

d → ℝ be a proper and lower semicontinuous function. Assume that � is 
constant on Ω and satisfies the KL property at each point of Ω . Then, there exist 
𝜀 > 0 , 𝜂 > 0 , and a desingularizing function � such that for u ∈ Ω and all u in the 
intersection

we have

Fact 2.3  [25, Lemma 2.3] Let (ak)k∈ℕ and (bk)k∈ℕ be sequences in [0,+∞) such that ∑∞

k=1
bk < ∞ and ak+1 ≤ �ak + bk for all k ∈ ℕ and some 𝛼 < 1 . Then, 

∑∞

k=1
ak < ∞.

3 � Multi‑block Bregman proximal mapping

In this section, we first establish the notion of multi-block relative smoothness, which 
is an extension of the relative smoothness [13, 46] for problems with block structure. 
Afterwards, we introduce Bregman alternating linearized mapping and study some of 
its basic properties.

3.1 � Multi‑block relative smoothness

In order to extend the definition of Bregman distances for the multi-block problem 
(1.1), we first need to introduce the notion of multi-block kernel functions, which 
will coincide with the standard one (cf. [3, Definition 2.1]) if N = 1.

(2.2)𝜓 �(𝜑(x) − 𝜑(x⋆))����(0, 𝜕𝜑(x)) ≥ 1.

{u ∈ ℝ
d ∣ ����(u,Ω) < 𝜀} ∩ [𝜁(u) < 𝜁(u) < 𝜁(u) + 𝜂]

� �(�(u) − �(u))����(0, �� (u)) ≥ 1.
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Definition 3.1  (multi-block convexity and kernel function) Let h ∶ ℝ
n → ℝ be a 

proper and lsc function with ��� ��� h ≠ ∅ and such that h ∈ C1(��� ��� h) . For a 
fixed vector x ∈ ℝ

n , we define the function hi
x
∶ ℝ

ni → ℝ given by

Then, we say that h is 

(i)	 multi-block (strongly/strictly) convex if the function hi
x
(⋅) is (strongly/strictly) 

convex for all x ∈ ��� h and i = 1,… ,N;
(ii)	 multi-block locally strongly convex around x⋆ = (x⋆

1
,… , x⋆

N
) if, for i = 1,… ,N , 

there exists 𝛿 > 0 and 𝜎i
h
> 0 such that 

(iii)	 a multi-block kernel function if h is multi-block convex and hi
x
(⋅) is 1-coercive 

for all x ∈ ��� h and i = 1,… ,N , i.e., ���‖z‖→∞

hi
x
(z)

‖z‖ = ∞;
(iv)	 essentially smooth, if for every sequence (xk)k∈ℕ ⊆ ��� ��� h converging to a 

boundary point of ��� h , we have ‖∇h(xk)‖ → ∞;
(v)	 of multi-block Legendre type if it is essentially smooth and multi-block strictly 

convex.

Example 3.2  (popular kernel functions) There are many kernel functions satisfy-
ing the conditions given in Definition  3.1(iii). For example, for N = 1 , energy, 
Boltzmann-Shannon entropy, Fermi-Dirac entropy (cf. [14, Example 2.3]) and 
several examples in [46, Section 2]; and for N = 2 see two examples in [43, Sec-
tion  2]. Two important classes of multi-block kernels are sum separable kernels, 
i.e., h(x1,… , xN) = h1(x1) +… + hN(xN) , and product separable kernels, i.e., 
h(x1,… , xN) = h1(x1) ×… × hN(xN) , see such a kernel for ONMF in Proposition 5.1.

We now give the definition of Bregman distances (cf. [27]) for multi-block 
kernels.

Definition 3.3  (Bregman distance) For a multi-block kernel function h, the Breg-
man distance �h ∶ ℝ

n ×ℝ
n → ℝ is given by

Fixing all blocks except the i-th one, the Bregman distance with respect to this 
block is given by

(3.1)hi
x
(z) ∶= h(x + Ui(z − xi)).

hi
x
(xi) ≥ hi

x
(yi) + ⟨∇ih(x + Ui(yi − xi)), xi − yi⟩ + 𝜎i

h

2
‖xi − yi‖2 ∀x, y ∈ �(x⋆;𝛿);

(3.2)�h(y, x) ∶=

�
h(y) − h(x) − ⟨∇h(x), y − x⟩ y ∈ ��� h, x ∈ ��� ��� h

∞ otherwise.

�h(x + Ui(yi − xi), x) = h(x + Ui(yi − xi)) − h(x) − ⟨∇h(x),Ui(yi − xi)⟩
= hi

x
(yi) − hi

x
(xi) − ⟨∇ih(x), yi − xi⟩,
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which measures the proximity between y and x with respect to the i-th block 
of variables. Moreover, the kernel h is multi-block convex if and only if 
�h(x + Ui(yi − xi), x) ≥ 0 for all y ∈ ��� h and x ∈ ��� ��� h and i = 1,… ,N . 
Note that if h is multi-block strictly convex, then �h(x + Ui(yi − xi), x) = 0 
( i = 1,… ,N ) if and only if xi = yi.

We are now in a position to present the notion of multi-block relative smooth-
ness, which is the central tool for our analysis in Sect. 4.

Definition 3.4  (multi-block relative smoothness) Let h ∶ ℝ
n → ℝ be a multi-block 

kernel and let f ∶ ℝ
n → ℝ be a proper and lower semicontinuous function. If there 

exists Li > 0 ( i = 1,… ,N ) such that the functions �i
x
∶ ℝ

ni → ℝ given by

are convex for all x, x + Ui(z − xi) ∈ ��� ��� h and i = 1,… ,N , then f is called 
(L1,… , LN)-smooth relative to h.

Note that if N = 1 , the multi-block relative smoothness is reduced to stand-
ard relative smoothness, which was introduced only recently in [13, 46]. In the 
Euclidean case, relative smoothness is equivalent to the one-sided descent lemma, 
which is implied by the Lipschitz continuity of gradients ∇f  (i.e., L

2
‖ ⋅ ‖2 − f  is 

convex). Therefore, the relative smoothness of f generalizes the notions of Lip-
schitz smoothness using Bregman distances. If N = 2 , this definition will be 
reduced to the relative bi-smoothness given in [43] for h, f ∈ C2.

We next characterize the notion of multi-block relative smoothness.

Proposition 3.5  (characterization of multi-block relative smoothness) Let 
h ∶ ℝ

n → ℝ be a multi-block kernel and let f ∶ ℝ
n → ℝ be a proper lower semi-

continuous function and f ∈ C1 . Then, the following statements are equivalent: 

(a)	 f is (L1,… , LN)-smooth relative to h;
(b)	 for all (x, y) ∈ ��� ��� h × ��� ��� h and i = 1,… ,N , 

(c)	 for all (x, y) ∈ ��� ��� h × ��� ��� h and i = 1,… ,N , 

(d)	 if f ∈ C2(��� ��� f ) and h ∈ C2(��� ��� h) , then 

 for i = 1,… ,N and for all x ∈ ��� ��� h.
Proof  Fixing all the blocks except one of them, the results can be concluded in the 
same way as [46, Proposition 1.1]. 	�  ◻

�i
x
(z) ∶= Lih(x + Ui(z − xi)) − f (x + Ui(z − xi))

(3.3)f (x + Ui(yi − xi)) ≤ f (x) + ⟨∇if (x), yi − xi⟩ + Li�h(x + Ui(yi − xi), x);

(3.4)⟨∇if (x) − ∇if (y), xi − yi⟩ ≤ Li⟨∇ih(x) − ∇ih(y), xi − yi⟩;

(3.5)Li∇
2

xixi
h(x) − ∇2

xixi
f (x) ⪰ 0,
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3.2 � Bregman proximal alternating linearized mapping

The main objective of the remainder of this section is to provide a guarantee for 
existence of the Bregman proximal alternating linearized minimization mapping 
(see (3.9)) and to investigate its fundamental properties.

Let us begin with an extension of h-prox-boundedness to our multi-block set-
ting, where both of them are extensions of the classical prox-boundedness condi-
tion; see, e.g., [55, Definition 1.23].

Definition 3.6  (multi-block h-prox-boundedness) A function g ∶ ℝ
n → ℝ is multi-

block h-prox-bounded if for each i ∈ {1,… ,N} there exists 𝛾i > 0 and x ∈ ℝ
n such 

that

The supremum of the set of all such �i is the threshold �h
i,g

 of the multi-block h-prox-
boundedness, i.e.,

For the problem (1.1), we have g =
∑N

i=1
gi leading to

If g is multi-block h-prox-bounded for 𝛾 i > 0 , so is for all �i ∈ (0, � i) . We next pre-
sent equivalent conditions to this notion.

Proposition 3.7  (characterization of multi-block h-prox-boundedness) For a 
multi-block kernel function h ∶ ℝ

n → ℝ and proper and lsc functions gi ∶ ℝ
ni → ℝ 

with i = 1,… ,N , the following statements are equivalent: 

(a)	 g =
∑N

i=1
gi is multi-block h-prox-bounded;

(b)	 for all i = 1,… ,N and hi
x
 given in (3.1), gi + rih

i
x
 is bounded below on ℝni for 

some ri ∈ ℝ;
(c)	 for all i = 1,… ,N , ��� ���‖z‖→∞

gi(z)

hi
x
(z)

> −∞.

Proof  We first show (a) ⇔ (b) . Let us assume gh∕𝛾i(x) > −∞ , and let ri >
1

𝛾i
 . Then, 

for all i = 1,… ,N , it holds that

gh∕𝛾i(x) ∶= ��� z∈ℝni {g(x + Ui(z − xi)) +
1

𝛾i
�h(x + Ui(z − xi), x)} > −∞.

