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Abstract. In this work, we consider the problem of blind source separation (BSS) by departing from the usual
linear model and focusing on the linear-quadratic (LQ) ones. We propose two provably robust
and computationally tractable algorithms to tackle this problem under separability assumptions
which require the sources to appear as samples in the data set. The first algorithm, referred to as
SNPALQ, generalizes the successive nonnegative projection algorithm (SNPA), designed for linear
BSS. By explicitly modeling the product terms inherent to the LQ model along the iterations of the
SNPA scheme, the nonlinear contributions of the mixing are mitigated, thus improving the separation
quality. SNPALQ is shown to be able to recover the ground truth factors that generated the data,
even in the presence of noise. The second algorithm is a brute-force (BF) algorithm, which can be
used as a post-processing step for SNPALQ. It then enables to discard the spurious (mixed) samples
extracted by SNPALQ, thus broadening its applicability. The BF is in turn shown to be robust
to noise (under potentially easier-to-check conditions than SNPALQ). We show that SNPALQ with
and without the BF postprocessing is relevant in realistic numerical experiments.
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1. Introduction. Blind source separation (BSS) [8, 7, 29] is a powerful paradigm with a
wide range of applications such as remote sensing [42], biomedical and pharmaceutical imaging
[1, 41], and astronomy [44]. BSS aims at decomposing a given data set into a set of unknown
elementary signals to be recovered, generally referred to as the sources. Because it is simple
and easily interpretable, many works [8] have focused on the linear mixing model (LMM)
which assumes that the ith data set sample x̄i ∈ Rm, i ∈ [[n]], can be written as

x̄i =
r∑

k=1

hkiwk + ni,

where wk is the kth source for k ∈ [[r]] = {1, 2, . . . , r}, and hki its the associated mixing
coefficient in the ith (mixed) observation. The vector ni accounts for any additive noise
and/or slight mismodelings in the ith pixel. Using a standard matrix formulation, the LMM
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can thus be rewritten as

X̄ = WH + N,

where X̄ = [x̄1, x̄2, ..., x̄m] ∈ Rm×n is the data set, W = [w1,w2, ...,wr] ∈ Rm×r the sources,
H ∈ Rr×n the mixing matrix containing the coefficients hki’s, and N = [n1,n2, ...,nm] ∈ Rm×n
the noise. We denote by X = WH the noiseless version of X̄.

The goal of BSS is to recover W and H from the sole knowledge of X̄. This is in general
an ill-posed problem [8]. Hence, in most works, additional constraints are imposed on the
unknown matrices W and H to make the problem better posed: for instance, orthogonality in
principal component analysis (PCA – [27]), independence in independent component analysis
(ICA – [8]), and sparsity in sparse component analysis (SCA – [46, 7, 29]). We will here focus
on nonnegativity constraints, akin to nonnegative matrix factorization (NMF) [31]. Although
NMF is NP-hard in general [45], and its solution non-unique [16], Arora et al. [4, 5] have
introduced the subclass of near-separable non-negative matrices for which NMF can be solved
in a polynomial time with weak indeterminacies. This subclass corresponds to data sets in
which each source appears purely in at least one data sample. Building on near-separable
NMF, several provably robust algorithms have been proposed [4, 14, 40, 21]. Among them,
one can cite the successive projection algorithm (SPA) [3], which is a fast greedy algorithm
provably robust to noise [22], or an enhanced version, the successive nonnegative projection
algorithm (SNPA) [18], which is more efficient when W is ill-conditioned and is even applicable
when W is rank deficient.

1.1. LQ mixing model. In various applications, the LMM may however suffer from some
limitations and can only be considered as a first-order approximation of non-linear mixing
models [6, 13, 11]. In such situations, linear-quadratic (LQ) [9] models can for instance
better account for the physical mixing processes by including termwise products of the sources
[12, 24]. This model can be written as follows

(1.1) x̄i =
r∑

k=1

hkiwk +
r∑
p=1

r∑
l=p

βipl(wp �wl) + ni.

In (1.1), the linear contribution associated to the LMM is complemented by a set of second-
order interactions wp�wl between the sources, where � denotes the Hadamard product, and
βipl is the amount of the interaction wp�wl within the ith observation. It is worth mentioning
the closely-related so-called bilinear mixing model [13, 9], which is a particular instance of the
LQ mixing model, from which the squared terms wp�wp for p ∈ [[r]] in (1.1) are removed; see
Application 1.1 below for a discussion in the context of blind hyperspectral unmixing where
the LQ and bilinear models are widely used.

The LQ mixing model (1.1) can also be rewritten in a matrix form

(1.2) X̄ = Π2(W)H + N,

where Π2(W) ∈ Rm×r̃ is the extended source matrix containing the sources and their second-
order products as its columns, with r̃ = r(r + 3)/2, and H ∈ Rr̃×n is the matrix gathering all
the mixing coefficients associated with the linear (hki’s) and nonlinear (βipl’s) contributions.
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Written in such a matrix form, the similarity between the LQ and linear models is easily
visible: the LQ mixings can be written in a linear form by considering the quadratic terms
wp �wl as new sources, additional to the usual ones wk. Following this line of thought, the
wp �wl terms are often called virtual sources. In the sequel of this paper, this terminology
will be adopted and the non-virtual sources wi will be referred to as primary.

Application 1.1 (Hyperspectral imaging). To illustrate the BSS of LQ-mixtures (LQ-BSS),
we consider throughout this paper the example of hyperspectral (HS) imaging. Despite having
a finer spectral resolution than conventional natural images, HS images often suffer from a
limited spatial resolution. Therefore, several materials are generally present in each pixel, and
thus the acquired spectra correspond to mixtures of the different pure material spectra, called
endmembers. This mandates the use of BSS methods – more specifically of NMF – to perform
spectral unmixing. To be more precise, using the terminology of HS unmixing [13], wk in
(1.1) corresponds to the spectral signature of the kth endmember, and hki to the abundance
of the kth endmember in the ith pixel. The spectral signature of a source is the fraction of
light reflected by that source depending on the wavelength, and hence 0 ≤ wk ≤ 1 for k ∈ [[r]].
Concerning the model choice, the linear BSS model is often a too rough approximation in HS:
in particular, when the light arriving on the sensor interacts with several materials, nonlinear
mixing effects may occur [6, 13, 11]. Specifically, this is often the case when the scene is not
flat, for instance in the presence of large geometric structures, such as in urban [34] or forest
[12] scenes. In such a context, it has been shown [12, 24] that LQ models enable to better
account for multiple scatterings. While it is further possible to include higher-order terms,
most of the works neglect the interactions of order larger than two since they are expected to
be of significantly lower magnitudes [2, 33] as 0 ≤W ≤ 1.

1.2. Identifiability issue in LQ-BSS. Despite source identifiability issues in the general
context of non-linear BSS problems [8, 10, 28], it was recently showed [9] that the non-linearity
inherent to bilinear mixtures leads to an essentially unique solution in the noiseless case. More
precisely, it was shown that for a data matrix X following the bilinear model in the absence
of noise (and under some appropriate assumptions, see below), any Ŵ and Ĥ such that
X = Π2(Ŵ)Ĥ satisfy Ŵ = W and Ĥ = H up to a scaling and permutation of the columns
of Ŵ and the rows of Ĥ. However, this identifiability result suffers from some limitations:

• It relies on two strong assumptions:
1. rowrank(X) = r(r+1)

2 , requiring that Ĥ has full row rank and hence that every
extended source is present in the data set. In other words, all possible inter-
actions of two primary sources must be present in some observation. This is
unlikely to happen in practice.

2. the products of the sources up to order four must be linearly independent. It
requires the family
(1.3)(

W, (wi �wj)i,j∈[[r]]
j<i

, (wi �wj �wk)i,j,k∈[[r]]
k<j<i

, (wi �wj �wk �wl)i,j,k,l∈[[r]]
l<k<j<i

)
,

to be linearly independent. As its size is r(r+1)
24

(
(r − 1)(r − 2) + 12

)
, such a
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linear independence assumption might not be satisfied in real-world scenarios,
since the number of observations m must be of order Θ(r4).

• It does not apply to mixings with squared terms [9, section 7], that is, LQ mixings
instead of bilinear ones.
• No guarantee is given in the presence of noise. Moreover, finding an exact factorization

Π2(Ŵ)Ĥ of X is a difficult problem. The algorithm used in [9] is a heuristic and does
not find an exact solution (see [9, Fig. 4]), leading to errors on the recovered sources.

Application 1.2 (Hyperspectral imaging (cont’d)). In HS imaging, the assumption that H
has full row rank is unlikely to be satisfied as many endmembers do not interact, because they
are located far apart in the image.

For the second assumption, even with r = 10 endmembers, which is a relatively small
number, at least m ≥ 385 spectral bands would be required to ensure the linear independence
of the family (1.3). This is not satisfied for typical HS sensors dedicated to Earth observation.
As an example, the Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) operated by the
Jet Propulsion Laboratory (JPL, NASA), acquires HS images composed of m = 224 spectral
bands, among them several dozens are inexploitable due to low signal-to-noise ratios.

