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 Numerous bibliographic reviews related to the use of AI for the behavioral detection of 

farm animals exist, but they only focus on a particular type of animal. We believe that some 

techniques were used for some animals that could also be used for other types of animals. 

The application and comparison of these techniques between animal species are rarely 

done. In this paper, we propose a review of machine learning approaches used for the 

detection of farm animals’ behaviors such as lameness, grazing, rumination, and so on. The 

originality of this paper is matched classification in the midst of sensors and algorithms 

used for each animal category. First, we highlight the most implemented approaches for 

different categories of animals (cows, sheep, goats, pigs, horses, and chickens) to inspire 

researchers interested to conduct investigation and employ the methods we have evaluated 

and the results we have obtained in this study. Second, we describe the current trends in 

terms of technological development and new paradigms that will impact the AI research. 

Finally, we critically analyze what is done and we draw new pathways of research to 

advance our understanding of animal’s behaviors. 
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1. INTRODUCTION 

 

With the increase of the world population, the global 

demand for various meat and animal products will increase by 

over 70% in the next 30 years [1]. Improving our production 

systems has become crucial to produce more animal products 

with limited natural resources, particularly in terms of soil and 

water. In addition to that, the increase in herd size is hindering 

the detection of sick animals. Thanks to sensors and massive 

data collection, it is now possible to detect individual changes 

in animal behavior in terms of feeding, fluid intake, usual body 

movements in pigs and sheep [1], or lameness in cows [2]. 

Environmental parameters can also be responsible for diseases 

like air quality, which predicts the onset of Coccidiosis in 

chickens [3]. Advanced technologies like Machine Learning 

(ML), Deep Learning (DL), and Artificial Intelligence (AI) 

have emerged with Big Data technologies and High-

Performance Computing, which has opened new ways of 

research in data-intensive science [4, 5]. 

It is important to distinguish concepts of ML, DL, and AI. 

AI is a science that builds intelligent programs and machines 

to solve problems usually processed by humans. ML is a part 

of AI that provides systems that enable automatic learning and 

improve itself from experience. While DL is part of ML -based 

on neural networks to analyze various factors with a structure 

that mimics the human neural system. 

These techniques allow us to extract meaningful 

information from dataset and improve our ability to 

understand complex animals’ systems that integrate genetics, 

environmental factors, and management priorities [1]. The 

coupling of sensors, Big Data, and ML help farmers to detect 

early signs of seeing diseases such as a lethargic body, slower 

movements, and decrease of activity [6]. IA applications in 

precision livestock farming mainly target the animals’ welfare 

and livestock production [4]. The ML allows for example to 

determine the number of animals grazing sustainably on a 

given pasture during a specific time [1]. ML can also on basis 

of Inertial Measurement Unit (IMU) [7], optical sensors [8], 

deep video cameras [9]. It also allows to classify animals’ 

macro behaviors like grazing, rumination, walking, stopping, 

resting, and breeding events such as estrus and health events 

like lameness [10]. 

The correct selection of optimal algorithm, sampling rate, 

window size and sensor position are crucial to optimize the 

energy consumption and the autonomy of the device [11]. 

Generally speaking, animal’s behaviors reviews focus only 

on one kind of animals but developed approaches could be 

transferred or adapted to other farms’ animals. Our motivation 

is to archive a transversal review to inspire researchers in 

terms of methodologies used in different categories of farms’ 

animals. This literature review describes machine learning and 

artificial intelligence algorithms used to identify behaviors of 

farm’ animals (cows, sheep, goats, pigs, and chickens).  

Next sections of this paper are structured as follow: In 

section 2, we summarize recent papers about animals’ 

behaviors. Then, we develop challenges and opportunities in 

section 3. Afterwards, we present advanced technologies and 

argue the challenges and opportunities about them. In section 

4, we discuss issues about used models. Finally in section 5, 

we conclude this review and draw perspectives and possible 

future applications using AI. 
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2. ANIMALS’ BEHAVIORS 

 

In this section, we summarize our works describing the 

applications using distributed ML or IA according to different 

categories of farm animals (cows, sheep, goats, pigs, horses, 

and chickens). This review has been archived based on 

publications from 2016 to 2021 published on Google Scholar, 

Scopus, Science Direct, IEEE Xplore. Queries achieved are 

(cows, sheep, goats, pigs, horses, or chicken), (welfare or 

behavior), and (deep learning or machine learning). 
 

2.1 Cows 

 

Macro behaviors involves a significant movement of 

several parts of the body and are subdivided in individual 

behaviors (grazing and/or rumination), and social behaviors 

visible in cattle such as bulling during estrus, aggression, or 

domination. The understanding of behaviors helps farmers to 

verify the welfare state and the early detection of pathology 

symptoms or injury. Table 1 summarizes Macro behaviors of 

previous studies found in the literature.