(3.6)𝛾h
i,g

∶= ���{𝛾i > 0 | ∃x ∈ ℝ
n s.t. gh∕𝛾i(x) > −∞}.

(3.7)gh∕�i(x) =
∑
j≠i

gj(xj) + ��� z∈ℝni {gi(z) +
1

�i
�h(x + Ui(z − xi), x)}.

gi(z) + rih
i
x
(z) = gi(z) +

1

𝛾i
�h(x + Ui(z − xi), x) + rih

i
x
(z) −

1

𝛾i
�h(x + Ui(z − xi), x)

≥ gh∕𝛾i(x) −
�
j≠i

gj(xj) +
ri𝛾i−1

𝛾i
hi
x
(z) +

1

𝛾i
(h(x) + ⟨∇ih(x), z − xi⟩) =∶ g̃i(z),
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for the function g̃i ∶ ℝ
ni → ℝ . We notice that g̃i is convex and coercive, and as such 

is lower bounded. Conversely, suppose that 𝛼i ∶= ���gi + rih
i
x
> −∞ . Then, from 

(3.7), we obtain

which is finite, owing to 1-coercivity of z ↦ 1−�iri
�i

hi
x
(z) −

1

�i
⟨∇ih(x), z⟩.

We now show (b) ⇔ (c) . Suppose that 𝛼i ∶= ���gi + rih
i
x
> −∞ . Since hi

x
(⋅) is 

1-coercive, we have

Conversely, suppose ��� ���‖z‖→∞
gi(z)

hi
x
(z)

> −∞ . Then, there exist �i,Mi ∈ ℝ such that 
gi(z)

hi
x
(z)

≥ �i whenever ‖z‖ ≥ Mi . Thus, it holds that

where the last inequality follows from coercivity of hi
x
 , i,e, hi

x
 is level-bounded 

and consequently lower bounded (cf. [55, Corollary 1.10]). Since the function 
gi(z) + rih

i
x
(z) is lower semicontinuous, it follows from [55, Corollary 1.10] that 

���‖z‖≤Mi
gi(z) + rih

i
x
(z) > −∞ . Therefore, we conclude that gi + rih

i
x
 is lower 

bounded on ℝn . 	�  ◻

Let us now define the function Mh∕� ∶ ℝ
n ×ℝ

n → ℝ as

and the set-valued Bregman proximal alternating linearized mapping 
�i
h∕�i

∶ ℝ
n ⇉ ℝ

ni as

which reduces to the Bregman forward-backward splitting mapping if N = 1 ; cf. [3, 
24].

Remark 3.8  (majorization model) Note that, for x ∈ ��� ��� h , invoking Proposi-
tion  3.5(b) and Assumption  1, the multi-block ( L1,… , LN)-relative smoothness 
assumption of f entails a block majorization model

gh∕�i(x) =
�
j≠i

gj(xj) + min
z∈ℝni

{gi(z) +
1

�i
�h(x + Ui(z − xi), x)},

≥
�
j≠i

gj(xj) + �i + ��� z{−rih
i
x
(z) +

1

�i
�h(x + Ui(z − xi), x)}

≥
�
j≠i

gj(xj) + �i −
1

�i
h(x) +

1

�i
⟨∇ih(x), xi⟩ + ��� z{

1−�iri
�i

hi
x
(z) −

1

�i
⟨∇ih(x), z⟩},

��� ���‖z‖→∞
gi(z)

hi
x
(z)

≥ −ri + ��� ���‖z‖→∞
𝛼i

hi
x
(z)

= −ri > −∞.

���‖z‖≥Mi
gi(z) + rih

i
x
(z) ≥ ���‖x‖≥Mi

hi
x
(z)(�i + ri) > −∞,

(3.8)Mh∕� (z, x) ∶= f (x) + ⟨∇f (x), z − x⟩ + 1

�
�h(z, x) +

N�
i=1

gi(zi)

(3.9)�i
h∕�i

(x) ∶= ������
z∈ℝni

Mh∕�i
(x + Ui(z − xi), x),
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for �i ∈ (0, 1∕Li).

In the next lemma, we show that the cost function � is monotonically decreasing 
by minimizing the model (3.8) with respect to each block of variables.

Lemma 3.9  (Bregman proximal alternating inequality) Let the conditions in 
Assumption 1 hold, and let z ∈ �i

h∕�i
(x) with �i ∈ (0, 1∕Li) and x ∈ ��� ��� h . Then,

for all i = 1,… ,N.

Proof  For i ∈ {1,… ,N} , (3.9) is simplified in the form

Considering z ∈ �i
h∕�i

(x) , we have

Since f is (L1,… , LN)-smooth relative to h, it follows from Proposition 3.5(b) for x 
and yi = z that

giving (3.10).

Recall that a function � ∶ ℝ
n ×ℝ

m → ℝ with values �(x, u) is level-bounded in 
x locally uniformly in u if for each ū ∈ ℝ

m and � ∈ ℝ there is a neighborhood U 
of ū along with a bounded set B ⊂ ℝ

n such that {x ∈ ℝ
n ∣ 𝜗(x, u) ≤ 𝛼} ⊂ B for all 

u ∈ U  , cf. [55, Definition 1.16]. Using this definition, we next investigate the fun-
damental properties of the mapping �i

h∕�i
 , which imply that if x ∈ ��� ��� h , then 

the set �i
h∕�i

(x) is nonempty. This is an essential assertion to show the well-
definedness of the algorithm (BPALM) in the next section. Let us remind that 
such statement is a common hypothesis for methods assuming relative smooth-
ness in nonconvex setting; see, e.g., [24].

�(x + Ui(yi − xi)) ≤ f (x) + ⟨∇if (x), yi − xi⟩ + Li�h(x + Ui(yi − xi), x) + gi(yi) +
�
j≠i

gj(xj)

≤ f (x) + ⟨∇if (x), yi − xi⟩ + 1

�i
�h(x + Ui(yi − xi), x) + gi(yi) +

�
j≠i

gj(xj),

(3.10)�(x + Ui(z − xi)) ≤ �(x) −
1−�iLi

�i
�h(x + Ui(z − xi), x),

(3.11)

�i
h∕�i

(x) = ������
z∈ℝni

{⟨∇f (x),Ui(z − xi)⟩ + 1

�i
�h(x + Ui(z − xi), x) + gi(z) +

∑N

j≠i
gj(xj)}

= ������
z∈ℝni

{⟨∇if (x), z − xi⟩ + 1

�i
�h(x + Ui(z − xi), x) + gi(z)}.

⟨∇if (x), z − xi⟩ + 1

�i
�h(x + Ui(z − xi), x) + gi(z) ≤ gi(xi).

f (x + Ui(z − xi)) ≤ f (x) + ⟨∇if (x), z − xi⟩ + Li�h(x + Ui(z − xi), x)

≤ f (x) + Li�h(x + Ui(z − xi), x) + gi(xi) − gi(z) −
1

�i
�h(x + Ui(z − xi), x)

= f (x) + gi(xi) − gi(z) −
1−�iLi

�i
�h(x + Ui(z − xi), x),
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Proposition 3.10  (properties of Bregman proximal alternating linearized mapping) 
Under conditions given in Assumption 1 and setting �i ∈ (0, �h

i,g
) for i = 1,… ,N , the 

following statements are true: 

	 (i)	 �i
h∕�i

 is nonempty, compact, and outer semicontinuous (osc) for all 
x ∈ ��� ��� h;

	 (ii)	 ����i
h∕�i

= ��� ��� h;

Proof  Let us define the function Φi ∶ ℝ
ni × ��� ��� h × (0, �h

i,g
) → ℝ given by

Since f is C1 , gi is proper and lsc, and h is C1 proper and lsc, the function Φi is proper 
and lsc on the sets of the form {(z, x, �i)}[‖z − xi‖ ≤ ��i, 0 ≤ �i ≤ �0

i
] , for any 𝜇 > 0 

and a fixed �0
i
∈ (0, �h

i,g
) . We now show that Φi is level-bounded in z locally uni-

formly at every (x, �i) ∈ ��� ��� h × (0, �0
i
) . If it is not true, then there exist 

(x, � i) ∈ ��� ��� h × (0, �h
i,g
) , (xk)k∈ℕ ⊂ ��� ��� h , (zk)k∈ℕ with 

x
k + Ui(z

k − xk
i
) ⊂ ��� ��� h , and (𝛾k

i
)k∈ℕ ⊂ (0, 𝛾0

i
] such that Φi(z

k, xk, 𝛾k
i
) ≤ 𝛽 < ∞ 

with (xk, �k
i
) → (x, � i) and ‖zk‖ → ∞ . This guarantees that, for sufficiently large k, 

zk ≠ xk
i
 , i.e., �k

i
∈ (0, �0

i
] and

Setting 𝛾̃i ∈ (𝛾0
i
, 𝛾h

i
) , Definition 3.6 and Proposition  3.7(b) ensure that there exists 

𝛽 ∈ ℝ such that

Subtracting the last two inequalities, it holds that

By expanding �h(x
k + Ui(z

k − xk
i
), xk) , dividing both sides by ‖zk‖ , and taking limit 

from both sides of this inequality as k → ∞ , it can be deduced that

This leads to the contradiction +∞ ≤ 0 , which implies that Φi is level-bounded in z 
locally uniformly at every (x, �i) ∈ ��� ��� h × (0, �0

i
).