1.3. Near-separable LQ mixings. To overcome the above identifiability issues, we pro-
pose in this work to tackle BSS problems of the form (1.1) under a near-separable NMF-like
paradigm. In particular, the rationale is to convert the linear independence condition on the
family (1.3) into a non-negative independence condition, which is significantly less restrictive.
Consider for instance the family of points located on a sphere within the unit simplex in three
dimensions, that is, distinct points within the set {x ∈ R3

+ | ‖x‖1 = 1, ‖x‖2 = q} for some
q < 1. Although the rank of this family is 3, no point is within the convex cone of other
points, and hence this family is non-negatively independent.

More specifically, denoting ∆ = {x ∈ Rr̃|x ≥ 0,
∑r̃

i=1 xi ≤ 1} and Π2(W)\{j} the subma-
trix of Π2(W) excluding wj , we assume the following constraints:

hki ≥ 0 for all i ∈ [[n]] and k ∈ [[r̃]] (nonnegativity condition),
r∑

k=1

hki +

r∑
p=1

r∑
l=p

βipl ≤ 1 for all i ∈ [[n]] (sum-to-at-most-one condition),(1.4)

αΠ2(W)(W) = min
j∈[[r]]

min
x∈∆

∥∥wj −Π2(W)\{j}x
∥∥

2
> 0 (order-2 α-robust simplicial).

The two first constraints ensure the mixing coefficients for each pixel to be nonnegative and
to sum to at most one, and can be equivalently written as hi ∈ ∆ for all i ∈ [[r̃]]. The last
one ensures that no source lies within the convex hull formed by the other ones, their second
order product and the origin. It is thus an extension of the α-robust simplicial1 definition
of [5] which requires that αW(W) = minj∈[[r]] minx∈∆

∥∥wj −W\{j}x
∥∥

2
> 0.

In addition, we hereafter extend the subclass of r separable mixings of [17] to the LQ
model.

1The denomination “α-robust simplicial” is slightly abusive here, as the coefficients of x sum to at most
one, in contrast to [5] in which they sum to exactly one.
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Definition 1.3 (r-LQ separability). The matrix X is said to be r-LQ separable if it can be
written as

X = Π2(W)

[
Ir

0 r(r−1)
2
×r

H′

]
P︸ ︷︷ ︸

H

,

where W ∈ Rm×r is order-2 α-robust simplicial, Ir is the r-by-r identity matrix, 0p×q is the
p-by-q matrix of zeros, P is a permutation matrix, H′ ∈ Rr̃×m−r is a matrix satisfying the
sum to at most one and nonnegativity conditions.

It is important to note that r-LQ separability requires that all primary sources appear
as some samples (that is, as columns of X), which is not required for the virtual sources. In
this work, to take into account the presence of noise in the mixtures, we will more specifically
assume the mixing to be (ε, r)-LQ near-separable, which is defined as follows.

Definition 1.4 ((ε, r)-LQ near-separability). The matrix X̄ is said to be (ε, r)-LQ near-
separable if it can be written as X̄ = X + N,

where X is r-LQ separable (see Definition 1.3), and the noise matrix N ∈ Rm×n satisfies
maxi∈[[n]] ‖ni‖2 ≤ ε.

Application 1.5 (Hyperspectral imaging (cont’d)). It has been shown [13] that bilinear and
LQ models enable to better account for multiple scatterings. Examples of such models include
the Fan model [15], the generalized bilinear model [23], the polynomial post-nonlinear model
[2]; see [13] and the references therein for more details. In this work, we will focus on the
so-called Nascimento model [37, 43], which is a bilinear-based model that naturally extends
the classical linear model and the sum-to-at-most-one constraint on the abundances.

The near-separable assumption in HS is referred to as the pure-pixel assumption, as it
requires each endmember to appear at least once purely within a pixel. This hypothesis is
common and realistic [22, 32], provided that the spatial resolution is not too low.

1.4. Contributions. In this paper, we introduce two algorithms which, given a (ε, r)-LQ
near separable mixture (Definition 1.4), approximately recover the factors W and H. As such,
our results are (i) theoretical: we show the identifiability of this problem even in the presence
of noise, and (ii) practical: the two algorithms run in polynomial time. More specifically, the
contributions – graphically summarized in Figure 1 – are the following:

• We introduce the successive nonnegative projection algorithm for linear-quadratic mix-
tures (SNPALQ), which generalizes SNPA [18] to linear-quadratic (LQ) mixings by ex-
plicitly modeling the presence of quadratic products within its greedy search process.
• The conditions under which SNPALQ is provably robust to noise are detailed in Sec-

tion 3.1.2. In particular, such conditions encompass the linear case (see Section 3.1.1),
which is important as the LQ model we consider generalizes the linear one.
• To further mitigate the robustness conditions of SNPALQ and broaden its applica-

bility, we introduce a second algorithm dubbed brute force (BF), that we use as a
post-processing step to enhance SNPALQ results (which we denote SNPALQ+BF). In
Section 3.2, we prove that BF lead to robustness guarantees under weaker conditions
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Figure 1. Graphical summary of the contributions, explaining which algorithm to use in which setting. We
call a provably robust algorithm an algorithm which is proved to recover the sources even in the presence of
noise.

than SNPALQ.
• In Section 4, the effectiveness of the proposed algorithms is attested through extensive

numerical experiments, in which among others SNPALQ is shown to obtain better
results than SNPA on LQ mixings, and the SNPALQ+BF to obtain a very high rate
of perfect recovery of the ground truth factors.

Remark 1.6 (Further interest of the proposed algorithm). Near-separable algorithms have
often been used to initialize NMF algorithms that do not rely on the separability assump-
tion [18]. In particular, the initializations of many LQ-BSS algorithms are often (and para-
doxically) performed with the output of near-separable algorithms assuming linear mixtures;
see for example [2, 34]. Therefore, beyond their intrinsic interest for (r, ε)-LQ near-separable
mixtures, the two algorithms proposed in this work are fast and reasonable (since based on
the LQ model) initialization strategies for LQ-BSS algorithms in the absence of the (r, ε)-LQ
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near-separability assumption.

1.5. Notation. Table 1 summarizes the notations used in this paper. It will be further
clarified within the text when appropriate. For the sake of readability, the notations specific
to the proof section in the Appendix are not present in this table.

Table 1
Notation summary.

[[ r ]] {1,2,..,r}
|K| Number of elements in the set K
K(i) ith element of the set K

∆r {x ∈ Rr|x ≥ 0,
∑r

i=1 xi ≤ 1}
the superscript r is omitted when it is clear from the context

A matrix (bold capital letters)

a vector (bold lowercase letters)

ai ith column of a matrix A

AK Submatrix of A formed by the columns indexed by K
A\K Submatrix formed by all the columns of A except the ones indexed by K

Π2(A)

[a1,a2, . . . ,an,a1 � a1,a2 � a1,a3 � a1,a2 � a2,a3 � a2, . . . ,an � an]
= (ai � aj)i,j∈[[n]]

i≤j
, where A ∈ Rm×n.

Π2(A) contains the products of the columns of A up to order 2

Πq(A)
Matrix containing the columns of A,

and their Hadamard products up to order q ∈ N∗
K(A) maxi ‖ai‖2 (maximum `2 norm of the columns of A)

f A µ-strongly convex function with a L-Lipschitz gradient

αΠ2(A)(A) minj minx∈∆

∥∥aj −Π2(A)\{j}x
∥∥

2

PfA(x) Ay∗ with y∗ = argminy∈∆ f(x−Ay).

RfA(x) x− PfA(x)

νf,Π2(A)(A) minj

∥∥∥RfΠ2(A)\{j}
(aj)

∥∥∥
2

γf,Π2(A)(A) mini 6=j

∥∥∥RfΠ2(A)\{i,j}
(aj)−RfΠ2(A)\{i,j}

(ai)
∥∥∥

2

βLin
Π2(A)(A) min

(
νf,Π2(A)(A),

√
2

2 γf,Π2(A)(A)
)

βLQ
Π2(W)(A) min

(
νf,Π2(W)(A)

2

√
µ
L

[
1− 1

G

]
, γf,Π2(W)(A)

)
with G > 1

2. Two algorithms for LQ-BSS: SNPALQ and BF. To perform near-separable BSS of LQ
mixtures, a first (naive) approach is to use an LMM-based near-separable NMF algorithm to
identify the r̃ extended sources. Since the quadratic terms (wi�wj)i,j∈[[r]]

j≤i
can be considered as

virtual sources (see Eq. (1.2)), they could be retrieved along with the columns of W, provided
that they appear purely in the data set. One could for instance resort to SNPA [18], an LMM-
based algorithm which has shown to yield very good separation performances compared to
state-of-the-art LMM-based algorithms such as VCA [36] and SPA [3], and admits robustness
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guarantees. SNPA is a greedy algorithm: it iteratively constructs the near-separable NMF
solution, K, by sequentially adding a new source to the current set of sources already identified.
More precisely, after initializing the index set K = ∅ and a residual matrix R = X̄, each
iteration of SNPA consists of the following two steps:

• selection: the index of the column of R maximizing a score function f is added to K.
• projection: the residual is updated by projecting the columns of X̄ onto the convex

hull formed by the columns of X̄K and the origin.
During the selection step, the function f aims at selecting the most relevant column of R to
be identified as a source. This function f , applied on the columns of the residual R at each
step, can for example be the `2-norm. It needs to fulfill the following assumption:

Assumption 2.1. The function f : Rm 7→ R+ is µ-strongly convex, its gradient is L-
Lipschitz and its global minimizer is the all zero vector 0m, that is, f(0m) = 0.