Table 1. Macro behaviors of previous studies 

 
Behaviors Methods Accuracy Sensitivity Specificity Precision F-Score Reference 

Grazing DT 91.0% 91.1% 90.9% 93.5%  [12] 

Rumination 96.5% 53.1% 99.4% 84,5%  

Other behaviors 87.6% 87.6% 87.5% 79.1%  

Gazing RFA, LOOA, SCV     91.4% [13] 

Standing     89.0% 

Rumination     93.2% 

Out of pen milking DT 94.2% 95.6% 94.0% 59.9%  [14] 

 

 

 

Non-feeding 80.8% 74.9% 91.3% 93.9%  

Feeding 
83.2% 65.3% 93.0% 83.5% 

 

Grazing Nesting Grazing  RF 83.0%    77.0% [15] 

 

 
Jrip 

85.0% 
   

76.0% 

3 Behaviors 

FMM DT 

100%     [16] 

Walking 98% 96% 99% 91% 

Stationary 99% 99% 96% 99% 

3 behaviors CART 99.2% 100.0% 100.0%   [17] 

6 behaviors XGB 97.0% / 98.0% 1     [18] 

RF 97.0% / 97.0% 1     

SVM 96.0% / 97.0% 1     

ADA 95.0% / 95.0% 1     

7 behaviors GBDT 86.3% 80.6%    [19] 

Rumination SVM 83.2% 89,2% 2 88,8% 86,1%  [20] 

Eating LADA 

 

 

 

 

 

 

 

72.4 %     [21] 

Drinking 76.6%     

Chewing 71.6%     

Walking 76.3%     

Social Behavior 76.7%     

Self-grooming 75.0%     

Other 
77.0%   

  

Note: 1. Accuracy before smooth / accuracy after smooth. 2. Recall. 

 

Andriamandroso et al. evaluated the performance of IMU 

of iPhone 5s placed on the cow neck and proposed a Decision 

Tree (DT), which detect grazing behavior with an accuracy of 

91%, sensitivity of 91.1%, specificity of 90.9%, and precision 

of 93.5%. Rumination is predicted with an accuracy of 96.5%, 

a sensitivity of 53.1%, a specificity of 99.4%, and a prediction 

of 84.5%; while other behaviors are identified with an 

accuracy of 87.6%, a sensitivity of 87.6%, a specificity of 

87.5%, and a prediction of 79.1% [12]. Rashman et al. have 

studied the impact of the position of accelerometer/ 

magnetometer (ear tag, collar (under neck), and halter) on the 

classification accuracy of grazing, standing, and ruminating. 

The accelerometer/magnetometer sample at 30 Hz for ear tag 

and halter, and the 3D accelerometer on collar at 12 Hz. The 

Random Forest Algorithm (RFA) was used and tested with 

Leave-Out-One-Animal (LOOA) and Stratified Cross 

Validation (SCV) approaches. Indeed, results show that halter 

with Stratified Cross Validation (SCV) F-Score are better with 

values of 91.4%, 89%, and 93.2% for grazing, standing and 

rumination behaviors respectively [13]. Barker et al. evaluate 

a decision tree based on an accelerometer sampled at 12.5Hz 

and a position to classify on one hand behaviors (out of the pen 

for milking, non-feeding, and feeding); and on the other hand, 

(lame and non-lame). The window size used for the analysis 

was 2s. They obtained for the behavior classification 

performance for out of the pen for milking (accuracy: 94.2%, 

sensitivity: 95.6%, specificity: 94.0%, and precision: 59.9%). 

While parameters of non-feeding behavior performances are 

accuracy of 80.8%, precision: 93.9%, specificity: 91.3% and a 

sensitivity of 74.9%. Feeding behavior classification 

performances are accuracy of 83.2%, precision of 83.5%, 

specificity of 93%, and sensitivity of 65.3%. Moreover, they 

show that lame cows feed for less time in the afternoon and in 

total over a full day [14]. Williams et al. have combined data 

mining to extract features and 4 ML algorithms (Naïve Bayes, 

JRip, J48, and Random Forest) to classify GPS data, sampled 

at 0.2 Hz, in grazing, resting, and walking behaviors. The 

evaluation was achieved with 10-fold cross-validation. The 

best classifiers were JRip and Random Forest with 

respectively an average accuracy of 85% and 83%, and F-

244



 

measure of 76% and 77% respectively [15]. Achour et al. 

classified 7 behaviors from IMU data sampled at 80 Hz and 

placed on the back of the cow. The classification model is 

based on univariate and multivariate Finite Mixture Models 

(FMM) and DT. First, the proposed algorithm identified lying 

on the left and on the right side, standing behavior, and 

changing between these behaviors with an accuracy of 100%. 

Second, walking behavior is classified with an accuracy of 

98%, a sensitiviy of 96%, a specificity of 99%, and a precision 

of 91%. Third, stationary behavior is classified with an 

accuracy of 99%, a sensitivity of 99%, a specificity of 96%, 

and a precision of 99% [16]. Brennam et al. have developed a 

collar coupling at low-cost GPS with a fix recorded each 1 

minute and a 3D-accelerometer sampled at 12Hz. Moreover, 

accelerometric data are aggregated, and statistic parameters 

are calculated for each 1s interval. The previous authors also 

compared performances of 4 classification algorithms (RF, 

LDA, QDA, and SVM) to identify grazing or non-grazing 

behaviors. Based on their study, the best classifiers are RF and 

SVM. RF outperforms slightly SVM when it is trained on 

many data [22]. Tamura et al. used 12bit and 3D-

accelerometer sampled at 20Hz with Classification and 

Regression Tree (CART) algorithm to classify eating, 

rumination, and lying behaviors. They obtained an accuracy of 

99.2%, and 100% of sensibility and specificity [17]. Riaboff 

et al. compared the performance of behaviors’ classification 

(rumination-lying, resting-lying, resting-standing, rumination-

standing, walking, and grazing) with eXtreme Gradient 

Boosting (XGB), RF, SVM, and Adaboost (ADA) with a 

window size of 10s. Hence, the results obtained from their 

analysis were reassessed on the temporal structure within the 

sequence of behaviors after smoothing with a Hidden Markov 

Model (HMM)-based Viterbi algorithm. Accuracies obtained 

before and after smoothing are XGB (97% and 98%), RF (97% 

and 97%), SVM (96% and 97%), and ADA (95% and 95%) 

respectively. XGB offers the best performances on all 

behavior’s classification except resting /standing where SVM 

is better [18]. Khanh et al. have evaluated 4 ML algorithms: 

Gradient Boosted Decision Tree (GBDT), SVM, RF, and 

KNN to classify 7 cow behaviors (feeding, lying, standing, 

lying down, standing up, normal walking, and active walking). 