Considering the above result, all assumptions of the parametric minimization the-
orem given in [55, Theorem 1.17] are satisfied, i.e., Proposition 3.10(i) holds true. If 

Φi(z, x, �i) ∶= gi(z) + ⟨∇if (x), z − xi⟩ +
⎧⎪⎨⎪⎩

1

�i
�h(x + Ui(z − xi), x) if �i ∈ (0, �0

i
],

0 if �i = 0 and z = xi,

+∞ otherwise.

gi(z
k) + ⟨∇if (x

k), zk − xk
i
⟩ + 1

�k
i

�h(x
k + Ui(z

k − xk
i
), xk) ≤ �.

gi(z
k) +

1

𝛾̃i
h(xk + Ui(z

k − xk
i
)) ≥ 𝛽.

⟨∇if (x
k), zk − xk

i
⟩ + 1

𝛾k
i

�h(x
k + Ui(z

k − xk
i
), xk) −

1

𝛾̃i
h(xk + Ui(z

k − xk
i
)) ≤ 𝛽 − 𝛽.

���k→∞

��
∇if (x

k) −
1

𝛾k
i

∇ih(x
k),

zk − xk
i

‖zk‖

�
−

1

𝛾k
i

h(xk)

‖zk‖

�
+

�
1

𝛾k
i

−
1

𝛾̃i

�
���k→∞

hi
xk
(zk)

‖zk‖ ≤ ���k→∞

𝛽 − 𝛽

‖zk‖ .
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x ∈ ��� ��� h , it follows from Proposition  3.10(i) that �i
h∕�i

(x) ≠ � , i.e., 
��� ��� h ⊆ ����i

h∕𝛾i
 . For x ∈ ����i

h∕�i
 , the essential smoothness of h yields 

x ∈ ��� ��� h , i.e., ����i
h∕𝛾i

⊆ ��� ��� h , giving Proposition 3.10(ii).

Remark 3.11  (sum or product separable kernel) Let Assumption  1 hold, and let 
hi ∶ ℝ

ni → ℝ ( i = 1,… ,N ) be strictly convex, 1-coercive, and essentially smooth. 
Then, the following hold: 

	 (i)	 If h is an additive separable function, i.e., h(x1,… , xN) = h1(x1) +… + hN(xN) , 
and ∇hi(xi) − �i∇if (x) ∈ ���∇h∗

i
 , then (3.9) can be written in the form 

	 (ii)	 If h is product separable, i.e., h(x1,… , xN) = h1(x1) ×… × hN(xN) , each hi 
( i = 1,… ,N ) is positive, and ∇hi(xi) − �i∇if (x) ∈ ���∇h∗

i
 holds, then 

 where �i ∶=
�i
�i
x

 and 𝜂i
x
∶=

∏
j≠i hj(xj) > 0.

Note that in above-mentioned multi-block kernel function, h is not necessarily 
convex, but it is only multi-block convex that is a much weaker notion than the 
convexity.

4 � Multi‑block Bregman proximal alternating linearized minimization

We here introduce a multi-block proximal alternating linearized minimization algo-
rithm and investigate its subsequential and global convergence, along with its con-
vergence rate.

For given points xk = (xk
1
,… , xk

N
) and xk+1 = (xk+1

1
,… , xk+1

N
) , we set

�i
h∕�i

(x) = ������
z∈ℝni

{gi(z) + ⟨∇if (x), z − xi⟩ + 1

�i
�h(x + Ui(z − xi), x)}

= ������
z∈ℝni

{gi(z) +
1

�i
(hi(z) − hi(xi) − ⟨∇hi(xi) − �i∇if (x), z − xi⟩)}

= ������
z∈ℝni

{gi(z) +
1

�i
�hi

(z,∇h∗
i
(∇hi(xi) − �i∇if (x))}

= ����
hi
�igi

(∇h∗
i
(∇hi(xi) − �i∇if (x))).

�i
h∕�i

(x) = ������
z∈ℝni

{gi(z) + ⟨∇if (x), z − xi⟩ + 1

�i
�h(x + Ui(z − xi), x)}

= ������
z∈ℝni

{gi(z) +
�i
x

�i
(hi(z) − hi(xi) − ⟨∇hi(xi) − �i

�i
x

∇if (x), z − xi⟩)}
= ������

z∈ℝni

{gi(z) +
1

�i

�hi
(z,∇h∗

i
(∇hi(xi) − �i∇if (x))}

= ����
hi
�igi

(∇h∗
i
(∇hi(xi) − �i∇if (x))),

x
k,i ∶= (xk+1

1
,… , xk+1

i
, xk

i+1
,… , xk

N
) = x

k +

i∑
j=1

Uj(x
k+1
j

− xk
j
),
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so that xk,0 = x
k and xk,N = x

k+1 , where Uj ∈ ℝ
n×nj , In = (U1,… ,UN) ∈ ℝ

n×n for the 
identity matrix In . Using this notation and (3.9), we next introduce the multi-block 
Bregman proximal alternating linearized minimization (BPALM) algorithm.

We note that each iteration of BPALM requires one call of the first-order ora-
cle for the information needed in (4.1). In addition, notice that if N = 1 , this algo-
rithm reduces to the common (Bregman) proximal gradient (forward-backward) 
method [13, 17, 24]; if N = 2 , h, f ∈ C2 , and g1 = g2 = 0 , then it reduces to 
B-PALM [43]; if N = 2 and h(x) = 1

2
(‖x1‖2 + ‖x2‖2) , it reduces to PALM [23]; if 

h(x) =
1

2

∑N

i=1
‖xi‖2 , then this algorithm is reduced to C-PALM [57].

From Proposition 3.10, we know that the operator �i
h∕�i

(xk,i−1) is nonempty and 
compact for all x

k,i−1 ∈ ��� ��� h ; however, after the substitution 
x
k,i = x

k,i−1 + Ui(x
k,i

i
− x

k,i−1

i
) , we need to be sure xk,i ∈ ��� ��� h to guarantee the 

nonemptymess of �i
h∕�i

(xk,i) in the next step of the algorithm. To do so, we require to 
make the following extra assumption:

Assumption 2  For i = 1,… ,N and all z ∈ ������i
h∕�i

(x) , we have 
x + Ui(z − xi) ∈ ��� ��� h.

Let us emphasize that together with Proposition  3.10, the latter assumption 
implies that BPALM is well-defined. Now, we can begin with showing some basic 
properties of the sequence generated by BPALM, involving a sufficient decrease 
condition.

Proposition 4.1  (sufficient decrease condition) Let Assumption 1 and 2 hold, and 
let (xk)k∈ℕ be generated by BPALM. Then, the following statements are true: 

	 (i)	 the sequence (�(xk))k∈ℕ is nonincreasing and 

(4.2)�

N∑
i=1

�h(x
k,i, xk,i−1) ≤ �(xk) − �(xk+1),
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 where � ∶= min

{
1−�1L1

�1
,… ,

1−�NLN

�N

}
;

	 (ii)	 we have 

 i.e., ���k→∞�h(x
k,i, xk,i−1) = 0 for i = 1,… ,N.

Proof  Plugging z = x
k,i

i
 and x = x

k,i−1 into Lemma 3.9, it holds that

Summing up both sides of (4.4) from i = 1 to N, it follows that

giving (4.2). Let us sum up both sides of (4.2) from k = 0 to q:

Taking the limit as q → +∞ , (4.3) holds true. Together with �h(⋅, ⋅) ≥ 0 , this proves 
the claim.

Let us consider the condition

as a stopping criterion, for the accuracy parameter 𝜀 > 0 . Then, the first main conse-
quence of Proposition 4.1 will provide us the iteration complexity of BPALM, which 
is the number of iterations needed for the stopping criterion (4.5) to be satisfied.

The boundedness of the sequence (xk)k∈ℕ is a typical assumption in convergence 
analysis of proximal-type algorithms for solving general non-convex non-smooth 
composite optimization problem, see e.g., [7, 24]. We next provide the iteration 
complexity of BPALM and a sufficient condition guaranteeing the boundedness of 
(xk)k∈ℕ as a simple consequence of Proposition 4.1.

Corollary 4.2  (iteration complexity and boundedness) Let Assumption  1 and 2 
hold, and let the sequence (xk)k∈ℕ be generated by BPALM with the stopping crite-
rion (4.5). Then, for the constant � = min{

1−�1L1
�1

,… ,
1−�NLN

�N
} , 

	 (i)	 BPALM will be terminated within k ≤ 1 +
�(x0)−����

��
 iterations;

	 (ii)	 If � has bounded level sets, then the sequence (xk)k∈ℕ is bounded.

(4.3)
∞∑
k=1

N∑
i=1

�h(x
k,i, xk,i−1) < ∞,

(4.4)�(xk,i) ≤ �(xk,i−1) −
1−�iLi

�i
�h(x

k,i, xk,i−1).

N∑
i=1

1−�iLi

�i
�h(x

k,i, xk,i−1) ≤

N∑
i=1

[�(xk,i−1) − �(xk,i)] = �(xk) − �(xk+1),

𝜌

q∑
k=0

N∑
i=1

�h(x
k,i, xk,i−1) ≤

q∑
k=0

𝜑(xk) − 𝜑(xk+1) = 𝜑(x0) − 𝜑(xq+1) ≤ 𝜑(x0) − ���𝜑 < ∞.

(4.5)
N∑
i=1

�h(x
k,i, xk,i−1) ≤ �
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Proof  Summing both sides of (4.2) over the first K ∈ ℕ iterations and telescoping 
the right hand side, it holds that

Assuming that for all the first (K − 1) iterations the stopping criterion (4.5) is not 
satisfied, i.e., 

∑N

i=1
�h(x

k,i, xk,i−1) > 𝜀 , which leads to K ≤ 1 +
�(x0)−����

��
 , giving the 

desired result.
Proposition 4.1(i) shows that �(xk) is non-increasing; hence, the sequence (xk)k∈ℕ 

is encompassed within the lower level set 
[
� ≤ �(x0)

]
 ; i.e., (xk)k∈ℕ ⊆

[
𝜑 ≤ 𝜑(x0)

]
 . 