The projection step is a convex optimization problem and can be solved for example using a
fast gradient method [38]. We refer the reader to [18, Appendix A] for more details.

Nevertheless, the bottleneck of the above naive approach consisting in using SNPA for LQ
mixtures is that the presence of all the virtual sources as pure data samples is a too strong
assumption. Indeed, all virtual sources are not likely to be observed purely in the data set. As
such, the recovery of the extended sources by SNPA is not guaranteed, calling for algorithms
specifically designed for LQ mixtures.

To overcome this limitation, we propose two new algorithms enabling to tackle LQ mix-
tures. The first algorithm, referred to as SNPALQ, is a variant of SNPA specifically designed
to handle LQ mixings; see Section 2.1. The second one is a brute-force (BF) algorithm, ex-
tending the work of [5] to LQ mixtures and exhibiting better practical results than SNPALQ
in some experiments; see Section 2.2. As BF is however computationally more expensive than
SNPALQ, we propose to use it as a post-processing of the output provided by SNPALQ.
Combining both algorithms in a single method, which we refer to as SNPALQ+BF, allows us
to benefit from the best of each of these algorithms.

2.1. SNPALQ. The rationale behind SNPALQ is that we are interested in recovering the
primary sources only, wi for i ∈ [[r]]. The virtual sources wi�wj (i, j ∈ [[r]]) can be considered
as a nuisance. Therefore, we propose to take them into account in the separation process only
to improve the extraction of the primary sources. Specifically, at each iteration of SNPALQ,
we perform the following two steps (see Algorithm 2.1):

• Selection step (unchanged compared to SNPA): the column of the residual matrix R
maximizing a function f fulfilling Assumption 2.1 is selected.
• Projection step (different from SNPA): SNPALQ performs the projection onto the

convex hull formed by the origin, the sources extracted so far and their second-order
products. Therefore, if two sources wi and wj (i 6= j) are extracted during the iterative
process of SNPALQ, the contribution of the virtual sources wi � wj , wi � wi and
wj � wj are removed. Beyond the advantage that these virtual sources will not be
extracted in the subsequent steps, their non-linear contribution is reduced, giving more
weight to the linear part.

The primary sources W are more likely to be extracted by SNPALQ than SNPA. Indeed,
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recall that SNPA projects each column of X̄ onto the convex hull formed by the origin and all
the sources extracted so far, and does not take into account the virtual sources. In contrast,
SNPALQ also projects onto virtual sources, cancelling their contributions; see Figure 2 for an
illustration.

Figure 2. Example of a bilinear mixing for which SNPALQ is successful at recovering W but SNPA is not
(the principle is the same for LQ, except that there are more virtual sources). There are three primary sources,
represented with the red X markers, and three virtual sources, namely wi � wj for i 6= j and 1 ≤ i, j ≤ 3,
represented with the blue + markers. The columns of X̄ are made of the primary sources and the mixed points
represented with the blue circles. The red dashed line is the convex hull of the origin and the sources extracted
after two iterations of SNPA. The plain blue line is the convex hull of the origin and the sources extracted by
SNPALQ after two iterations, as well as the corresponding virtual source. Only the last primary source lies
outside of the blue convex hull. Therefore, SNPALQ extracts it in its third iteration and then stops, returning
the primary sources only. On the other hand, at the third iteration, SNPA fails to extract the last primary
source because some of the (mixed) columns of X̄ lie further away from the red dashed convex hull. Moreover,
it will need in total 8 iterations to terminate because the convex hull of the columns of X̄ has 8 vertices (we
assume the virtual sources do not appear purely in the data set).

SNPALQ will be proved in Section 3.1.2 to extract the primary sources in the first r steps,
under specific conditions.
Concerning the stopping criterion, SNPALQ alternates the two above steps until one of the
following two criteria is met:

• A maximum of rmax columns have been extracted. If an upper bound is not available,
one can take rmax = n so that SNPALQ relies on the second stopping criterion only.
• K(R) ≤ t: the algorithm stops when the relative reconstruction error is sufficiently

small. The choice of a good value for the tolerance parameter t is important: if t is
too large, SNPALQ could stop before the extraction of all the sources. If t is too low,
SNPALQ could extract too many source candidates in the presence of noise, making
the whole algorithm computationally expensive. If the noise level ε is known, it can be
shown that t = ε [1 + εmax(1, 2K(X) + ε)] enables to extract all the primary sources2.

2The demonstration follows directly from Lemma B.8 and B.14: 1) if SNPALQ has extracted all the
canonical columns (that is, the sources up to an approximation error related to the noise – we refer the reader
to definition B.7 for more details), then the residual must be smaller than ε [1 + εmax(1, 2K(X) + ε)] due to
lemma B.8. 2) Reciprocally, if maxj∈[[n]] ‖rj‖F ≤ ε [1 + εmax(1, 2K(X) + ε)], then all the canonical columns
must have been extracted due to Lemma B.14.
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Algorithm 2.1 Successive Nonnegative Projection Algorithm for LQ mixtures (SNPALQ)

1: Input: X̄ ∈ Rm×r̃: a (ε, r)-LQ near-separable matrix following Definition 1.4 and Con-
straints (1.4), f : a strongly convex function satisfying Assumption 2.1, rmax: number of
sources, t ≥ 0: stopping criterion on the norm of the residual.

2: Initialization: R = X̄, K = {}, k = 1

3: while K(R) > t and k ≤ rmax do
4: p = argmaxj∈[[n]] f(rj);
5: K = K ∪ {p};
6: for j ∈ [[n]] do
7: hj = argmin

h∈∆
|K|(|K|+3)

2
f(x̄j −Π2(X̄K)h)

8: rj = x̄j −Π2(X̄K)hj
9: end for

10: k = k + 1
11: end while

12: Output: A set K of indices such that X̄K 'W up to a permutation.

Remark 2.2 (Choice of f). The choice of the score function f is nontrivial. In the linear
case, that is, for separable NMF, this issue has been discussed in details in [22, Section 4]. For
example, using `p norms with 1 < p < 2 is more robust to outliers than using the `2 norm.
Investigating the choice of f in the case of LQ mixtures is out of the scope of this paper. We
leave it as a direction of further research.

Remark 2.3 (Computing H). This paper mainly focuses on computing the basis matrix
W so that X ≈ Π2(W)H for some H ≥ 0. The estimation of H can be generally conducted
in a second step by solving the nonnegative least squares (NNLS) problem minH≥0 ‖X −
Π2(W)H‖2F . In the particular context of unmixing images, this step is usually referred to
as inversion. To exploit the very nature of the images, this NNLS can be complemented by
incorporating an additional regularization to exploit the expected spatial correlations between
the pixels, see, e.g., [26].

2.2. Brute force algorithm. The conditions ensuring SNPALQ to recover the sources
might not be satisfied in practice (see Sections 3.1.3 and 4.2.3). Therefore, we propose here a
second algorithm, BF, inspired by the algorithm of Arora et al. [5] for linear mixtures. As we
will see in Section 4, it can enhance the source recovery in some numerical experiments.
Noise-free mixtures – For the sake of simplicity, the rationale underlying BF is first exposed
in the absence of noise. Let us assume w.l.o.g. that there are no duplicated columns in the
data set X. Due to the separable assumption, X can be written as:

(2.1) X =
[
W, X̃

]
P ∈ Rm×n,

where P is a permutation and X̃ contains the LQ mixings of W. Let us consider a column
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(a) (b)

Figure 3. Illustration of condition (2.3) with f(·) = ‖·‖2. The point under scrutiny x̄k is represented in
violet (’X’ marker). The dots are the columns of X\{k}, and the yellow cross (’+’ marker) correspond to the
quadratic products of the columns of X. The plain line ball of radius d and center x̄k contains the columns of X̄
which are discarded in (2.3). The dotted polygon is the convex hull of the origin and the columns of Π2(X)\{k}
that are not contained in the ball of radius d around x̄k. The dashed circle of radius ε2(3 + ε)2 indicates the
distance at which the point must be located from the dotted convex hull to be considered an LQ-robust loner. On
the figure (a), the dashed circle does not intersect the convex hull, and hence the cross is an LQ-robust loner.
On figure (b), the dashed circle overlaps the convex hull, making that its center point is not a robust loner.

of X, xk for k ∈ [[n]]. We can check whether it is contained in the convex hull of the other
columns of X, their LQ mixtures and the origin by solving

sk = min
h∈∆

n(n+3)
2 −1

∥∥xk −Π2(X)\{k}h
∥∥

2
.