Data were acquired with 3DOF accelerometer placed on cow 

leg and configurated at a rate of 1Hz. GBDT provides better 

performance in terms of overall accuracy with 86.3% and 

sensibility with 80.6% for a window size of 16s [19]. Vanrell 

et al. have experimented with many variants of regularity-

based acoustic foraging activity recognition (RAFAR) to 

segment foraging activities. Best average F1 scores are 

obtained with the gap merging before classification and 

partition of long block variant (RAFAR-MBBP) are 

respectively for activity segmentation (frame-based: 96.2%, 

block-based: 71.5%), rumination classification (frame-based: 

89.1%, block-based: 87.3%), grazing classification (frame-

based: 93.5%, block-based: 85.2%) [23]. Ayadi et al. 

compared performance of VGG16, VGG19, and 

ResNet152V2 for rumination detection. The best performance 

was obtained with VGG16 with an accuracy of 98.12% and a 

mean recall and precision of 98% [24]. Hamilton et al. used a 

bolus equipped of a real-time and 3D accelerometer/gyroscope 

are configured at 12.5Hz. A linear Support Vector Machine 

(SVM) model was implemented to detect rumination behavior. 

Consequently, the performance obtained from the study of 

Hamilton et al. are an accuracy of 83.2%, a recall of 89.2%, a 

specificity of 88.8%, and a F1 score of 86.1% [20]. Shen et al. 

have studied rumination characterization from the change of 

noseband pressure. Accuracies obtained respectively for the 

number of ruminations, the duration of rumination, and the 

number of cuds are 100%, 94.2%, and 94.45% [25]. 

Rodriguez-Baena et al. have suggested LADA an algorithm 

that determines the windows timeframe of behaviors in two 

steps: activity’s classification and detection. The Gap 

Threshold is a sensibility parameter that determine the number 

of false positives tolerated during a window frame. The best 

accuracies are obtained with a GapThreshold of 3, which are 

successive of eating: 72.4%, drinking: 76.6%, chewing: 

71.6%, walking: 76.3%, social interaction: 76.7%, self-

grooming: 75%, and other: 77% [21]. 

Micro behaviors are discreet movements of the body such 

as tail, eyes, ears, or jaws. 

Chelotti et al. have admitted that only acoustic monitoring 

can distinguish jaws movements: chews, bites, and chew-bites. 

They present Chew-Bite Intelligent Algorithm (CBIA) based 

on patterns of recognition and ML. This algorithm achieves 

recognition of the 3 previously mentioned behaviors with an 

accuracy of 90.74%, a recall of 92.57%, and a precision of 

92.21% in combining Empirical Mode Decomposition (EMD) 

with Support Vector Machine (SVM). On the contrary, the 

Least Mean Square filter (LMS) associated with Multilayer 

Perceptron (MLP) that offers a better compromise between 

recognition rate and computational cost [26]. Shen et al. have 

used a 3DOF-accelerometer sampled at 5Hz to monitor, and 

other behaviors. Thus, 3 algorithms were evaluated KNN, 

SVM, and Probabilistic Neural Network (PNN). Their study 

shows the best performances are obtained with KNN and 

segment length of 256. Results for feeding and rumination 

classification are (accuracy: 92.8%, recall: 95.6%, specificity: 

96.1%) and (accuracy: 93.7%, recall: 94.3%, and specificity: 

97.5%) [27]. 

Production parameters such as estrus, calving are special 

moments in the life of animals that require more attention from 

the breeder. 

Wang et al. Have deployed accelerometric and location data 

to detect estrus (heat). The Back Propagation Neural Network 

(BPNN) with a window size of 30 minutes provides the best 

results with respectively an accuracy of 95.36%, a sensitivity 

of 99.36%, a specificity of 53.33%, a precision of 95.76%, and 

a F1 score of 97.51% [28]. Keceli et al. proposed an automated 

solution based on Bi-directional Long Short-Term Memory 

(Bi-LSTM) to predicting accurately calving days. While 

RusBoosted Tree classifier allows to predict the remaining 8h 

before calving. The results they have gotten are respectively 

for BiLSTM and RusBoosted Tree classifier, with an accuracy 

of 83.34% and 84.16%, a sensibility of 81.9% and of 80.51%, 

and finally a specificity of 98.72% and 85.74% [29]. Other 

researchers like Shahriar et al. have used 3D-accelerometer 

sampled at 10Hz and attached to a collar to detect the heat from 

high activity index derived from time series by means of k-

means algorithm. The sensitivity is 100%, overall accuracy 

lies from 82% to 100% while the specificity lies between 82% 

to 100% [30]. Higaki et al. evaluated performances of DT, 

SVM, and Artificial Neural Network (ANN) for estrous 

detection from measure of vaginal temperature and 

conductivity. ANN algorithm performs with a sensitivity, a 

precision and F1-score equal to 0.94 [31]. 