Since � has bounded level sets, the sequence (xk)k∈ℕ would be bounded.

In order to show subsequential convergence of the sequence (xk)k∈ℕ generated 
by BPALM, the next proposition will provide a lower bound for iterations gap 
‖xk+1 − x

k‖ using the subdifferential of ��(xk+1) . In the remainder of this section, 
we assume that the kernel h has a full domain, i.e., C = ℝ

n.

Assumption 3  The multi-block Legendre kernel h has full domain, i.e., ��� h = ℝ
n.

Proposition 4.3  (subgradient lower bound for iterations gap) Let Assumption 1, 2 
and 3 hold, and let (xk)k∈ℕ be generated by BPALM that we assume to be bounded. 
For a fixed k ∈ ℕ , we define

If ∇if  and ∇ih ( i = 1,… ,N ) are locally Lipschitz on bounded sets involving all iter-
ations, then 

(
Gk+1
1

,… ,Gk+1
N

)
∈ ��(xk+1) and

with c ∶= ���{
L̃+�1L̂

�1
,… ,

L̃+�N L̂

�N
} in which L̂ and �L > 0 are Lipschitz moduli of ∇if  , 

∇ih ( i = 1,… ,N ) on bounded sets involving all iterations.

Proof  The optimality conditions for (4.1) ensure that there exist qk,i
i

∈ �gi(x
k,i

i
) such 

that

leading to

On the other hand, owing to [7, Proposition 2.1], the subdifferential of � is given by

�

K−1∑
k=0

N∑
i=1

�h(�
k,i, �k,i−1) ≤

K−1∑
k=0

(
�(xk) − �(xk+1)

)
= �(x0) − �(xK) ≤ �(�0) − ����.

(4.6)
Gk+1
i

∶=
1

�i
(∇ih(x

k,i−1) − ∇ih(x
k,i)) + ∇if (x

k+1) − ∇if (x
k,i−1) i = 1,… ,N.

(4.7)‖(Gk+1
1

,… ,Gk+1
N

)‖ ≤ c

N�
i=1

‖xk+1
i

− xk
i
‖,

∇if (x
k,i−1) +

1

�i

(
∇ih(x

k,i) − ∇ih(x
k,i−1)

)
+ qk,i = 0 i = 1,… ,N,

(4.8)qk,i =
1

�i

(
∇ih(x

k,i−1) − ∇ih(x
k,i))

)
− ∇if (x

k,i−1) i = 1,… ,N.
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i.e., for x = x
k+1,

which means (Gk+1
1

,… ,Gk+1
N

) ∈ ��(xk+1) . It follows from Assumption  3 and the 
Lipschitz continuity of ∇if  , ∇ih on bounded sets involving all iterations and the 
assumption of (xk)k∈ℕ being bounded that there exist �L,�L > 0 such that

for i = 1,… ,N . Invoking the last two inequalities, it can be concluded that

as claimed.

Next, we proceed to derive the subsequential convergence of the sequence 
(xk)k∈ℕ generated by BPALM: every cluster point of (xk)k∈ℕ is a critical point of 
� . Further, we explain some fundamental properties of the set of all cluster points 
�(x0) of the sequence (xk)k∈ℕ.

Theorem  4.4  (subsequential convergence and properties of �(x0) ) Let Assump-
tion 1, 2 and 3 hold, let the kernel h be locally multi-block strongly convex, and let 
(xk)k∈ℕ be generated by BPALM. If the sequence (xk)k∈ℕ is bounded and ∇if  and 
∇ih ( i = 1,… ,N ) are locally Lipschitz around its cluster points, then all the cluster 
points of (xk)k∈ℕ are critical points � , i.e., 𝜔(x0) ⊂ ���� 𝜑.

Proof  For a limit point x⋆ = (x⋆
1
,… , x⋆

N
) of the sequence (xk)k∈ℕ , it follows from the 

boundedness of this sequence that there exists an infinite index set J ⊂ ℕ such that 
the subsequence (xk)k∈ℕ[k ∈ J] converges to x⋆ as k → ∞ . From the lower semicon-
tinuity of gi ( i = 1,… ,N ) and for j ∈ J  , it can be deduced that

By (4.1), we get

Using multi-block local strong convexity of h around x⋆ and invoking Proposi-
tion  4.1(ii), there exist a neighborhood �(x⋆

i
, 𝜀⋆

i
) for 𝜀⋆

i
> 0 , 𝜎⋆

i
> 0 , and k0

i
∈ ℕ 

such that for k ≥ k0
i
 and k ∈ J

��(x) = (�1�(x),… , �N�(x)) = (∇1f (x) + �g1(x1),… ,∇Nf (x) + �gN(xN)),

∇if (x
k+1) + �gi(x

k+1
i

) = �i�(x
k+1) i = 1,… ,N,

‖Gk+1
i

‖ ≤
1

�i
‖∇ih(x

k,i−1) − ∇ih(x
k,i)‖ + ‖∇if (x

k+1) − ∇if (x
k,i−1)‖ ≤

L̃+�iL̂

�i

N�
j=1

‖xk+1
j

− xk
j
‖,

‖(Gk+1
1

,… ,Gk+1
N

)‖ ≤ ���{
L̃+�1L̂

�1
,… ,

L̃+�N L̂

�N
}

N�
i=1

‖xk+1
i

− xk
i
‖,

(4.9)��� ��� j→∞gi(x
kj

i
) ≥ g(x⋆

i
) i = 1,… ,N.

(4.10)

⟨∇if (x
k,i−1), xk+1

i
− xk

i
⟩ + 1

𝛾i
�h(x

k,i, xk,i−1) + gi(x
k+1
i

) ≤ ⟨∇if (x
k,i−1), x⋆

i
− xk

i
⟩

+
1

𝛾i
�h(x

⋆, xk,i−1) + gi(x
⋆
i
).
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This indicates that the distance between two successive iterations goes to zero for 
large enough k, i.e., for ���k→∞x

k+1
i

= ���k→∞x
k
i
 . Together with the boundedness of 

the sequence (xk)k∈ℕ , the continuity of ∇if  and ∇ih around cluster points of (xk)k∈ℕ , 
the substitution of k = kj − 1 in (4.10) for j ∈ J  , taking the limit in both sides of 
this inequality as k → ∞ , this implies that

and consequently by lsc of gi,

Further, Proposition 4.1(ii) and Proposition 4.3 ensure 
(
Gk+1
1

,… ,Gk+1
N

)
∈ ��(xk+1) 

and

i.e., ���k→∞

(
Gk+1
1

,… ,Gk+1
N

)
= (0n1 ,… , 0nN

) . Together with the clos-
edness of the subdifferential mapping �� and (4.12), this implies that 
(0n1 ,… , 0nN

) ∈ 𝜕𝜑(x⋆
1
,… , x⋆

N
) , giving our desired result.

4.1 � Global convergence under Kurdyka‑Łojasiewicz inequality

Our following main result indicates that the sequence (xk)k∈ℕ generated by 
BPALM  converges to a critical point x⋆ of � if it satisfies the KL property; cf. 
Definition 2.1.

Theorem 4.5  (global convergence) Let Assumption 1, 2 and 3 hold, let the kernels 
h be multi-block globally strongly convex with modulus �i ( i = 1,… ,N ), and let 
(xk)k∈ℕ be generated by BPALM that we assume to be bounded. If � is a KL function, 
then the following statements are true: 

	 (i)	 The sequence (xk)k∈ℕ has finite length, i.e., 

	 (ii)	 The sequence (xk)k∈ℕ converges to a stationary point x⋆ of �.

(4.11)
���k→∞

𝜎⋆
i

2
‖xk+1

i
− xk

i
‖2 ≤ ���k→∞�h(x

k,i, xk,i−1) = 0, xk
i
∈ �(x⋆

i
, 𝜀⋆

i
), i = 1,… ,N.

��� ���j→∞gi(x
kj

i
) ≤ gi(x

⋆
i
) i = 1,… ,N,

(4.12)

���j→∞𝜑(x
kj ) = ���j→∞

(
f (x

kj

1
,… , x

kj

N
) +

N∑
i=1

gi(x
kj

i
)

)
= f (x⋆

1
,… , x⋆

N
) +

N∑
i=1

gi(x
⋆
i
).

���k→+∞‖Gk+1
1

,… ,Gk+1
N

‖ ≤ c���k→+∞

N�
i=1

‖xk+1
i

− xk
i
‖ ≤ c���k→+∞

�
N�
i=1

�
2

𝜎⋆
i

�h(x
k,i, xk,i−1)

�
= 0,

(4.13)
∞�
k=1

‖xk+1
i

− xk
i
‖ < ∞ i = 1,… ,N;
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Proof  Let us set 𝜑⋆ ∶= ���k→∞𝜑(x
k) and define the sequence (Sk)k∈ℕ given by 

Sk ∶= 𝜑(xk) − 𝜑⋆ , which is decreasing by Proposition 4.1(i), i.e., (Sk)k∈ℕ → 0 . We 
now consider two cases: (i) there exists k ∈ ℕ such that Sk = 0 ; (ii) Sk > 0 for all 
k ≥ 1.

In Case (i), Proposition  4.1(i) implies that 𝜑(xk) = 𝜑⋆ for all k ≥ k . It follows 
from Proposition 4.1(ii) and multi-block strong convexity of h that

implying xk+1 = x
k for all k ≥ k , which leads to Theorem 4.5(i).