If xk is not a column of W, we have sk = 0 under the r-LQ separable mixing model (Def-
inition 1.3: xk is inside of the convex hull generated by the origin, the columns of W and
their second-order products). Moreover, under the assumption that W is order-2 α-robust
simplicial, that is αΠ2(W)(W) > 0, xk is a source, that is a column of W, if and only if sk > 0.

For sake of consistency with SNPALQ, this condition can be generalized to any function f
fulfilling Assumption 2.1. Adopting this generalization, xk is as primary source if and only if

(2.2) min
h∈∆

n(n+3)
2 −1

f
(
xk −Π2(X)\{k}h

)
> 0.

Noisy mixtures – The above principles can be extended to make the BF algorithm able to
recover an approximation of W from noisy mixtures X̄ = X+N for a bounded noise fulfilling
maxi∈[[n]] ‖ni‖2 ≤ ε for some ε ≥ 0; see Algorithm 2.2. To do so, we need to modify (2.2) in
two ways.

• In the noise-free case, we assumed that no duplicated columns are present within X,
and it is easy to discard such duplicates. In the noisy setting, when evaluating the
residual (2.2), not only the column x̄k should be removed from Π2(X̄) but also all
columns close to x̄k (see Figure 3 for an illustration).
• Moreover, as the noise might shift mixed data points outside the convex hull formed

by Π2(W) and the origin, sk might be nonzero for a mixed column x̄ (that is, x̄k = x̃j
for some j ∈ [[n− r]]); see Figure 3 for an illustration.



12 C. KERVAZO, N. GILLIS, AND N. DOBIGEON

Therefore, the condition (2.2) in the noiseless case should be modified to

(2.3) min
h∈∆

f
(
x̄k −Π2(X̄)\{i∈[[n]] | f(x̄i−x̄k)>d}h

)
>
L

2
ε2(1 + max(1, 2K(X) + ε))2,

with L the Lipschitz constant of f and d a threshold parameter discussed in Appendix B;
see (B.14) for an explicit value. The right-hand side stems from the fact that the noise is
corrupting both the data columns (with a maximum energy of ε) and their quadratic products
(with a maximum energy of εmax(1, 2K(X) + ε)); see Definition B.6.

Following [5], the columns of X̄ satisfying the condition (2.3) are called the LQ-robust
loners. Section 3.2 will show that these columns exactly correspond to good approximations
of the sources. To approximately recover the sources, the BF algorithm then amounts to check
which columns of X̄ are LQ-robust loners. However, due to the noise, different LQ-robust
loners may be candidates for estimating the same source. Therefore, at the end of BF, the LQ-
robust loners need to be clustered to obtain a single estimate of each source. Fortunately, such
a clustering – described in Algorithm 2.2 – is easy and does not lead to any indeterminacy as
the LQ-robust loners are located close to the sources, which are comparatively located further
away from each others.

Remark 2.4. If the noise level is unknown, the clustering step described in Algorithm 2.2
can be replaced by any clustering algorithm, such a k-means, although our theoretical robust-
ness guarantee does not cover such an approach.

BF algorithm as a post-processing – Even if the BF algorithm can be used per se to
perform the separation of (ε, r)-LQ near-separable mixtures, it can also serve as a post-
processing to refine the results provided by SNPALQ. This strategy is particularly appealing
when SNPALQ robustness conditions are not met, in which case SNPALQ may extract mixed
data columns or virtual sources in addition to the sought-after primary sources. Given an
SNPALQ solution X̄K, assume that r columns correspond to the primary sources W, and the
|K| − r remaining ones to (spurious) columns in which the primary sources are mixed along
with their quadratic products. Up to a permutation, the SNPALQ solution can be written as

(2.4) X̄K '
[
W, X̃

]
∈ Rm×|K|,

where X̃ ∈ Rm×(|K|−r) are mixed data points. This matches the form of (2.1). Therefore,
instead of using the BF algorithm directly on the data set X̄, it can be applied on the
SNPALQ solution X̄K, which has in practice a significantly smaller number of columns, that
is, |K| � n. Using BF as a post-processing step significantly reduces the computational cost;
see Section 2.3. Furthermore, it is worth noting that SNPALQ already identifies as sources
columns of X̄ lying far from each other. Thus, in our experiments, the clustering step in BF,
whenever used as a post-processing, was most often unnecessary since each cluster contained
exactly one point.

Remark 2.5 (Interpretation as post-processing). While we advocate BF as a post-processing
enhancing SNPALQ results, the reciprocal point of view can be also adopted: SNPALQ can
be seen as a screening (or pruning) method, enabling to select only a few number of potential
candidates and lightening the computational burden of BF.
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Algorithm 2.2 Brute force (BF)

1: Input: A (ε, r)-LQ near-separable matrix X̄ ∈ Rm×n following Definition 1.4 and the
constraints 1.4, the number of sources r, and f a strongly convex function satisfying
Assumption 2.1, d given by Equation (B.14).

2: Initialization: K = {}

3: for k ∈ [[n]] do
4: hk = argminh∈∆ f

(
x̄k −Π2(X̄)\{i∈[[n]] | f(x̄i−x̄k)>d}h

)
5: if f

(
x̄k −Π2(X̄N )\{i∈[[n]] | f(x̄i−x̄k)>d}hk

)
> L

2 ε
2(1 + max(1, 2K(X) + ε))2 then

6: K = K ∪ {k}
7: end if
8: end for

9: Clustering on X̄K:
• Compute the clusters : assign two columns x̄i and x̄j of X̄K to the same cluster if

and only if ‖x̄j − x̄k‖2 ≤ 2
√

2
µ(d+ εL(2K(X) + ε));

• Keep in K a single column per cluster: for each cluster, keep the column of X̄K
which is the closest to the center of the cluster. Update K accordingly.

10: Output: A set K of indices such that X̄K 'W up to a permutation.

2.3. Computational cost. The computational costs of the proposed algorithms are as
follows:

• SNPALQ : The complexity of the kth iteration is dominated by computing the projec-
tion step, which requires the projection of a m-by-n matrix onto a convex hull with
k(k + 3)/2 + 1 vertices, requiring O

(
mnk2

)
operations with a first-order method [18,

Appendix A].
• BF : Solving (2.3) for the n data points with a first-order method (as for SNPALQ)

requires O
(
mn2

)
operations. This is computationally rather heavy. For example, for

HS images, n is the number of pixels and typically of the order of millions.
• SNPALQ+BF : Assuming SNPALQ extracts |K| indices, it requires O

(
mn|K|2

)
oper-

ations for SNPALQ, and O
(
m|K|2

)
operations for the post-processing with BF. Hence

BF used as a post-processing has a smaller computational cost than SNPALQ which
further justifies its use.

Remark 2.6 (Handling simpler models). As the LQ mixing model encompasses in partic-
ular the linear and bilinear ones, both SNPALQ and BF can be employed to separate these
(simpler) mixtures. However, in practice, SNPALQ+BF should be specifically tailored in
agreement with the target mixing model. For instance, bilinear mixtures can be handled by
SNPALQ+BF by removing the projections on the squared sources in the projection steps,
reducing the computational burden while improving the separation performance, avoiding the
projections on the non-existing quadratic terms.
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3. Theoretical results. This section reports the theoretical results associated with the
recovery of the sources by SNPALQ and BF, even in the presence of noise. More specifically,
in Section 3.1.1, we first derive robustness guarantees for SNPALQ when applied to linear
mixings. These guarantees are then extended to LQ mixings in Section 3.1.2. The required
conditions for these recovery results are discussed in Section 3.1.3. In Section 3.2, we derive
and discuss the recovery guarantees for BF. For the sake of simplicity, the results derived in
this section are stated for the particular choice f(·) = ‖·‖2. Our results are presented in a
more general setting for any function f(·) satisfying Assumption 2.1 in Appendix B, where
the proofs are given. The specific proof of SNPALQ robustness for linear mixtures is reported
in the supplementary material.

3.1. Robustness of SNPALQ. As the LQ model is a generalization of the linear one
(see Section 1), we first prove robustness of SNPALQ with respect to (w.r.t.) noise for linear
mixings in Section 3.1.1. However, as expected, we will see that the derived bounds on the
admissible noise levels and the corresponding error on the source estimates are slightly worse
than those associated with SNPA because of the additional projections on the (non-existing)
virtual sources. In Section 3.1.2, robustness of SNPALQ is proved in the case of LQ mixings.

3.1.1. Linear mixtures. Before stating the main result of this section in Theorem 3.1, let
us introduce additional notations. For a matrix A ∈ Rm×r, we define3

K(A) = ‖A‖1,2 = max
i∈[[r]]
‖ai‖2 ,

which is the maximum of the `2 norm of the columns of a matrix A. We denote PfA(x) the
projection of x onto the convex hull formed by the columns of A and the origin w.r.t. the
semimetric induced by the function f :

PfA(x) = Ay∗ with y∗ = argmin
y∈∆

f(x−Ay).

Note that this projection is unique because f is assumed to be strongly convex; see Assump-
tion 2.1. The residual of the projection is denoted RfA, that is,

RfA(x) = x− PfA(x).