The Body Condition Score (BCS) evaluates the nutritional 

status of dairy cow and is closely associated with health and 

breeding management [32].  

Rodríguez Alvarez et al. applied a CNN based on 
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SqueezeNet where the 3 channels are: (1) The depth rescaled 

on 8 bits (0 to 255 value); (2) The image processed with a 

discrete Fourier Transform (FT) and followed by a high pass 

filtering and an inverse FT; (3) The body contour obtained 

with the Canny algorithm. Their best results were obtained 

with an error range of 0.5; in addition to that, the model using 

depth and contour channels. The accuracy, the recall, and the 

F1-score were all at 97% [33]. Shigeta et al. called out a Kinect 

V2 (Microsoft) to acquire point cloud which was then 

converted into 2D grayscale image. CaffeNet, a network based 

on AlexNet predicts BCS from images. The average accuracy 

obtained was 89.1% (97.5% with an error range of 0.5), a 

precision of 79.2%, a recall of 76.8%, and a F-measure of 

77.7% [32]. 

Welfare depends on environmental conditions as heat stress 

but also lameness. 

Heat stress impacts the health and performance of grazing 

animals. 

Davison et al. used a neck-mounted temperature and 

humidity sensor from which the Temperature Humidity Index 

was calculated in order to detect signs of heat stress [34].  

The lameness is an abnormal gait due to painful foot or limb 

lesions [35], which impacts the milking production that leads 

to weight loss caused by a reduction in feed intake [2, 34], 

reduces fertility [35], and increases risk of injury [1]. It is 

costly for dairy farmers in terms of time, veterinary 

expenditures, medication and treatment, and loss of production 

[2]. 

Taneja et al. evaluated the accuracy of several classification 

algorithms [Support Vector Machine (SVM), Random Forest 

(RF), K-Nearest Neighbors (KNN), and Decision Trees (DT)] 

to detect lameness. These authors found out that the K-NN 

provided great equilibrium between accuracy and early 

detection of 3 days notification with an accuracy of 87%, a 

sensitivity of 89.7%, and a specificity of 72.5% [2]. Alsaaod 

et al. analyzed automatic lameness detection systems (ALDSs) 

relying on three types of methods or combinations of them: (1) 

kinematic methods based on image processing technique, 

pressure-sensitive walkway, accelerometer with low or high 

frequency data collection; (2) kinetic methods using ground 

reaction force systems, four-scale weighting platform, kinetic 

variables of accelerometers; (3) indirect methods such as 

thermography, feeding behavior, automatic milking system, 

and milk production [35]. 

 

2.2 Sheep 

 

Monitoring sheep behaviors is important because it allows 

detection of sick animals through reduced locomotion, food 

intake, or social behaviors. The table below summarizes sheep 

behaviors of previous studies found in the literature. Table 2 

summarizes sheep behaviors of previous studies found in the 

literature. 

 

Table 2. Sheep behaviors of previous studies 

 
Behaviors Methods Accuracy Sensitivity Specificity Precision F-Score Reference 

Walking 

QDA 

99% 96% 100% 99%  

[36] 
Grazing  97% 92% 98% 94%  

Standing 97% 98% 95% 96%  

Lying 100%     

Bite 

DT 

98.1%     

[37] Chewing 95.1%     

Other 95.8%     

Walking 

KNN 

92.93%  98.87% 54.56% 26.18%  

Standing 78.35%  58.16% 79.11% 84.11% [11] 

Lying 84.25%  91.48% 76.03% 70.92%  

Active State CART 98.1% 97.4% 98.5% 96.9%  

[38] 
Inactive State 98.1% 98.5% 97.4% 98.6%  

Upright LDA 90.6% 80.7% 100.0% 100.0%  

Prostate  90.6% 100.0% 80.8% 79.0%  

Gazing 

RF 92% 

93% 1 98% 96% 95% 

[39] Non-Eating 95% 1 91% 89% 92% 

Ruminating 87% 1 97% 92% 89% 

Foraging  97.7%      

Walking  91.3%      

Running RF 90.0%     [10] 

Standing  80.5%      

Lying  100.0%      

Urination  72.2%      

Grazing 

MLP, RF, 

XGB, and 

KNN 

96.47% 

97.66% 97.74%   

[40] 

Lying 93.22% 99.76%   

Biting 95.70% 99.74%   

Standing 97.32% 98.50%   

Walking 96.23% 99.53%   
Note: 1. Recall 

 

Barwick et al. evaluate tri-axial accelerometer (sampled at 

12 Hz) ability to classify with QDA sheep behaviors (Walking, 

Standing, Grazing, and Lying). The accelerometer was placed 

at the neck with a collar, front leg, and ear level. Ear position 

has given the better accuracy (walking: 99%, grazing: 97%, 

standing: 97%), sensitivity (walking: 96%, grazing: 92%, 

standing: 98%), specificity (walking:100%, grazing: 98%, 

standing: 95%), and precision (walking: 99%, grazing: 94%, 

standing: 96%). No lying was observed in ear position, the best 

lying accuracy was obtained in leg position with a value of 
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100 % [36]. Alvarenga et al. discriminated biting and chewing 

behavior by means of 3D-accelerometer (25 Hz) attached on 

the underside of the halter positioned on the under-jaw of the 

sheep. The classification algorithm was a decision tree 

algorithm whose parameters have been calculated over time 

intervals of 5s. They respectively obtained an accuracy of 

98.1%, 95.1%, and 95.8% for bite, chewing and other 

behaviors [37]. Vázquez-Diosdado et al. combined an offline 

KNN algorithm with an online k-means algorithm applied 

with a common time window and an online algorithm based 

on decision rules and two prior output to produce classification 

labels. Their approach aims to address the non-stationarity of 

the learning problem on long term. Performances obtained are 

for walking (accuracy: 92.93%; specificity: 98.87%; recall: 