In Case (ii), it holds that 𝜑(xk) > 𝜑⋆ for all k ≥ 1 . Thus, Lemma 8.1 yields that 
there exists 𝜀, 𝜂 > 0 and the desingularizing function � such that

Let us define Δk ∶= 𝜓(𝜑(xk) − 𝜑⋆) = 𝜓(Sk) . Then, it follows from the concavity of 
� and Proposition 4.3 that

with ĉ ∶= c

(�min{�1,…,�N})
 . Using the arithmetic and quadratic mean inequalities, and 

applying the arithmetic and geometric mean inequalities, it can be concluded that

We now define the sequences (ak)k∈ℕ and (bk)k∈ℕ as

where 
∑∞

i=1
bk =

�cN

2

∑∞

i=1

�
Δi − Δi+1

�
=

�cN

2
(Δ1 − Δ∞) =

�cN

2
Δ1 < ∞ . According to 

Fact 2.3, we infer 
∑∞

k=1
ak < ∞ , which proves Theorem 4.5(i).

By (4.13), the sequence (xk)k∈ℕ is a Cauchy sequence, i.e., it converges to a sta-
tionary point x⋆ , giving the desired result.

4.2 � Convergence rate under Łojasiewicz‑type inequality

We now investigate the convergence rate of the sequence generated by BPALM 
under KL inequality of Łojasiewicz type at x⋆ ( �(s) ∶=

�

1−�
s1−� with � ∈ [0, 1) ), 

i.e., there exists 𝜀 > 0 such that

�i
2
‖xk+1

i
− xk

i
‖2 ≤ �h(x

k,i, xk,i−1) = 0 i = 1,… ,N,

𝜓 �(𝜑(xk) − 𝜑⋆)����(0, 𝜕𝜑(xk)) ≥ 1 for k ≥ k0.

Δk − Δk+1 = �(Sk) − �(Sk+1) ≥ � �(Sk)(Sk − Sk+1) = � �(Sk)(�(x
k) − �(xk+1))

≥
�(xk) − �(xk+1)

����(0, ��(xk))
≥

�
∑N

i=1
�h(x

k,i, xk,i−1)

c
∑N

i=1
‖xk

i
− xk−1

i
‖ ≥

1

ĉ

∑N

i=1
‖xk+1

i
− xk

i
‖2

∑N

i=1
‖xk

i
− xk−1

i
‖ ,

(4.14)

∑N

i=1
‖xk+1

i
− xk

i
‖ ≤

�
ĉN(Δk − Δk+1)

∑N

i=1
‖xk

i
− xk−1

i
‖ ≤

1

2

∑N

i=1
‖xk

i
− xk−1

i
‖ + ĉN

2

�
Δk − Δk+1

�
.

(4.15)ak+1 ∶=

N�
i=1

‖xk+1
i

− xk
i
‖, bk =

ĉN

2

�
Δk − Δk+1

�
, � ∶=

1

2
,
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The following fact plays a key role in studying the convergence rate of the sequence 
generated by BPALM.

Fact 4.6  (convergence rate of a sequence with positive elements) [26, Lemma 
15] Let (sk)k∈ℕ be a monotonically decreasing sequence in ℝ+ and let � ∈ [0, 1) and 
𝛽 > 0 . Suppose that s2�

k
≤ �(sk − sk+1) holds for all k ∈ ℕ . Then, the following asser-

tions hold: 

	 (i)	 If � = 0 , the sequences (sk)k∈ℕ converges in a finite time;
	 (ii)	 If � ∈ (0, 1∕2] , there exist 𝜆 > 0 and � ∈ [0, 1) such that for every k ∈ ℕ

	 (iii)	 If � ∈ (1∕2, 1) , there exists 𝜇 > 0 such that for every k ∈ ℕ

We next derive the convergence rates of the sequences (xk)k∈ℕ and (�(xk))k∈ℕ 
under the additional assumption that the function � satisfies the KL inequality of 
Łojasiewicz type.

Theorem 4.7  (convergence rate) Let Assumption 1, 2 and 3 hold, let the kernel h be 
multi-block globally strongly convex with modulus (�1,… , �N) , and let the sequence 
(xk)k∈ℕ generated by BPALM  converging to x⋆ . If � satisfies the KL inequality of 
Łojasiewicz type (4.16), then the following assertions hold: 

	 (i)	 If � = 0 , then the sequences (xk)k∈ℕ and (�(xk))k∈ℕ converge in a finite number 
of steps to x⋆ and 𝜑(x⋆) , respectively;

	 (ii)	 If � ∈ (0, 1∕2] , then there exist 𝜆1 > 0 , 𝜇1 > 0 , � ∈ [0, 1) , and k ∈ ℕ such that 

	 (iii)	 If � ∈ (1∕2, 1) , then there exist 𝜆2 > 0 , 𝜇2 > 0 , and k ∈ ℕ such that 

Proof  See the proof in the appendix.

4.3 � Adaptive BPALM

The tightness of the i-th block upper bound of the function f given in Propo-
sition  3.5(b) is dependent on the parameter Li > 0 ; however, in general, this 

(4.16)|𝜑(x) − 𝜑⋆|𝜃 ≤ 𝜅����(0, 𝜕𝜑(x)) ∀x ∈ �(x⋆;𝜀).

0 ≤ sk ≤ ��k;

0 ≤ sk ≤ �k
−

1

2�−1 .

0 ≤ ‖xk − x
⋆‖ ≤ 𝜆1𝜏

k

2 , 0 ≤ Sk ≤ 𝜇1𝜏
k ∀k ≥ k;

0 ≤ ‖xk − x
⋆‖ ≤ 𝜆2k

−
1−𝜃

2𝜃−1 , 0 ≤ Sk ≤ 𝜇2k
−

1

2𝜃−1 ∀k ≥ k + 1.
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parameter is a global information and it might not be tight locally, i.e., one may find 
a Li > Li(x) ≥ 0 such that

for all y ∈ �(x;�1) with a small enough 𝜀1 > 0 . Consequently, the block majorization 
model described by Mh∕�i

 may not be tight enough, which will consequently lead to 
smaller step-sizes �i ∈ (0, 1∕Li) . In this case and in the case where (L1,… , LN) is not 
available, one can retrieve them adaptively by applying a line search starting from a 
lower estimate; see, e.g., [3, 5, 47, 49].

Putting together the above discussions, we propose an adaptive version of 
BPALM using a line search; see Algorithm 2.

Let us assume that the solution of the subproblem xk,i
i

∈ �i

h∕�k+1
i

(xk,i−1) can be 
computed exactly. Beside of the computational cost of solving the subproblem, 
we note that in each iteration of A-BPALM, we only needs two calls of the first-
order oracle (one call for f and the other for h in Line 7). We next provide an 
upper bound on the total number of calls of oracle after k iterations of 
A-BPALM and those needed to satisfy (4.5).

Proposition 4.8  (worst-case oracle calls) Let (xk)k∈ℕ be generated by A-BPALM. 
Then, 

	 (i)	 after at most ���

{
1

���
��

�Li

L
0

i

, 0

}
 iterations the line search (Lines 4 to 7 of 

A-BPALM) will be satisfied;
	 (ii)	 the number of oracle calls Nk after k full cycle is bounded by 

f (x + Ui(yi − xi)) ≤ f (x) + ⟨∇if (x), yi − xi⟩ + Li(x)�h(x + Ui(yi − xi), x)
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	 (iii)	 the worst-case number of oracle calls to satisfy (4.5) is given by 

 with � ∶= min

{
(1−�0

1
L
0

1
)

�0
1

,… ,
(1−�0

N
L
0

N
)

�0
N

}
.

Proof  According to step 5 and step 8 of A-BPALM, if ��L
0

i
≥ ��(�Li) then from step 

5 we have L̄k+1
i

≥ L̄k
i
≥ L̄0

i
> Li for all k ≥ 0 , hence pk

i
= 0 since the condition in step 

7 is satisfied; otherwise, we have L
k+1

i
= �p

k
i L

k

i
 , i.e.,

giving Proposition 4.8(i). Hence, the total number of calls of oracle after k iterations 
is given by

giving Proposition 4.8(ii).
The step 5 implies that the sequences 

(
(1 − �k

i
L
k

i
)∕�k

i

)
k∈ℕ

 ( i = 1,… ,N ) are 

increasing with respect to k, i.e., (1 − �k+1
i

L
k+1

i
)∕�k+1

i
≥ (1 − �0

i
L
0

i
)∕�0

i
 , i = 1,… ,N . 

Now, following the proof of Proposition 4.1, it is easy to see that

From the proof of Corollary 4.2, BPALM will be terminated within k ≤ 1 +
�(x0)−����

��
 

iterations. Together with Proposition 4.8(ii), this implies that Proposition 4.8(iii) is 
true.

In light of (4.17), Proposition 4.1 holds true by replacing � with � . Considering 
this replacement, all the results of Proposition 4.3, Theorem 4.4, Theorem 4.5, and 
Theorem 4.7 remain valid for A-BPALM.

Remark 4.9  (A-BPALM variant) We here notice that one may change Line 5 of 

A-BPALM as “set L
k+1

i
= �pL

0

i
, �k+1

i
=

�0
i

�p
, p = p + 1; ”, which always start the proce-

dure from L
0

i
 and �0

i
 . It is easy to see that the results of Proposition 4.8 are still valid 

for this variant of A-BPALM.