When used on matrices, both the projection and residual operators are applied column-wise
(that it, RfA(X)i = RfA(xi) for all i). Furthermore, we define the following quantities associ-
ated with the minimal norm of the residuals

νf,Π2(A)(A) = minj∈[[r]]

∥∥∥RfΠ2(A)\{j}
(aj)

∥∥∥
2
,

γf,Π2(A)(A) = mini,j∈[[r]]
i 6=j

∥∥∥RfΠ2(A)\{i,j}
(aj)−RfΠ2(A)\{i,j}

(ai)
∥∥∥

2
,

βLin
Π2(A)(A) = min

(
νf,Π2(A)(A),

√
2

2 γf,Π2(A)(A)
)

.

3Note that in the signal processing literature, such a norm is sometimes denoted as ‖A‖∞,2, see for instance
[30]. We prefer to keep the original notation of [18].
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As such, βLin
Π2(A)(A) is the minimum between the smallest residual of the column of A and the

smallest difference between the residuals of the columns of A after the projection onto Π2(A).
The following theorem states the robustness of SNPALQ in the case of linear mixtures. As

mentioned earlier, it is here presented in a simplified formulation by assuming that f(·) = ‖·‖2.
Its generalized counterpart for any f(·) satisfying Assumption 2.1, as well as the corresponding
detailed proof, are reported in the supplementary material (Theorem SM2.6).

Theorem 3.1 (Robustness of SNPALQ when applied on linear mixings – Simplified version).
Let

X̄ = WH + N ∈ Rm×n

be a near-separable [17] linear mixing with αΠ2(W)(W) > 0 and βLinΠ2(W)(W) > 0. Let

K(N) ≤ ε with ε < O
(
βLin

Π2(W)
(W)4

K(W)2

)
. Then SNPALQ (Algorithm 2.1) with f = ‖·‖2 identifies

in r steps all the columns of W up to error O
(
ε K(W)2

βLin
Π2(W)

(W)2

)
.

As in [18], Theorem 3.1 can be proved by induction: we show in the supplementary
material that SNPALQ extracts a new column of W at each iteration.

3.1.2. LQ mixings. We now extend the above result to the case of LQ mixings. Similarly
to the linear case, we define

βLQ
Π2(W)(A) = min

(
νf,Π2(W)(A)

2

√
µ

L

[
1− 1

G

]
, γf,Π2(W)(A)

)
,

for some constant G > 1 upper-bounded by a quantity depending on the mixtures; see (3.1)
below. The robustness of SNPALQ when analyzing LQ mixings is stated below for f(·) = ‖·‖2.
In Appendix B, Theorem B.5 generalizes this statement to any f(·) satisfying Assumption 2.1.

Theorem 3.2 (Robustness of SNPALQ when applied on LQ mixings – Simplified version). Let

X̄ = Π2(W)H + N ∈ Rm×n

be an (ε, r)-LQ near-separable mixing (see Definition 1.4) with αΠ2(W)(W) > 0, βLQΠ2(W)(W) >

0, and ε < O

(
βLQ

Π2(W)
(W)

4

K(Π2(W))2

)
. Furthermore, let us assume that at each iteration of SNPALQ

the following condition is fulfilled:

(3.1) K
(
R‖·‖2

Π2(B̄)
(A)

)
≥ 2GK

R‖·‖2Π2(B̄)

(bi)i∈[[s]], (ai � aj) i≤j
i∈[[k]]
j∈[[k]]

, (bi � bj) i≤j
i∈[[s]]
j∈[[s]]

, (ai � bj)i∈[[k]]
j∈[[s]]


 ,

where B contains the columns of W already extracted by SNPALQ and B̄ the corresponding
columns with noise, A contains the remaining columns of W still-to-be extracted, and G > 1
is a constant. Then, SNPALQ (Algorithm 2.1) with f = ‖·‖2 identifies in r steps the columns

of W up to an error O
(
ε K(Π2(W))2

βLQ
Π2(W)

(W)2

)
.
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Similarly to the robustness result for linear mixtures, the above theorem is shown by
induction. The main difference is that, in the LQ case, the virtual sources (and the mixed
data columns for which their contribution is nonzero) might have a large residual and hence
be extracted, whereas we would like to extract only the primary sources. Therefore, we must
introduce the additional condition (3.1). Roughly speaking, it requires the energy of the
residual of a non-already extracted source to be higher than twice the maximum of (i) the
largest energy of the virtual sources, which prevents SNPALQ to extract a virtual source,
and (ii) the largest energy of the already-extracted sources, which precludes extracting two
columns of X̄ corresponding to the same source.

Remark 3.3 (Condition (3.1)). The condition (3.1) is data and algorithm dependent. In-
deed, it depends on the order in which the columns of X̄ have been extracted. It is possible
to provide a data and algorithm independent condition as follows. For J ⊂ [[r]], let us define

MJ =

(wi)i∈J , (wi �wj) i≤j

i,j∈[[r]]\J

, (wi �wj) i≤j
i,j∈J

, (wi �wj)i∈[[r]]\J
j∈[[J ]]

 .

In Theorem 3.2, Condition (3.1) can be replaced with the following one: for all J ⊂ [[r]],

K
(
R‖·‖2Π2(WJ )(W[[r]]\J)

)2
≥ 4G2K

(
R‖·‖2Π2(WJ ) (MJ)

)2

+ 2
(
K
(
W[[r]]\J

)
+ [1 + 4G2]K (Π2(WJ)) + 4G2K (MJ)

)
.

(3.2)

Using similar inequalities as in Lemma B.2, it is straightforward to show that condition (3.2)
implies condition (3.1). However, the converse does not hold and hence condition (3.2) is more
restrictive.

Remark 3.4 (Bounds in Theorem 3.2). The bounds on ε and the error on recovering W in
Theorem 3.2 are not easy to interpret. Clearly, these bounds can be weak for some data sets,
since βLQ

Π2(W)(W) is small as soon as some column of W, say the jth, is close to the convex

hull of Π2(W)\{j}. Moreover, whether these bounds are tight or not is an open question: a
direction of further research would be to improve these bounds or prove they are tight. Note
that a similar comment applies to the linear case, where the tightness of SNPA bounds is also
an open problem.

3.1.3. Interpretation of SNPALQ recovery conditions. In addition to the mixing con-
straints described in Section 1.3, among which (ε, r)-LQ near-separability, we here give more
insights concerning some of the conditions for SNPALQ robustness when applied on LQ mix-
tures.
Condition on αΠ2(W)(W) – The condition αΠ2(W)(W) > 0 is of uttermost importance. It
ensures that no column of W lies within the convex hull of the other columns of W, the origin,
and the second order products of the columns of W. On the contrary, αΠ2(W)(W) = 0 would
mean that at least one columns of W would be indistinguishable from the mixed data columns.
Compared to SNPA, this condition is more restrictive for linear mixings. For example, let us
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consider the noiseless mixtures X = WH with

W =

1 1 1
1 0 0
0 1 0


for which αΠ2(W)(W) = 0. During its two first iterations, SNPALQ extracts the two first
columns of W. But as w1�w2 = w3, all data columns in X can be written as a nonnegative
combination of [w1,w2,w1 � w2], and hence SNPALQ stops after the second iteration (the
residual being zero) without extracting w3. On the contrary, SNPA is able to extract the thre
columns of W since rank(W) = 3.

On the other hand, even if the virtual sources appear purely in the mixture, trying to solve
the LQ problem using the naive approach explained at the beginning of Section 2, namely
applying SNPA on a LQ-mixing with the hope to extract both sources and virtual sources
and then rejecting the virtual ones, would require αΠ2(W)(Π2(W)) > 0, which is a stronger
condition than the one of SNPALQ. Indeed, this would require all the virtual sources not to
lie within the convex hull of the other columns of Π2(W) and the origin, which should not be
required as we do not need to estimate them.
Condition on βLQ

Π2(W)(W) – The condition βLQ
Π2(W)(W) > 0 is stronger than the correspond-

ing condition of SNPA for linear mixtures which requires βLin
W (W) > 0. This condition is

typically satisfied as long as αΠ2(W)(W) > 0. Actually, except for some pathological cases,
the residuals of two columns of W after projection on the convex hull of other columns of W
are expected to be pairwise different, i.e, RfΠ2(W)\{i,j}

(wj) 6= RfΠ2(W)\{i,j}
(wi) for all i 6= j;

see the discussion in [18].
Condition on the noise level ε – When applied to linear mixings, the admissible noise levels

are lower with SNPALQ than SNPA, which requires ε < O
(
βLin
W (W)

2

K(W)2

)
. This is expected, and

will be confirmed in the numerical experiments of Section 4, since SNPALQ then performs
useless additional projections on non-existing virtual sources. On the other hand, when applied
to LQ mixings, the admissible noise levels are larger with SNPALQ than SNPA, since the
recovery conditions of SNPA involve βΠ2(W)(Π2(W)). Moreover, SNPALQ does not need the
virtual sources to be present in the data set, while SNPA would require each virtual source
to appear as a column of X̄.