17.22%; precision: 54.56%; F-score: 26.18%), standing 

(accuracy: 78.35%; specificity: 58.16%; recall: 89.79%; 

precision: 79.11%; F-score: 84.11%), and lying (accuracy: 

84.25%; specificity: 91.48%; recall: 66.45%; precision: 

76.03%; F-score: 70.92%) [11]. Fogarty et al. benchmarked 

performances of Classification and Regression Trees (CART), 

SVM, Linear Discriminant Analysis (LDA), and Quadratic 

Discriminant Analysis (QDA) on sheep behavior classification 

with epochs of 5s, 10s, and 30s. Accelerometric data were 

collected at 12.5Hz and attached to the ear tag. The best result 

obtained with SVM with 10s epoch for the classification of 

grazing, lying, standing, and walking behavior, and an 

accuracy of 76.9%. While for classification between 

active/inactive states CART with 30s performs with 98.1% of 

overall accuracy and for active state (sensitivity: 97.4%, 

specificity: 98.5%, precision: 96.9%) and for inactive state 

(sensitivity: 98.5%, specificity: 97.4%, precision: 98.6%). The 

highest prediction rate of upright or prostrate posture was 

obtained with LDA with 30s epoch and overall accuracy of 

90.6% and for upright (sensitivity: 80.7%, specificity: 100%, 

precision: 100%) and for prostate posture (sensitivity: 100%, 

specificity: 80.8%, precision: 79.0%) [38]. Mansbridge et al. 

compared the performances of RF, SVN, KNN, and adaptive 

boosting (Adaboost) for the classification of grazing and 

rumination behaviors with a window size of 7s, from data 

collected by means of an accelerometer/gyroscope sampled at 

16Hz and placed in two locations such as the ear and the collar. 

The overall accuracy of 92% was obtained with the sensor 

placed at collar level with RF algorithm. Performances 

obtained for gazing are precision: 96%, recall: 93%, F-score: 

95%, specificity: 98%; for non-eating behavior are precision: 

89%, recall: 95%, F-score: 92%, specificity: 91%; for 

ruminating are precision: 92%, recall: 87%, F-score: 89%, and 

specificity: 97% [39]. Kuźnicka and Gburzyński used data 

from3D-accelerometer sampled at 140Hz to predict lamb 

suckling (a series of rapid, sharp, and jerky movements). The 

developed method detects the suckling of ewes by lambs with 

an accuracy of 95% [41]. Lush et al. utilized a RF algorithm to 

identify (foraging, walking, running, standing, lying, and 

urination) behaviors from 3DOF accelerometer sampled at 40 

Hz. They obtained with a window size of 5s except for 

urination with a window size of 10s. The inspection showed 

the best accuracies of 97.7%, 91.3%, 90.0%, 80.5%, 100%, 

and 72.2% for foraging, walking, running, standing, lying and 

urination respectively [10]. Kleanthous et al. evaluated 

performances of 4 classifiers MLP, RF, XGB, and KNN to 

classify grazing, lying, scatching/biting, standing and walking. 

The highest incomes were obtained with RF with an overall 

accuracy of 96.47%, a sensitivity of 97.66% and a specificity 

of 97.74% for grazing; a sensitivity of 93.22% and of 95.70%, 

and a specificity of 99.76% and of 99.74% for scratching or 

biting; a specificity of 97.32%, and a sensitivity of 98.50% 

respectively for standing; a sensitivity of 96.23%, and a 

specificity of 99.53% for walking [40]. 

Welfare / Health is often relied at early detection of 

lameness. 

Barwich et al. proposed to use 3D-accelerometer sampled at 

12Hz placed on ear, collar, and leg to detect lame locomotion 

with Quadratic discriminant analysis (QDA) with respective 

accuracies of 82%, 35%, and 87%; sensitivity of 82%, 35%, 

and 87%; specificity of 99%, 90%, and 98%; precision of 82%, 

35%, and 87% [42]. Noor et al. analyzed the performances of 

VGG16, ResNet50, DenseNet201, GoogleNet, DarkNet, 

Inceptionv3, and AlexNet to identify sheep in pain from face 

images. The best accuracy is obtained with VGG16 with 100% 

of accuracy, precision, and F1 score [43]. Fuentes et al. 

coupled infrared thermal to measure skin temperature and 

RGB videos to assess Heat Rate (HR) and respiration rate 

(RR). A first model based on parameters extracted with 

RVAm from RGB Video to train a Bayesian Regularization 

algorithm to classify RR in low, medium, high frequencies. 

Furthermore, classified data were reanalyzed by three different 

functions and a second model using Bayesian Regularized 

algorithm employed these inputs to predict HR. These models 

performed an accuracy of 85% and 84% respectively [44]. 

 

2.3 Goats 

 

Welfare / Health of goats is achieved through the analysis 

of nutrition behaviors. 

Rao et al. presented a welfare monitoring for goats using 

IoT and ML to automatically classify and quantify behaviors. 