Nk ≤

(
2N + 2

N∑
i=1

���

{
1

���
��

�Li

L
0

i

, 0

})
k;

(
2N + 2

N∑
i=1

���

{
1

���
��

�Li

L
0

i

, 0

})(
1 +

(�(x0)−����)

��

)

pk
i
=

1

���

(
��L

k+1

i
− ��L

k

i

)
≤

1

���

(
��(�Li) − ��L

0

i

)
i = 1,… ,N,

Nk =

k−1∑
j=0

N∑
i=1

2(p
j

i
+ 1) ≤ 2

N∑
i=1

[
k +

k−1∑
j=0

���

{
1

���
��

�Li

L
0

i

, 0

}]
,

(4.17)

�
∑N

i=1
�h(x

k,i, xk,i−1) = min{(1 − �0
1
L
0

1
)∕�0

1
,… , (1 − �0

N
L
0

N
)∕�0

N
}
∑N

i=1
�h(x

k,i, xk,i−1)

≤ min{
1−�k+1

1
L
k+1

1

�k+1
1

,… ,
1−�k+1

N
L
k+1

N

�k+1
N

}
∑N

i=1
�h(x

k,i, xk,i−1)

≤ �(xk) − �(xk+1).
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5 � Application to orthogonal nonnegative matrix factorization

A natural way of analyzing large data sets is finding an effective way to represent 
them using dimensionality reduction methodologies. Nonnegative matrix factoriza-
tion (NMF) is one such technique that has received much attention in the last few 
years; see, e.g., [29, 33, 34] and the references therein. In order to extract hidden 
and important features from data, NMF decomposes the data matrix into two factor 
matrices (usually much smaller than the original data matrix) by imposing compo-
nentwise nonnegativity and (possibly) sparsity constraints on these factor matrices. 
More precisely, let the data matrix be X = (x1, x2,… , xq) ∈ ℝ

p×q
+  where each xi rep-

resents some data point. NMF seeks a decomposition of X into a nonnegative p × r 
basis matrix U = (u1, u2,… , ur) ∈ ℝ

p×r
+  and a nonnegative r × q coefficient matrix 

V = (v1, v2,… , vr)
T ∈ ℝ

r×q
+  such that

where ℝp×q
+  is the set of p × q element-wise nonnegative matrices. Extensive 

research has been carried out on variants of NMF, and most studies in this area have 
focused on algorithmic developments, but with very limited convergence theory. 
This motivates us to study the application of BPALM and A-BPALM to a variant of 
NMF, namely orthogonal NMF (ONMF).

5.1 � Orthogonal nonnegative matrix factorization

Besides the decomposition (5.1), the orthogonal nonnegative matrix factorization 
(ONMF) involves an additional orthogonality constraint VVT = Ir leading to the 
constrained optimization problem

where Ir ∈ ℝ
r×r is the identity matrix. By imposing the matrix V to be orthogo-

nal (as well as nonnegative), ONMF imposes that each data point is only associ-
ated with one basis vector, hence ONMF is closely related to clustering prob-
lems; see  [52] and the references therein. Since the projection onto the set 
C ∶= {(U,V) ∈ ℝ

p×r ×ℝ
r×q ∣ U ≥ 0, V ≥ 0, VVT = Ir} is costly, we here consider 

the penalized formulation

for the penalty parameter 𝜆 > 0 . By fixing U, the objective function of the prob-
lem (5.3) is not Lipschitz smooth with respect to V, and hence standard NMF block 
proximal gradient descent algorithms cannot be applied to solve (5.3). The uncon-
strained version of (5.3) is given by

(5.1)X ≈ UV ,

(5.2)
��������

1

2
‖X − UV‖2

F

������� �� U ≥ 0, V ≥ 0, VVT = Ir

(5.3)��������
1

2
‖X − UV‖2

F
+

�

2
‖Ir − VVT‖2

F

������� �� U ≥ 0, V ≥ 0,
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where �U≥0 and �V≥0 are the indicator functions of the sets C1 ∶= {U ∈ ℝ
p×r ∣ U ≥ 0} 

and C2 ∶= {V ∈ ℝ
r×q ∣ V ≥ 0} , respectively. This problem can be put in the form 

of (1.1) using

in which both g1(U) and g2(V) are nonsmooth convex functions.
We now apply BPALM and A-BPALM to solve (5.4). Specifically, in Proposi-

tion  5.1, we provide a full-domain multi-block strongly convex kernel function h 
such that f(U, V) is (L1, L2)-smooth relative to h, and then in Theorem 5.2 we give 
closed-form solutions of the subproblem (4.1). Let us emphasize that Assump-
tion 1, 2 and 3 hold for the problem (5.4) and the kernel (5.6). Now, applying The-
orem 4.5, we have that BPALM  and A-BPALM converges globally to a stationary 
point of the objective function of  (5.4). For the ONMF problem (5.4), since the 
function f (U,V) =

1

2
‖X − UV‖2

F
+

�

2
‖Ir − VVT‖2

F
 is a polynomial and the func-

tions g1(U) = �U≥0 and g2(V) = �V≥0 are indicator functions of semialgebraic sets, 
they are semialgebraic functions. Therefore, it follows from [20, Theorem 3.1] that 
�(U,V) = f (U,V) + g1(U) + g2(V) is a KL function with exponent � ∈ [0, 1) . We 
however could not provide a KL exponent (see (4.16)) for this problem, and so we 
are not able to derive the rate of convergence of our methods for this problem, which 
remains an open question.

Proposition 5.1  (multi-block relative smoothness of ONMF objective) Let 
𝛼, 𝛽, 𝜀1, 𝜀2 > 0 and let the function h ∶ ℝ

p×r ×ℝ
r×q → ℝ be a kernel given by

Then the function f given in (5.5) is (L1, L2)-smooth relative to h with

Proof  Using partial derivatives ∇Uf (U,V) = UVVT − XVT , ∇2

UU
f (U,V)Z = ZVVT , 

and the Cauchy-Schwarz inequality, it can be concluded that 
⟨Z,∇2

UU
f (U,V)Z⟩ ≤ ‖V‖2

F
‖Z‖2

F
 . On the other hand, ∇Uh(U,V) = �1U + �‖V‖2

F
U 

and

Together with (5.7), this yields L1∇2

UU
h(U,V) − ∇2

UU
f (U,V) ⪰ 0.

From ∇Vf (U, ⋅)(V) = UTUV − UTX + 2�(VVTV − V) and the definition of direc-
tional derivative, we obtain

(5.4)��������
(U,V)

1

2
‖X − UV‖2

F
+

�

2
‖Ir − VVT‖2

F
+ �U≥0 + �V≥0,

(5.5)
f (U,V) ∶=

1

2
‖X − UV‖2

F
+

�

2
‖Ir − VVT‖2

F
, g1(U) ∶= �U≥0, g2(V) ∶= �V≥0,

(5.6)h(U,V) ∶=
�

2
‖U‖2

F
‖V‖2

F
+

�

4
‖V‖4

F
+

�1
2
‖U‖2

F
+

�2
2
‖V‖2

F
.

(5.7)L1 ≥
1

�
, L2 ≥ ���{

6�

�
,
1

�
}.

⟨Z,∇2

UU
h(U,V)Z⟩ = (�1 + �‖V‖2

F
)⟨Z, Z⟩ ≥ �‖V‖2

F
‖Z‖2

F
.
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From this last equation, ⟨Y1, Y2⟩ ∶= ��(YT
1
Y2) , basic properties of the trace, the 

Cauchy-Schwarz inequality, and the submultiplicative property of the Frobenius 
norm, we obtain

We have ∇Vh(U,V) = (�2 + �‖U‖2
F
)V + �‖V‖2V  . Hence,

which implies

Hence, it follows from (5.7) that L2∇2

VV
h(U,V) − ∇2

VV
f (U,V) ⪰ 0.

For given Uk and Vk , applying BPALM and A-BPALM to (5.4), Uk+1 and Vk+1 
should be computed efficiently, which we study next.

Theorem 5.2  (closed-form solutions of the subproblem (4.1) for ONMF) Let h be 
the kernel functions given in (5.6). For given Uk and Vk , the problem (5.4), and the 
subproblem (4.1), the following assertions hold: 

	 (i)	 Let �1 = �‖Vk‖2
F
+ �1 . The iteration Uk+1 is given by 

	 (ii)	 Let �2 = �2 + �‖Uk+1‖2
F
 . The iteration Vk+1 is given by 

 with ∇Vf (U
k+1,Vk) = (Uk+1)TUk+1Vk − (Uk+1)TX + 2�(Vk(Vk)TVk − Vk) 

and 

∇2

VV
f (U,V)Z = ���t→0

UTU(V + tZ) − UTX + 2�[(V + tZ)(V + tZ)T (V + tZ) − (V + tZ)]

t

−
UTUV − UTX + 2�(VVTV − V)

t

= UTUZ + 2�(ZVTV + VZTV + VVTZ − Z) ∀Z ∈ ℝ
r×q.

⟨Z,∇2

VV
f (U,V)Z⟩ = ⟨Z,UTUZ + 2�(ZVTV + VZTV + VVTZ − Z)⟩

≤ 6�‖Z‖2
F
‖V‖2

F
+ ‖U‖2

F
‖Z‖2

F
.

∇2

VV
h(U,V)Z = �

�‖V‖2
F
Z + 2⟨V , Z⟩V� + (�2 + �‖U‖2

F
)Z,

⟨Z,∇2

VV
h(U,V)Z⟩ = �‖Z‖2

F
‖V‖2

F
+ 2�⟨V , Z⟩2 + (�2 + �‖U‖2

F
)‖Z‖2

F

≥ �‖Z‖2
F
‖V‖2

F
+ �‖U‖2

F
‖Z‖2

F
.

(5.8)Uk+1 = ���{Uk −
�1
�1

(
UkVk(Vk)T − X(Vk)T

)
, 0};

(5.9)Vk+1 =
1

tk
���{Gk, 0}

(5.10)
Gk = �2Vk + �‖Vk‖2FVk − �2∇Vf (U

k+1,Vk),

tk =
�2
3
+

3

�
c+

√
Δ

2
+

�3
2

27
+

3

�
c−

√
Δ

2
+

�3
2

27
,
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 where c = �‖���(0,Gk)‖2
F
 and Δ = c2 +

4

27
c�3

2
.