Condition on K
(
R‖·‖2

Π2(B̄)
(A)

)
– At each iteration of SNPALQ, the following condition is

required:

K
(
R‖·‖2

Π2(B̄)
(A)

)
≥ 2GK

R‖·‖2Π2(B̄)

(bi)i∈[[s]], (ai � aj) i≤j
i∈[[k]]
j∈[[k]]

, (bi � bj) i≤j
i∈[[s]]
j∈[[s]]

, (ai � bj)i∈[[k]]
j∈[[s]]


 ,

with B the columns of W already extracted by SNPALQ (B̄ their noisy approximation) and
A the other columns of W. This means that at each iteration, a new column of W must have
a larger residual than the already extracted sources and the virtual sources. This condition is
the most difficult one to fulfil. In particular the difficulties might arise for a large number of
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sources, as more terms are present in the right-hand side (see Section 4.2.3), or when W has
large entries. However,

• The condition is sufficient but not necessary (see Section 4.2.3), making that SNPALQ
can work even if it is not fulfiled.
• Some terms in the right-hand side are or might be negligible, as

K
(
R‖·‖2

Π2(B̄)

(
(bi)i∈[[s]]

))
≤ K

(
R‖·‖2

B̄

(
(bi)i∈[[s]]

))
and

K

R‖·‖2
Π2(B̄)

(bi � bj) i≤j
i∈[[s]]
j∈[[s]]

 ≤ K
R‖·‖2

(b̄i�b̄j)i≤j

(bi � bj) i≤j
i∈[[s]]
j∈[[s]]

,
and the norm of the two right-hand side terms are of the order of the noise level ε and
ε+ ε2, respectively.
• The two remaining terms are driven by the correlation of the columns of W. If such

a correlation is limited, the condition is expected to be more likely fulfilled.
• Even if SNPALQ extracts spurious columns of X̄, the post-processing with BF will

discard them as it does not need this condition to be satisfied.

3.2. Robustness of BF on LQ mixings. We now study the robustness of the BF step.
First, Theorem 3.5 below states that BF identifies the columns of W, provided some bounds
on the admissible noise levels. The maximum corresponding source estimation error is also
given. Then the recovery conditions are discussed.

3.2.1. Main result. The following theorem characterizes the robustness of BF. It is stated
in a simplified form by considering f(·) = ‖·‖2. Its generalized counterpart handling any f(·)
satisfying Assumption 2.1 is reported in Appendix B (see Theorem B.15).

Theorem 3.5 (Robustness of BF when applied on LQ mixings – Simplified version). Let
X̄ = Π2(W) + N be an (ε, r)-LQ near-separable mixing (Definition 1.4) with ε satisfying

4
√
d+ 2ε(2K(X) + ε) < αW(W),

where d = O
(

ε
αΠ4(W)(W)2

)
(see Equation (B.14) in Appendix B for the full expression).

Then, BF (Algorithm 2.2) applied on X̄ with f = ‖·‖2 identifies the columns of W up to a `2
error of

√
d+ 2ε(2K(X) + ε).

The proof of the above theorem closely follows the proof in the linear case of [5]. In particu-
lar it extends two definitions of [5] to LQ mixtures: i) the LQ-robust loners (see condition (2.3))
and ii) the canonical columns which are, roughly speaking, the columns corresponding to the
sources (up to the noise) in the data set. It then amounts to show that the LQ-robust loners
are approximately the canonical columns, which is done by Lemma B.10 (showing that all the
robust loners are close to a canonical column) and B.14 (showing that all canonical columns
are robust loners). Extracting the robust loners thus enables to approximately recover the
sources, as shown by Theorem B.15.
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3.2.2. Discussion on the BF recovery conditions. Let us discuss the conditions to ensure
the source recovery by BF.
Condition on αΠ4(W)(W) – Assuming αΠ4(W)(W) > 0 is the counterpart of Deville’s result
in [9], which required the family (1.3), containing the products up to order four of the sources,
to be linearly independent. Here, this condition is turned into a nonnegative independence,
which is significantly less restrictive in general. In fact, this condition is most likely a necessary
condition for LQ unmixing since αΠ4(W)(W) = 0 implies that some columns of W can be
written as mixtures of other observations.
Condition on ε – The condition 4

√
d+ 2ε(2 + ε) < αW(W) with d = O

(
ε

αΠ4(W)(W)2

)
is a limit on the admissible noise level. Roughly speaking, the better some sources can be
approximated by a non-negative combination of the other terms of family (1.3), the smaller
the noise power can be.
Comparison with SNPALQ – The conditions of recovery of BF are different from the ones
of SNPALQ and can be milder in some cases. For example, in the noiseless case, BF only
requires αΠ4(W)(W) > 0, in contrast to SNPALQ, which needs in particular the condition (3.1)
to be fulfilled. The interest of the BF algorithm will be confirmed in the numerical experiments
in Section 4. However, BF is computationally much more demanding (see Section 2.3), which
motivates its use as a post-processing for SNPALQ.

4. Numerical results. We here study the behaviors of SNPALQ and BF as a post-
processing on simulated yet realistic data sets in the specific applicative context of HS un-
mixing. The observed mixtures are supposed to follow the Nascimento model [37]. The
function f(·) used by the algorithms is here chosen as f(·) = ‖·‖2. The code is available from
https://bit.ly/SNPALQv1.

Section 4.2 dwells on noiseless mixtures. More precisely, we show in Section 4.2.1 that
SNPALQ yields very good practical results in this setting, which are enhanced by the BF
postprocessing in Section 4.2.2. We further show in Section 4.2.3 that the condition (3.1) is
only sufficient: it does not need to be fulfilled for SNPALQ to provide reliable results. In
Section 4.3, the robustness of SNPALQ in the presence of noise is studied for different non-
linearity levels. Furthermore, in the supplementary material, a first experiment confirms that,
beyond the usual Nascimento model involving bilinear mixtures, both SNPALQ and the BF
generalize well to LQ models. A second one is also detailed, showing that our results extend
with larger numbers of observations m.

SNPA [18] and SPA [3, 22], two well-known algorithms for near-separable NMF, are used
to benchmark the results of the proposed algorithm. Note that plenty of non-linear unmix-
ing methods have been proposed in the literature, exploiting parametric models [13, 24] or
data-driven models [39, 25]. However, these algorithms have not been considered here for per-
formance comparison since none of them specifically tackle the separation of near-separable
mixtures. Moreover, contrary to SPA and SNPA, they are not accompanied by theoretical
recovery guarantees, which is one of the main objective of this paper.

4.1. Experimental setting and metrics. Experiments are conducted on realistic (ε, r)-LQ
near-separable nonnegative data sets X following Definition 1.4. The parameters of the model
are chosen as follows.

• The primary sources (referred to as endmember signatures in the HS literature) defin-

https://bit.ly/SNPALQv1
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ing the columns of W are defined as spectral signatures extracted from the USGS
database4. They correspond to reflectance spectra associated with materials from
diverse origins (such as minerals, soils, and plants) and naturally follow 0 ≤W ≤ 1.
• The matrix H′ is generated in the following way:

– The columns of a first matrix H́ of the same dimension as H′ are generated
randomly using a Dirichlet distribution D(α, . . . , α) with α = 0.5, which is
standard in HS imaging [35].

– The r first rows (corresponding to the linear contribution) are multiplied by
1−ν, while the remaining rows (corresponding to the virtual endmembers) are
multiplied by ν to enable various non-linearity levels:

(4.1) H′ =

[
H́[[r]] × (1− ν)

H́[r+1,r̃] × ν

]
.

Note that, acccordingly to the Nasciemento model [37] we consider here, we
mostly focus on bilinear mixtures in this experimental section. In this case,
the lines of H́[r+1,r̃] corresponding to squared sources (sj�sj)j∈[[r]] are enforced
to be all-zero lines.

– The previous transformation does not preserve the sums of the entries in each
column of H́ which were equal to one (Dirichlet distribution). Since the col-
umns are assumed to sum to (at most) one, the last step divides each column
of H′ by its `1 norm.

• The elements of the matrix N are independently and identically drawn from a centered
Gaussian distribution with a variance corresponding to a given signal-to-noise ratio
(SNR).
• The matrix X̄ is finally created ensuring all the entries to be non-negative: X̄ =

[Π2(W)H + N]+, where [.]+ is the elementwise projection on the non-negative orthant.
The quality of an algorithm is assessed using the minimum spectral angle distance (SAD)

between the true and the estimated endmembers:

θmin = max
π,permutation of [[r]]

min
i∈[[r]]

SAD(wπ(i),xK(i)),

where SAD(u,v) = uTv
‖u‖2‖v‖2

. We consider a perfect separation is achieved if θmin > 0.999.

Remark 4.1 (Real data sets). Although the columns of W we use are true spectral signa-
tures, the mixtures considered in this work are partially synthetic. Indeed, due to the few
works in LQ hyperspectral unmixing, there is a limited amount of relevant data sets with
associated ground truth, that is, for which quadratic terms are known to be present and prop-
erly quantified. Moreover, when considering real data sets, further challenges might arise,
which are not currently tackled by the algorithms herein proposed: for instance, the presence
of spectral variability in the endmembers or the presence of outliers [19, 22]. The primary
objective of this article is to establish the first theoretical results on LQ near-separable NMF.
Tackling such further practical questions is left for future research.