The faster R-CNN to localize goats (resting and walking), and 

recognition of eating and drinking behavior based on the part 

of the area beyond food and water lines [45].  

Behavior of herds of goats is often carried out using drones. 

Sakai et al. exploited a 9-DOF IMU where the 

accelerometer and gyroscope sample at 100Hz while the 

magnetometer samples at 2Hz and placed behind withers. 

They studied the effect of imbalanced datasets on DT and 

KNN to classify lying, standing, and grazing behaviors. They 

showed that a magnetometer in addition to an accelerometer 

are useful and improve accuracy. Best global accuracy 

obtained respectively for KNN and DT are 81% and 87%. 

KNN performances for each behavior are (precision: 91%, 

sensitivity: 91%, F1-score: 91%) for lying, (precision: 47%, 

sensitivity: 61%, F1-score: 53%) for standing, (precision: 

90%, sensitivity: 83%, F1-score: 86%) for grazing respective. 

While DT performances are (precision: 95%, sensitivity: 93%, 

F1-score: 94%) for lying, (precision: 69%, sensitivity: 49%, 

F1-score: 57%) for standing, (precision: 88%, sensitivity: 

95%, F1-score: 91%) for grazing. After sampling of data, 

overall accuracy obtained are 79% and 84% [46]. Jiang et al. 

implemented YOLOv4 to detect behaviors of group houses. 

Accuracies obtained are 98.87%, 98.27%, 96.86%, and 

96.92% for eating, drinking, active and inactive behaviors at 

17fps respectively [47]. Bocaj et al. tested performances of 7 

ConvNets to classify standing, walking, trotting, running, and 

eating behaviors from data collected with a 3D accelerometer 

and gyroscope placed on the neck of the animals and sampled 

at 100 Hz. The best ConvNet is composed of 4 layers. The 

three first layers are composed of 16 filters of 1x15, 25 filters 

of 1x11, 32 filters of 3x7 respectively, each one is followed by 

a ReLu activation, a striped 1D max pooling with a size of 1x4 
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and a dropout of 0.5. The fourth layer contains a dense layer 

with the number of classes followed by a Softmax function 

[48]. Wang et al. proposed a performant goat detection based 

on an improved Faster R-CNN from surveillance video. The 

proposed method is twice quicker than Faster R-CNN with an 

accuracy of 92.49% [49]. 

 

2.4 Pigs 

 

Behaviors classically studied for pigs are standing, lying, 

mounting, and aggressivity.  

Zhang et al. proposed two-stream pigs behaviors 

recognition based on RestNet101, which classify feeding, 

lying, walking, scratching, and mounting behaviors with a 

global accuracy of 98.99% [50]. Li et al. used Mask R-CNN, 

an extension of Faster R-CNN to segment pigs followed by 

kernel-extreme learning machine to detect mounting behavior 

with an accuracy of 91.47%, a sensitivity of 95.2%, and a 

specificity of 88.34% [51]. Li et al. used SlowFast network 

architecture (PMB-SCN) to classify feeding, scratching, 

mounting, lying, motoring with an accuracy of 96.35% [52]. 

Chen et al. used a VGG16 to extract spatial features which are 

input of LSTM to extract temporal features to identify 

aggressive behaviors with an accuracy 97.2% [53]. Abozar et 

al. combined a region-based fully convolutional network (R-

FCN) with ResNet101 to detect standing, lying on side, and 

lying on belly postures. The best accuracies were obtained 

with a learning rate of 0.003, respectively 93% for standing, 

95% of lying side, and 92% for lying on belly [54]. Yang et al. 

proposed an algorithm based on ZF-net to extract features, a 

regional proposed network and a Faster R-CNN algorithm to 

recognize feeding behavior of pigs with a precision of 99.6% 

and a recall of 86.93% [55]. Chen et al. coupled a ResNet50 

which extracts spatial features with a LSTM, which extracts 

temporal features and fully connected layer with Softmax 

function classify drinker and drinker players on video. Results 

obtained are accuracy: 87.2%, sensitivity: 84.9%, specificity: 

89.5%, and precision: 89% for body and accuracy: 92.5%, 

sensitivity: 91.2%, specificity: 93.8%, precision: 93.6% for 

head [56]. Alameer et al. described a method to distinct 

between feeding and non-nutritive visit based on GoogLeNet 

architecture with gray images with an accuracy of 99.4% [57]. 

Rodriguez-Baena et al. described Livestock Activity 

Detection Algorithm (LADA) in two steps classification of 

data and detecting activity temporal windows. The first step 

consists in an identification of time periods where the subject 

is in activity. The second step extracts activity or inactivity 

windows. The model uses the GapThreshold, a parameter that 

determine the number of false positive event tolerated during 

the windows timeframe. Best results are obtained with a 

GapThreshold of 3 with respective accuracy: no social 

interaction (73.2%), social interaction (73.2%), exploring 

(74.4%), M. material (73.2%), eating (78%), drinking (73.3%), 

and others (73.3%) [21]. 

Welfare can be identified by means of pigs’ posture. 