Proof  It follows from (3.11) that

with ∇Uf (U
k,Vk) = UkVk(Vk)T − X(Vk)T , giving (5.8).

We have

Let us consider the normal cone NV≥0(V
k+1) = {P ∈ ℝ

r×q ∣ Vk+1 ⊙ P = 0, P ≤ 0} 
(see [58, Corollary 3.5]), where V ⊙ P denotes the Hadamard product given point-
wise by (V ⊙ P)ij ∶= VijPij for i ∈ 1,… , r and j ∈ 1,… , q . The first-order opti-
mality conditions for (5.11) lead to Gk − (�‖Vk+1‖2

F
+ �2)V

k+1 ∈ NV≥0(V
k+1) with 

Gk ∶= ∇Vh(U
k+1Vk) − �2∇Vf (U

k+1,Vk).
Now we consider two cases: (i) Gk

ij
≤ 0 ; (ii) Gk

ij
> 0 . In Case (i), 

Pij = Gk
ij
− (�‖Vk+1‖2

F
+ �2)V

k+1
ij

≤ 0 , hence, Vk+1
ij

= 0 (otherwise, Vk+1
ij

< 0 which 
implies Pij < 0 ; this contradicts to the condition Vk+1

ij
Pij = 0 ). In Case (ii), if 

Vk+1
ij

= 0 , then Pij = Gk
ij
> 0 , which contradicts P ≤ 0 , hence, 

Gk
ij
− (�‖Vk+1‖2

F
+ �2)V

k+1
ij

= 0 . Combining both cases, we get

Denote tk = (�‖Vk+1‖2
F
+ �2) . Then we have ‖Vk+1‖2

F
= (tk − �2)∕� . Therefore, tk 

satisfies

Note that the third-order polynomial equation y2(y − a) = c has the unique real solu-

tion y = a

3
+

3

�
c+

√
Δ

2
+

a3

27
+

3

�
c−

√
Δ

2
+

a3

27
 , where Δ = c2 +

4

27
ca3 , which gives 

(5.10).

Uk+1 = ������
U∈ℝp×r

{⟨∇Uf (U
k,Vk),U − Uk⟩ + 1

�1
�h((U,Vk), (Uk,Vk)) + g1(U)}

= ������
U≥0

{⟨�1∇Uf (U
k,Vk) − ∇Uh(U

k,Vk),U⟩ + �1
2
‖U‖2

F
}

= ������
U≥0

‖U − (
1

�1
∇Uh(U

k,Vk) −
�1
�1
∇Uf (U

k,Vk))‖2
F

= ����U≥0(U
k −

�1
�1
∇Uf (U

k,Vk)),

(5.11)

Vk+1 = ������
V∈ℝr×q

{⟨∇Vf (U
k+1,Vk),V − Vk⟩ + 1

�2
�h((U

k+1,V), (Uk+1,Vk)) + g2(V)}

= ������
V≥0

{h(Uk+1,V) − ⟨∇Vh(U
k+1Vk) − �2∇Vf (U

k+1,Vk),V⟩}.

(�‖Vk+1‖2
F
+ �2)V

k+1 = ����V≥0(G
k).

t3
k
− �2t

2

k
− �‖����V≥0(Gk)‖2

F
= 0.
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5.2 � Preliminary numerical experiments

In this section, we report preliminary numerical results of our experiments on 
BPALM and two variants of A-BPALM, namely,

•	 A-BPALM1: the algorithm A-BPALM;
•	 A-BPALM2: the variant of A-BPALM as described in Remark 4.9.

Since the unconstrained ONMF problem (5.4) involves the quadratic penalty term 
�

2
‖Ir − VVT‖2

F
 , we also consider a “continuation” variant of these algorithm that 

starts from some 𝜆 > 0 , run one of the above-mentioned algorithms until some stop-
ping criterion holds and save its best point, and then it increases the penalty param-
eter and run the algorithm with the starting point as the best point of the last call, 
and it continues the procedure until we stop the algorithm. We refer to this heuristic 
procedure as continuation; see Algorithm 3.

In our implementation, all the codes were written in MATLAB1 and runs were 
performed on a laptop with 1.8 GHz Intel Core i7 CPU and 16 GB RAM. On the 
basis of our preliminary experiments, we here set � = � = 1 and �1 = �2 = 10−9 to 
provide the relative smoothness constants as described in (5.7), and the related step-
sizes are computed by �i =

1

Li
− � , when � is set as the machine precision. For 

A-BPALM1 and A-BPALM2, we set � = 2 , and we also set L
0

i
= 10−4Li . For the 

continuation versions of our algorithms, we set c = 2 and consider the following 
notations:

•	 BPALM-c: BPALM with the continuation;
•	 A-BPALM1-c: A-BPALM1 with the continuation;
•	 A-BPALM2-c: A-BPALM2 with the continuation.

Moreover, we implement the following baseline algorithms in our experiments:

•	 MU: the Multiplicative Update method proposed in [56],
•	 HALS: the Hierarchical Alternating Least Squares Algorithm proposed in [39];

1  The codes are publicly available at https://​github.​com/​Masou​dAhoo/​BPALM

https://github.com/MasoudAhoo/BPALM
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For all of these algorithms, we use the same initialization, namely the successive 
projection algorithm (SPA) [4]. SPA is guaranteed to recover correctly the factors 
U and V, given that X = UV  where U ≥ 0 , V ≥ 0 and VVT = Ir (this is the noiseless 
case); in fact, ONMF is a special case of separable NMF in the absence of noise. 
Moreover, this recovery property holds true even in the presence of small bounded 
noise [35].

In the first experiment, we illustrate the evolution of the objective function (5.3) 
and the orthogonal error Oerror ∶= ‖I − Vk(Vk)T‖F obtained by our proposed meth-
ods BPALM, A-BPALM1 and A-BPALM2. We generate two synthetic data sets 
with (p, q, r) = (500, 500, 10) and (p, q, r) = (500, 2000, 10) as follows. We use the 
MATLAB command ���� to generate random nonnegative matrices U ∈ ℝ

p×r
+  and 

R ∈ ℝ
p×q
+  , then we generate a random orthogonal nonnegative matrix V ∈ ℝ

r×q
+  . 

Next, we set X = UV  to obtain the p-by-q orthogonal decomposable matrix X, and 
finally add 5% of noise by X = X + 0.05

‖X‖F
‖R‖F R . We run our algorithms with the fixed 

penalty parameter � = 100 and stopped the algorithms after 15 s. The results are 
illustrated in (5.3). We make two observations: (i) A-BPALM1 and A-BPALM2 out-
perform BPALM, A-BPALM2 being the best among them; (ii) within the same run-
ning time, BPALM can make more iterations than its line search variants 
A-BPALM1 and A-BPALM2, and A-BPALM2 runs the least number of iterations 
compared to the others (Fig. 1).

In the second experiment, we compare our algorithms (with and without continua-
tion) against MU and HALS. We generate 50 data sets with r = 10 , and p and q being 
uniformly chosen within the range [200,1000]. For each (p, q, r), we generate a data 
set in the same way as in the first experiment. For each data set, we use the same SPA 
initialization for all algorithms and run each algorithm for 20 s. For the continuation 
versions BPALM-c, A-BPALM1-c and A-BPALM2-c, we start with � = 10 , stop the 
inner algorithms every 2 s to increase � by factor c = 2 ; and for BPALM, A-BPALM1 
and A-BPALM2, we use a fixed � = 5120 , which is the last value of � used for continu-
ation versions.

We report the mean and standard derivation of the final orthogonal error and the fit-
ting error Ferror ∶=

‖X−UkVk‖F
‖X‖F  obtained by each algorithm over 50 runs in Table 1.

We observe that, on average, the continuation versions outperform BPALM variants 
with fixed � . Compared to HALS and MU, our algorithms A-BPALM2 and the con-
tinuation versions outperform HALS and MU in term of the orthogonal error and are 
competitive with HALS and MU in term of the fitting error. A-BPALM2 provides the 
best orthogonal error among the algorithms.

Finally, we report the performance of our algorithms on the Hubble telescope data 
set which is taken from [50]. In this problem, each row of the matrix X is a vectorized 
image of the Hubble telescope at a given wavelength for a total of p = 100 wavelengths. 
Each image contains q = 128 × 128 pixels. Since each pixel in the image contains 
mostly a single material, it makes sense to use ONMF to cluster the pixel according 
to the material they contain (see Fig. 2 for an illustration). Since the continuation ver-
sions of our algorithms perform better, we here only apply the continuation versions 
of BPALM, A-BPALM1, and A-BPALM2. We use the SVD-based initialization as in 
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[52]. We run each algorithm for 100 s. The final outputs of the algorithms, along with 
the ground true Hubble image, are illustrated in Fig. 2.

We observe on Fig. 2 that A-BPALM1-c and A-BPALM2-c provide slightly bet-
ter quality images compared to BPALM-c (look for example at the fifth basis image), 
while HALS and MU fail to cluster the pixels properly as their solutions have a too 
large orthogonal error Oerror , more than 10 times larger than A-BPALM1-c and 
A-BPALM2-c.