4https://www.usgs.gov/
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4.2. Numerical results on noiseless mixtures.

4.2.1. Study of SNPALQ. We first explore the behavior of SNPALQ as a function of
the number of endmembers r in a noiseless setting. We consider n = 1000 mixed pixels with
m = 20 and the non-linearity parameter is chosen as ν = 0.5. We conducted 100 Monte-Carlo
experiments, each time generating a new dataset.
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Figure 4. Percentage of experiments in which a perfect separation is achieved, among 100 Monte-Carlo of
noiseless bilinear synthetic data sets. The parameters are: m = 20 observations, n = 1000 pixels and ν = 0.5.

Fig. 4 reports the percentage of full recovery by the different algorithms. In this experi-
ment, SNPALQ obtains much better results than SNPA or SPA, and achieves in more than
90% of the experiments a perfect separation. While an initial improvement of the results
when r increases might look surprising, it is probably not to be linked directly with the r
value itself, but rather with the generated H′. Indeed, when r is small, the data columns are
more spread within the convex hull formed by the endmembers and these are therefore more
difficult to extract; see Section 4.2.3.

On the other hand, the results of SNPA and SPA are rather bad on this non-linear data set,
and deteriorate quickly when the number of endmembers increases. While both algorithms
obtain close results, it is interesting to note that SPA becomes worse than SNPA when r
becomes closer to m, which is expected as SNPA has an interest over SPA mainly when the
matrices W are either not full-rank or ill conditioned [18].

4.2.2. Study of BF as a post-processing step. In this section, we analyze the relevance
of the introduction of BF as a post-processing conducted after SNPALQ. Figure 4 displays in
orange the separation quality when applying the BF to SNPALQ. This result shows that BF
enables to achieve perfect results for all experiments by improving SNPALQ results, especially
for low r values.
A natural question is however the cost of such a post-processing; see Section 2.2. Table 2 thus
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Table 2
1st line: actual r value. 2nd line: average number |K|, over 100 Monte-Carlo experiments, of endmembers

extracted by SNPALQ before the BF step.

r 2 3 4 6 8 10 15 20

|K| SNPALQ before BF 2.08 3.16 4.05 6 8 10 15 20

displays the number of columns extracted by SNPALQ (2nd line) as a function of the actual
number r of sources. These columns are the input of the BF, and therefore they determine
its computational time. Interestingly enough, on average, SNPALQ does not need to extract
more than r + 1 components to extract all the columns of W. As such, the post-processing
step is applied on a small number of columns of X̄ and is cheap.

4.2.3. Discussion about condition (3.1). The introduction of condition (3.1) is one of the
major difference compared to the linear case, for which it does not appear explicitly5. As such,
we here aim at discussing its validity on real noiseless HS data. It is important to notice that
this context might be favorable, since W naturally fulfills 0 ≤W ≤ 1. To do so, we propose
the following complementary experiment: for each of the 100 Monte-Carlo experiments, we
draw a new W matrix from the USGS database and split the columns of W into two disjoints
matrices: A = [(wi)i∈J ,J⊆[[r]]] and B = [(wi)i∈[[r]]\J ]. We then check whether these matrices
A and B fulfill condition (3.1). By repeating the process with all the possible A and B, we
can thus obtain a percentage of subsets A and B for which condition (3.1) is fulfilled in the
USGS database. In this experiment, we consider n = 1 000 samples with m = 50 observations.

Figure 5 (dashed lines) depicts, as a function of the number of endmembers r, the propor-
tion of the different realizations of W for which condition 3.1 is fulfilled. This proportion of
sub-matrices A and B fulfilling condition (3.1) decreases with r, which was expected as the
number of elements in the right-hand side increases. Then, as exemplified in Figure 2, the
condition is observed to be slightly less restrictive in general for SNPALQ than for SNPA.

Most importantly, the results become quite bad for relatively small r values: for r = 10,
the condition is fulfilled for only slightly more than 5% of the tested subsets A and B. Thus it
might be surprising that SNPALQ algorithm achieves perfect results in almost all experiments.
The reason of such a discrepancy is twofold:

• The dashed lines of Figure 5 consider all the possible ways to split the matrix W into
two submatrices A and B. Thus, they do not take into account the order in which the
columns of W are extracted by SNPALQ. In practice however, SNPALQ only needs
condition (3.1) to be satisfied for the order in which it extracts the indices, which is
easier to fulfil.
• The virtual endmembers typically do not not appear purely, which makes condi-

tion (3.1) too conservative (recall that this condition is not necessary in the linear
case; see Theorem 3.1). In other words, Condition 3.1 considers the worst case sce-
nario for any possible mixing matrix H while, in practice, the non-linearity can be
mild.

5More exactly, in the linear case this condition is replaced by one on the admissible noise levels; see [18].
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Figure 5. Comparison between theoretical conditions ensuring endmember recovery by SNPALQ (resp.
SNPA) and actual results. The dashed line correspond to the percentage of submatrices A and B for which
condition 3.1 is fulfilled and the plain lines correspond to the actual proportion of perfect recovery by SNPALQ
(resp. SNPA).

In summary, while Condition 3.1 might seem restrictive, SNPALQ can yield excellent
results in settings in which it is not fulfilled. In particular, it could be of interest to include
the non-linearity level ν in a study of necessary conditions for SNPALQ, which is left for
future work.

4.3. Robustness study: noisy mixtures. The impact of the noise and non-linearity levels
is now studied. We generated bilinear data sets X̄ with 7 different SNR levels and 12 values
for the non-linearity parameter ν. For each pair of SNR and ν values, 24 Monte-Carlo exper-
iments are conducted on nonlinear mixtures characterized by m = 50 spectral bands, r = 10
endmembers and n = 1 000 pixels.

Figure 6 depicts the recovery performances of SNPALQ and SNPA. For low non-linearity
levels, the mixtures approximately follow the LMM: in agreement with their robustness guar-
antees, the results of SNPALQ+BF are then perfect when the SNR is high (SNR ≥ 40dB);
see the upper-left corner of Figure 6a. However, SNPALQ+BF performs worse than SNPA in
the presence of a stronger noise (SNR ∈ [25dB, 30dB]), which is expected as it projects the
residual onto non-existing virtual endmembers, leading to a loss of information (the norm of
the residual decreases faster).

SNPALQ+BF shows its benefit over SNPA when the non-linearity level increases and the
noise level is not too large (upper-right corner of the figures). More precisely, when ν ≥ 0.3 and
SNR ≥ 40 dB, SNPALQ+BF always obtains a perfect recovery, which represents a significant
improvement over SNPA, up to 20%. In the lower-right corner of the figure, when the SNR
decreases, the results of both algorithms deteriorate as the problem is highly difficult.
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Figure 6. As a function of SNR and non-linearity level ν, percentage of perfect separation using
(a) SNPALQ+BF, (b) SNPA.

5. Conclusion. In this paper, we have considered the problem of linear-quadratic blind
source separation, under the (r, ε)-LQ near-separable assumption which requires the primary
sources to appear purely in the data set. We first introduced SNPALQ, an extension of
SNPA [18], which takes into account the presence of quadratic terms in the projection step.
SNPALQ is guaranteed to recover the sources for linear-quadratic under appropriate condi-
tions. We then introduced a second algorithm, namely brute-force (BF), an extension of the
algorithm of Arora et al [5], which provably recovers the sources under often practically-milder
conditions than SNPALQ. It is recommended to use BF as a post-processing of SNPALQ
(denoted by SNPALQ+BF) due to its high computational cost. Finally, we illustrated the
performance of SNPALQ and SNPALQ+BF in various settings, and showed that they ob-
tained good separation results on synthetic data sets, and for various experimental settings,
including linear, bilinear and linear quadratic mixtures. Improving SNPALQ+BF results for
low SNR while still alleviating recovery conditions of both algorithms is left for future work.

To conclude, let us mention some particularly promising directions of further research:
• Relaxing near-separability. In the linear case, near-separability can be relaxed to the

so-called sufficiently scattered condition (SSC) which requires H to be sufficiently
sparse. Under the SSC, identifiability is achieved using an NMF formulation minimiz-
ing the volume of the convex hull of the columns of W; see [16] and [20, Chapter 4]
and the references therein. One interesting question would be: can we generalize this
result to LQ mixtures?
• Generalizing to other types of nonlinear mixtures. Depending on the applicative con-

text, several non-linear mixing models can be considered. In this work, we focused on
LQ mixtures and more specifically on the so-called Nascimento model. It would be in-
teresting to extend the algorithms we proposed in this work to other types of non-linear
mixtures such as the Fan model [15] and the generalized bilinear model [23].
• Other applications. We have focused in this paper on hyperspectral imaging. How-
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ever, the LQ model could be meaningful in other applications. For example, in topic
modeling, the input matrix is a word-by-document count matrix, and the columns of
W represent topics [31]. The quadratic terms would be mean that a word that is used
by two topics is more likely to appear in a document discussing these two topics.