Nasirahmadi et al. used a linear SVM classifier to 

distinguish lateral and sternal lying postures of pigs, which are 

then scored. The performance of the classifier are an accuracy 

of 94.2%, a sensitivity of 94.4%, a specificity of 94%, and the 

performances for the scoring are an accuracy of 94.0%, a 

sensibility of 94.5%, and a specificity of 93.4% [58]. Riekert 

et al. designed a deep learning system for position and posture 

detection based on 2D images. The pipeline is based on Faster 

R-CNN object detection and a Neural Architecture Search 

(NAS) for features extraction. The best accuracy obtained for 

position detection was 87.4% and for position detection with 

posture classification that was 80.2% [59]. Arulmozhi et al. 

evaluated performance of multiple linear regression (MLR), 

multilayered perceptron (MLP), decision tree regression 

(DTR), and support vector regression (SVR) to predict indoor 

air temperature (IAT) and indoor relative humidity (IRH). 

RFR performs well with IAT and IRH prediction with R² > 

0.98 for IAT and R² > 0.93 for IRH [60]. 

 

2.5 Horses 

 

Behaviors of horses is particularly import of racehorses. 

Eerdekens et al. have trained CNN to classify 7 horse 

behaviors (Stand, Walk, Trot, Canter, Roll, Pow, and Flank 

watching). The model was trained on 400 epochs with Adam 

optimizer, early stopping with a patience of 60 on dataset 

divided 2/3 train, 1/3 test. They have shown that an accuracy 

of 99% can be reached with sampling at 25 Hz and an interval 

size of 2.1s [61]. Nunes et al. trained a RNN with a Bi-LSTM 

to classify chews and bites behaviors from a micro camera 

equipped of microphone (0-18kHz). Accuracies obtained for 

bite and chew are 83.93% and 88.91%, recall are 93.91% and 

100% respectively, and F1 score are 88.64% and 94.13% 

respectively [62]. Bocaj et al. used 3D accelerometric and 

gyroscopic data sampled at 100 Hz and magnetometer 

sampled at 12 Hz to classify eating, standing, and lying down 

behaviors. They tested 7 ConvNets composed of 4 layers and 

shown that ConvNet composed of 4 layers. The three first 

layers are composed of 16 filters of 1x15, 25 filters of 1x11, 

32 filters of 3x7 respectively, each one is followed by a ReLu 

activation, a striped 1D max pooling with a size of 1x4 and a 

dropout of 0.5. The fourth layer contains a dense layer with the 

number of classes followed by a Softmax function [48]. 

Welfare of horse is impacted by the stress. 

Norton et al. used a wearable sensor and an ARX model to 

evaluate the stress of police horses. The model performs with 

an accuracy of 78% and a sensitivity of 77% [63]. 

 

2.6 Chickens 

 

Behaviors’ analysis ensures that there is no anomaly during 

growth time of chickens. 

Li et al. developed algorithms to detect feeding objection 

behavior. Their proposition coupled a faster R-CNN to detect 

object, a tracker of bird, and an SVN-based algorithm to 

classify behaviors and tested them on 4 stocking density 

[27;29;33;39] kg/m2. Object detection performances for eating 

bird are (precision: 97.9% to 98.9%; recall: 99.7% to 99.9%; 

F1 score: 98.9% to 99.4%), bird around feeder (precision: 

92.5% to 94.5%; recall: 96.5% to 98.7%; F1 score: 95.1 to 

95.7%). Performances obtained for behaviors classification 

are (precision: 92.7% to 94.6%; recall: 95.1% to 97.1%; F1 

score: 94.3% to 95.3%) for walking and for other behaviors 

(precision: 92.6% to 97.5%; recall: 96.9% to 98.4%; F1 score: 

95.4% to 97.5%) [64]. 

Welfare directly impacts the mortality in the chicken coop.  

The lameness is often linked to multifactorial causes and the 

consequence of reducing well-being, inducing poor growth 

and increased mortality.  

de Alencar Nääs et al. created several decisions tree to 

detect lameness in broiler chickens. Results have shown that 

best was a binary decision tree (sound and lameness) based on 

velocity criterion. They obtained global accuracy of 91% (86% 
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for sound and 92% for lame) and recall of 84% and 94% 

respectively [65].  

Health of chickens is directly impacted by environmental 

conditions. The control of these parameters allows to 

preventing of certain diseases. 

Xiao et al. used binocular vision to monitor the health of 

caged chickens. They implemented the Chan-Vese (CV) 

model improved with Region Scalable Fitting (RSF) to 

segment respectively the body and the head of the chickens. 

Average accuracies obtained for head and body detection are 

91.3% and 94.6% respectively [66]. Debauche et al. have used 

a Gated recurrent unit (GRU) algorithm to predict the 

evolution of air quality in chickens coop; because it directly 

impacted the welfare and the emergence of disease in broiler 

chickens [67]. 

 

 

3. CHALLENGES AND OPPORTUNITIES  

 

In this section, we present the development that pave the 

way to future research in particular the integration of AI 

algorithms in devices.  

 

3.1 Edge AI 

 

The increase of capabilities of microcontrollers and the 

development of Soc dedicated to AI trace the convergence 

between Edge Computing and Artificial Intelligence in Edge 

AI. Debauche et al., have proposed an Edge AI-IoT 

architecture to deploy and train adapted AI algorithms of 

connected sensors [68]. The most important challenge is to 

ensure a limited loss in model accuracy after model 

optimization. The methods that can be used to optimize 

models are parameters like pruning and sharing, quantization, 

knowledge distillation, low-rank factorization, and 

transferred/compact convolution filters [69]. The opportunity 

of Edge AI is the possibility to early alerted of a potential 

problem in avoiding false warning. 

  

3.2 5G-Mobile Edge Computing 

 

The future deployment of 5G network coupled with Mobile 

Edge Computing (MEC) opens the fields to new applications 

such as the monitoring of the real-time behavior of animals. 