(b)(a)

(c) (d)

Fig. 1   A comparison among BPALM, A-BPALM1, and A-BPALM2: Subfigures a and b stand for 
function values vs. iterations for the 2 synthetic data with (p, q, r) = (500, 500, 10) (first dataset) and 
(p, q, r) = (500, 2000, 10) (second dataset), respectively; Subfigures c and d illustrate the orthogonal error 
vs. iterations for these data sets, respectively
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6 � Final remarks

We have analyzed two new alternating linearized minimization algorithms called 
BPALM and A-BPALM for solving the popular nonconvex nonsmooth optimiza-
tion problem (1.1). To do so, we first introduced the notion of multi-block rela-
tive smoothness and verified the fundamental properties of the Bregman proximal 
alternating linearized mapping. Convergence analysis including the subsequen-
tial convergence, global convergence and convergence rate of the proposed algo-
rithms is studied under the framework of multi-block relative smoothness and 
multi-block kernel functions. We employ BPALM  and A-BPALM to solve the 
orthogonal nonnegative matrix factorization (ONMF) problem. We emphasize 
that, to the best of our knowledge, BPALM and A-BPALM are the first algorithms 
with rigorous convergence guarantee for solving ONMF in the literature. Some 
preliminary numerical tests are provided to illustrate the performance of our 
algorithms.

Applying (A-)BPALM on other problems and comparing them with state-of-
the-art algorithms is a topic for future work.

Appendix

Lemma 8.1  Let all assumptions of Theorem 4.4 be valid. Then, the following asser-
tions hold: 

	 (i)	 ���k→∞����
(
x
k,�(x0)

)
= 0;

	 (ii)	 �(x0) is a nonempty, compact, and connected set;
	 (iii)	 the objective function � is finite and constant on �(x0).

Table 1   Mean ± std of the final 
Ferror and Oerror obtained by 
each algorithm over 50 runs. In 
each column, the best results are 
displayed in bold

Algorithm Ferror Oerror

BPALM 2.679 10−2 ± 1.992 10−4 1.269 100 ± 9.191 10−1

A-BPALM1 2.654 10−2 ± 2.370 10−4 1.332 10−2 ± 2.614 10−2

A-BPALM2 2.573 10−2 ± 1.509 10−4 �.��� ��−� ± �.��� ��−�

BPALM-c 2.582 10−2 ± 2.079 10−4 2.395 10−3 ± 3.787 10−4

A-BPALM1-c 2.568 10−2 ± 1.356 10−4 2.419 10−3 ± 4.641 10−4

A-BPALM2-c 2.568 10−2 ± 1.371 10−4 2.430 10−3 ± 4.921 10−4

MU 2.503 10−2 ± 1.540 10−4 9.566 10−3 ± 5.528 10−4

HALS �.��� ��−� ± �.��� ��−� 1.223 10−2 ± 5.324 10−4
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Proof  Lemma 8.1(i) is a direct consequence of Theorem 4.4, and Lemma 8.1(ii) and 
Lemma 8.1(iii) can be proved in the same way as [23, Lemma 5(iii)-(iv)].

Lemma 8.2  Let all assumptions of Theorem  4.5 is satisfied. If 𝜑(xk) > 𝜑⋆ , there 
exists 𝜀, 𝜂 > 0 and the desingularizing function � such that

Proof  From Lemma 8.1(ii), the set of limit points �(x0) of (xk)k∈ℕ is nonempty and 
compact and � is finite and constant on �(x0) due to Lemma  8.1(iii). Moreover, 

(8.1)𝜓 �(𝜑(xk) − 𝜑⋆)����(0, 𝜕𝜑(xk)) ≥ 1 for k ≥ k0.

(b)

(a)

(c)

(d)

(e)

(f)

Fig. 2   Comparison of BPALM-c, A-BPALM1-c, A-BPALM2-c, MU and HALS on the Hubble image. 
Algorithms are run for 100 s. In each subfigure, each image corresponds to a row of V that has been 
reshaped as an image (since each entry corresponds to a pixel; see the description in the text)
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𝜑(xk) > 𝜑⋆ and the sequence (�(xk))k∈ℕ is decreasing (Proposition 4.1(i)), i.e., there 
exist 𝜂 > 0 and k1 ∈ ℕ such that 𝜑⋆ < 𝜑(xk) < 𝜑⋆ + 𝜂 for all k ≥ k1 . For 𝜀 > 0 , 
Proposition 4.1(i) implies that there exists k2 ∈ ℕ such that ����(xk,𝜔(x0)) < 𝜀 for 
k ≥ k2 . Setting k0 ∶= ���{k1, k2} and according to Fact 2.2, there exist 𝜀, 𝜂 > 0 and 
a desingularization function � such that for any element in

the inequality (8.1) is valid.

We next present the proof of Theorem 4.7.
Proof of Theorem 4.7. The proof has two key parts.
In the first part, we show that there exist c > 0 and k ∈ ℕ such that for all k ≥ k 

the following inequalities hold for i = 1,… ,N:

Let 𝜀 > 0 be as described in (4.16) and xk ∈ �(x⋆;𝜀) for all k ≥ k̃ and k̃ ∈ ℕ . By the 
definitions of ak and bk in (4.15) and using (4.14), we get ak+1 ≤

1

2
ak + bk for all 

k ≥ k̃ . Since (�(xk))k∈ℕ is nonincreasing,

Together with the arithmetic and quadratic mean inequalities, �(Sk) ≤ �(Sk−1) , and 
Proposition 4.1(i), this lead to

On the other hand, for i = 1,… ,N , we have

This inequality, together with (8.3), yields

leading to

{xk ∣ ����(xk,𝜔(x0)) < 𝜀} ∩ [𝜑⋆ < 𝜑(xk) < 𝜑⋆ + 𝜂] for k ≥ k0,

(8.2)‖xk
i
− x⋆

i
‖ ≤

�
c���{1,

𝜅

1−𝜃
}
√
Sk−1 if 𝜃 ∈ (0, 1∕2],

c
𝜅

1−𝜃
S1−𝜃
k−1

if 𝜃 ∈ (1∕2, 1).

∞∑
j=k

aj+1 ≤
1

2

∞∑
j=k

(aj − aj+1 + aj+1) +
ĉN

2

∞∑
j=k

(
Δj − Δj+1

)
=

1

2

∞∑
j=k

aj+1 +
1

2
ak +

ĉN

2
Δk.

(8.3)

∑∞
j=k aj+1 ≤ ak + ĉNΔk =

∑N
i=1 ‖xki − xk−1

i
‖ + ĉN�(Sk) ≤

√
N

�∑N
i=1 ‖xki − xk−1

i
‖2 + ĉN�(Sk)

≤
√
2N���{

1√
�1
,… ,

1√
�N

}

�∑N
i=1 �h(x

k−1,i, xk−1,i−1) + ĉN�(Sk)

≤

�
2N

�
���{

1√
�1
,… ,

1√
�N

}
√
Sk−1 − Sk + ĉN�(Sk−1).

‖xk
i
− x⋆

i
‖ ≤ ‖xk+1

i
− xk

i
‖ + ‖xk+1

i
− x⋆

i
‖ ≤ … ≤

∞�
j=k

‖xj+1
i

− x
j

i
‖.

N�
i=1

‖xk
i
− x⋆

i
‖ ≤

�
2N

𝜌
���{

1√
𝜎1
,… ,

1√
𝜎N
}
√
Sk−1 − Sk +�cN𝜓(Sk−1),

(8.4)‖xk
i
− x⋆

i
‖ ≤ c���{

√
Sk−1,𝜓(Sk−1)} i = 1,… ,N,
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where c ∶=
�

2N

�
���

�
1√
�1
,… ,

1√
�N

�
+ ĉN and �(s) ∶=

�

1−�
s1−� . Let us consider 

the nonlinear equation

which has a solution at Sk−1 =
(

(1−�)

�

) 2

1−2� . Form the monotonicity of Sk , there 
exists k̂ ∈ ℕ such that for k ≥ k̂ (8.4) holds and

We now consider two cases: (a) � ∈ (0, 1∕2] ; (b) � ∈ (1∕2, 1) . In Case (a), if 
� ∈ (0, 1∕2) , then �(Sk−1) ≤

√
Sk−1 . If � = 1∕2 , then �(Sk−1) =

�

1−�

√
Sk−1 , i.e.,

Therefore, it holds that ���{
√
Sk−1,�(Sk−1)} ≤ ���{1,

�

1−�
}
√
Sk−1 . In Case (b), 

we have that

i.e., ���{
√
Sk−1,�(Sk−1)} =

�

1−�
S1−�
k−1

 . Then, it follows from (8.4) that (8.2) holds 
for all k ≥ k ∶= ���{k̃, k̂}.

In the second part of the proof, we will show the assertions in the statement of 
the theorem. For (Gk

i
,… ,Gk

N
) ∈ ��(xk) as defined in Proposition  4.3, by Proposi-

tion 4.1(i), we infer

with c̃ ∶= �

2Nc
2
�2

min{�1,… , �N} and for all k ≥ k . Hence, all assumptions of 
Fact 4.6 hold with � = 2� . Therefore, our results follows from this fact and (8.2). 	
� ◻
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√
Sk−1 −

�

1 − �
S1−�
k−1

= 0,

Sk−1 ≤

(
1 − �

�

) 2

1−2�
.

���{
√
Sk−1,�(Sk−1)} = ���{1,

�

1−�
}
√
Sk−1.

�(Sk−1) ≥
√
Sk−1,

Sk−1 − Sk = �(xk−1) − �(xk) ≥ �

N�
i=1

�h(x
k−1,i, xk−1,i−1) ≥

�

2

N�
i=1

�i‖xki − xk−1
i

‖2

≥
�

2N
min{�1,… , �N}

�
N�
i=1

‖xk
i
− xk−1

i
‖
�2

≥
�

2Nc
2
min{�1,… , �N}‖(Gk

i
,… ,Gk

N
)‖2

≥
�

2Nc
2
min{�1,… , �N}����(0, ��(x

k))2 ≥
�

2Nc
2
�2

min{�1,… , �N}S
2�
k−1

= c̃ S2�
k−1

,
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