Indeed, 5G will allow collecting massive data from monitoring 

devices at low cost, and processing at ultra-low latency and 

high throughput thanks to MEC. The combination of these two 

technologies offers the possibilities to monitor massively 

animals in field and process quickly collected data to propose 

new services. Nevertheless, the availability of 5G in rural zone 

remains linked to the will of suppliers on the one hand and to 

the adoption of sensors using 5G by farmers on the other hand.  

 

3.3 Federated learning  

 

The Federated Learning (FL) coupled with edge computing 

allows distributing learning of artificial algorithms without the 

transfer of data in the cloud. It is also possible to implement a 

continuous learning strategy to improve the global model over 

time with a limited transfer of pertinent data. Finally, AI 

algorithms can be distributed between edge where features are 

extracted, and the rest of the algorithm is trained in the cloud 

[69]. The opportunity of the FL helps us to maintain the 

confidentiality of farmers' production data while providing 

farmers with better models. 

 

3.4 UAV monitoring 

 

UAVs (drones) are means of automated and programmed 

monitoring of herds. 

Barbedo et al. showed that NasNet Large has the best 

accuracy to identify cattle on UAVs images with an image size 

of 56x56 pixels. Performances obtained are an accuracy: 

96.4%, a precision: 96.5%, a recall: 96.5% and a F1 Score: 

96.5%. Nevertheless, the authors argued that Xception offers 

an alternative with a better training time and an accuracy 

slightly inferior of 95.5%, precision: 95.3%, recall: 95.3%, and 

F1 score: 95.5% with images of 112x112 pixels. While 

MobileNet is adapted for embedded devices with an accuracy 

of 93.7%, precision: 94.3%, recall: 93.8%, F1 score: 93.8% for 

an image size of 112x112 pixels [70]. Xu et al used an UAV 

Mavic PRO (DJI, China) and Mask R-CNN algorithm to 

classify and count cattle and sheep. Classification accuracies 

obtained are 90.4% and 93.5% for cattle and sheep 

respectively while counting accuracies are respectively of 

94.7% and 97.3% [71]. UAVs are widely used in Smart 

Farming but need the transfer of data to the cloud where they 

are processed. The challenge is the transmission of data in 

rural areas where high throughput networks can be unavailable 

[6]. 

 

3.5 Virtual fence 

 

Animal behaviors can also be controlled to better manage 

the link between animals and their environment. Marini et al. 

studied the impact of virtual fences on grazing behavior of 

sheep. Garmin TT15 and Garmin Alpha 100 were installed on 

each sheep, and a patented CSIRO algorithm was implemented 

coupling 2s audio cue and electrical stimulus and showed that 

sheep were able to associate the audio with the virtual fence 

[72]. While Lomax et al. demonstrated the feasibility of virtual 

fence using dairy cows [73]. The coupling of grazing and 

walking behavior analysis, growing plants models, animal 

positioning and virtual fence is an opportunity to automatically 

manage herds. The challenge is to determine at which moment 

displace the herd to avoid overgrazing and/or conserve 

biodiversity of pastures. 

 

 

4. DISCUSSION 

 

The major issue to address in long term monitoring is the 

non-stationarity of the problem [30]. Indeed, in classical 

supervised classification, models are trained on dataset and the 

assumption that data are randomly selected with the same 

distribution that the future data. Biologic systems are by 

essence dynamic, a high performance on a validation dataset 

do not guarantee that a model will perform on future data. 

Research conducted is limited to few majors’ behaviors 

leaving a large part of them in favor of displacement and eating 

habits. For example, up to 40 different behaviors can be 

observed in dairy cows [74] and only 5 or 6 of them are really 

studied. 

Moreover, most models are established on a limited number 

of individuals, which impacts the variability within the 

datasets which are used to establish these models that impacts 

their robustness. 

Developed models often require important mathematical 
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resources that makes them difficult to implement on 

constrained devices [16]. 

 

 

5. CONCLUSIONS 

 

A better understanding of the interactions between animals 

and their environment and the influence on their behavior 

improves their well-being and their state of health. Behavior 

changes are also early indicators of illness, the presence of 

injuries, or a problem in their environment. The precise 

identification of these behaviors is therefore crucial to ensure 

high monitoring quality that affects farm decision-making. 

Many researchers have used machine learning algorithms to 

classify behaviors, but they first require the extraction of 

features. Convolutional Neural Network (CNN) offers the 

advantage to automatically extract features. Moreover, Deep 

Learning (DL)-based classifier algorithms provides often 

better accuracy than ML.  

Despite recent advance, there are still practical and 

technical challenges in terms of computational power, energy 

consumption, and data transmission. These ones should be 

addressed to obtain a complete real-time and long-term system 

to monitor farm animals. Afterward, the next step should be 

the return of farm animals to high value pastures in terms of 

biodiversity. The use of a virtual fence would allow better 

management of the link between animals and their natural 

environment. 

Finally, we argue that is important to collect massively 

farms animals’ behavior data of various species evolving in 

different environment to establish more robust models usable 

at a large scale [75]. Nowadays, experimentations are 

generally achieved on reduced datasets of animals which 

allows obtaining high accuracy because of the homogeneity of 

the training data. These models are very specific and for the 

most part cannot be used in a context other than the one in 

which they were established and trained. Moreover, animals 

evolving in research center are in optimal and controlled 

conditions that differ from those of large herds grazing 

extensively where competition between animals is more 

important. 
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