Acknowledgment. The authors are thankful to the anonymous reviewers for their insight-
ful comments that helped to improve the paper significantly.

Appendix A. A few useful results of [22, 18].

Lemma A.1 (Lemma 3.3 in [18]). For any B ∈ Rm×s, x ∈ Rm, and f satisfying Assump-

tion 2.1, we have
∥∥∥RfB(x)

∥∥∥
2
≤
√

L
µ ‖x‖2.

Lemma A.2 (Lemma 3.13 in [18]). Let B ∈ Rm×s, A ∈ Rm×k, n ∈ Rm, and z ∈ ∆k, and
let f satisfy Assumption 2.1. Then,

f
(
RfB(Az + n)

)
≤ f

(
RfB(Az) + n

)
and f

(
RfB(Az + n)

)
≤ f

(
RfB(A)z + n

)
.

Lemma A.3 (Lemma 3.14 in [22]). Let the function f satisfy Assumption 2.1. Then, for
any ‖x‖2 ≤ K and ‖n‖2 ≤ ε ≤ K,

f(x)− εKL ≤ f(x + n) ≤ f(x) +
3

2
εKL.

Appendix B. Proofs of our main results: SNPALQ and BF are provably robust in the
presence of noise.

In this section, we study the robustness of SNPALQ (Section B.1) and of BF (Section B.2)
for LQ mixtures. Note that the robustness proof of SNPALQ for linear mixtures, which is
comparatively less central to our contribution, is provided in the supplementary material.

Let us introduce some additional notations. For two matrices A ∈ Rm×rA and B ∈ Rm×rB ,
we define

αB(A) = min
j∈[[rA]]
x∈∆

∥∥aj −B\{j}x
∥∥

2
.

For instance, in the special case A = B, αA(A) is the minimum distance between a column
of A and the convex hull formed by the other columns of A and the origin. Let us also

denote ν(A) = mini∈[[rA]] ‖ai‖2, γ(A) = mini,j∈[[rA]]
i 6=j

‖ai − aj‖2, ω(A) = min
(
ν(A),

√
2

2 γ(A)
)

,

and Ω(A) = min
(
K(A)

2

√
µ
L

[
1− 1

G

]
, γ(A)

)
, where µ,L and G are some constants that will

be specified later.

B.1. Proof of SNPALQ robustness for LQ mixtures. After stating a few useful lemmas,
the induction step of the proof of SNPALQ robustness for LQ mixtures is given in Theorem B.4
and the main result is stated in Theorem B.5.
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Lemma B.1 ([18]-Lemma 15 extended). Let Z = [P,Q], where P ∈ Rm×k and Q ∈
Rm×r−k, and let f satisfy Assumption 2.1. If

(B.1) K(P) ≥ 2G

√
L

µ
K(Q) with G >

√
L

µ
≥ 1,

then, for any δ ∈
[
0, 1

2

]
,

(B.2) f∗ = max
x∈∆

f(Zx) such that xi ≤ 1− δ for 1 ≤ i ≤ k

satisfies

(B.3) f∗ ≤ max
i
f(pi)−

1

2
µ(1− δ)δΩ(P)2

with Ω(P) = min
(
γ(P), K(P)

2

√
µ
L

[
1− 1

G

])
.

Proof. First, let us provide a lower bound for f∗. Remember that due to the strong
convexity of f with parameter µ, its gradient Lipschitz continuity and the fact that f(0m) = 0,
we have that for all y ∈ Rm

(B.4)
µ

2
‖y‖22 ≤ f(y) ≤ L

2
‖y‖22 .

Consequently, since (1− δ)pi is an admissible solution, we have that

(B.5) f∗ ≥ f((1− δ)pi) ≥
1

2
µ(1− δ)2 ‖pi‖22 ≥

µ

8
‖pi‖22 ,

where the last inequality is due to the assumption δ ≤ 1/2.
Let us now discuss upperbounds of f . By strong convexity of f , the optimal solution

x∗ of (B.2) is attained at a vertex of the feasible domain {x ∈ Rr+|
∑r

i=1 xi ≤ 1 and xi ≤
1− δ for 1 ≤ i ≤ r}. Here are the different cases

a) x∗ = 0r;
b) x∗ = ei for k + 1 ≤ i ≤ r;
c) x∗ = (1− δ)ej for 1 ≤ j ≤ k;
d) x∗ = δei + (1− δ)ej for 1 ≤ i, j ≤ k;
e) x∗ = δei + (1− δ)ej for k + 1 ≤ i ≤ r and 1 ≤ j ≤ k

Let us analyze them separately.
a) This first case is clearly impossible, as f(0m) = 0 and f(y) > 0 for all y 6= 0; see

Eq. (B.4).
b) Zx∗ = qi for some i. Using Eq. (B.4), we obtain

(B.6) f∗ = f(qi) ≤
L

2
K(Q) ≤

Hyp. (B.1)

µ

8G2
K(P)2 <

Eq. (B.5)
f∗,

which is a contraction.
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c) Zx∗ = (1− δ)pi for some i. Let us then distinguish two subcases:
• If ‖pj‖22 ≤

µ
4LK(P)2, then:

f∗ = f((1− δ)pj) <
f(0m)=0

f strongly convex

(1− δ)f(pj) ≤
Eq. (B.4)

(1− δ)L
2
‖pj‖22

≤
‖pj‖22≤

µ
4L
K(P)2

(1− δ)µ
8
K(P)2

<
µ

8
K(P)2 ≤ f∗,

which is a contradiction.
• If ‖pj‖22 >

µ
4LK(P)2, then, by strong convexity of f ,

f∗ ≤ (1− δ)f(pj)−
1

2
µδ(1− δ) ‖pj‖22 = f(pj)− δf(pj)−

1

2
µδ(1− δ) ‖pj‖22 .

Since f(pj) ≥
Eq. (B.4)

µ
2 ‖pj‖

2
2 ≥

1
2µ(1− δ) ‖pj‖22,

f∗ < f(pj)− µδ(1− δ) ‖pj‖22

≤ f(pj)−
1

2
µδ(1− δ)

[
1

2

√
µ

L
K(P)

]2

≤ f(pj)−
1

2
µδ(1− δ)

[
K(P)

2

√
µ

L

(
1− 1

G

)]2

,

which satisfies the bound of the theorem.
d) Zx∗ = δpi + (1− δ)pj for some i 6= j. Then, by strong convexity of f ,

f∗ ≤ δf(pi) + (1− δ)f(pj)−
1

2
µδ(1− δ) ‖pi − pj‖22 ≤ K(P)− 1

2
µδ(1− δ)γ(P)2

e) Yx∗ = δqi + (1− δ)pj for some i, j. First (similarly to case c), let us distinguish two
subcases:

• Let us assume ‖pj‖22 ≤
µ

4LK(P)2. Then,

f∗ = f(δqi + (1− δ)pj) <
Strong convexity

δf(qi) + (1− δ)f(pj)

≤
Eq. (B.4)

δ
L

2
‖qi‖22 + (1− δ)L

2
‖pj‖22

<
Hyp. (B.1)

δ
µ

8
K(P)2 + (1− δ)µ

8
K(P)2

=
µ

8
K(P)2 ≤

B.5
f∗,

a contradiction.
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• If ‖pj‖22 >
µ

4LK(P)2, then, by strong convexity of f ,

f∗ ≤ δf(qi) + (1− δ)f(pj)−
1

2
µδ(1− δ) ‖qi − pj‖22

Using the triangle inequality, we obtain

‖qi − pj‖2 ≥ ‖pj‖2 − ‖qi‖2 ,

since ‖qi‖2 ≤ K(Q) <
Hyp. (B.1)

1
G

√
µ

4LK(P) ≤ ‖pj‖2. Thus,

‖qi − pj‖2 ≥
1

2

√
µ

L
K(P)− 1

2G

√
µ

L
K(P) =

1

2

√
µ

L
K(P)

(
1− 1

G

)
.

Furthermore,

f(qi) ≤
L

2
‖qi‖22 ≤

L

2
K(Q)2 ≤ µ

8G2
K(P)2

<
L

2G2
‖pj‖22

≤ L

µG2
f(pj).

Putting the above expressions altogether, we have

f∗ < f(pj) + δ
L

µG2
f(pj)− δf(pj)−

1

2
µδ(1− δ)

[
1

2

√
µ

L
K(P)

(
1− 1

G

)]2

≤ f(pj) +

(
L

µG2
− 1

)
δf(pj)−

1

2
µδ(1− δ)

[
1

2

√
µ

L
K(P)

(
1− 1

G

)]2

≤ f(pj)−
1

2
µδ(1− δ)

[
1

2

√
µ

L
K(P)

(
1− 1

G

)]2

where the last line, which satisfies the bound of the theorem, requires L <
µG2.

Lemma B.2. Let A ∈ Rm×k and B̄ ∈ Rm×s be such that B̄ −B = N and ‖N‖2 < ε, and
let f satisfy Assumption 2.1. Then,

Ω(Rf
B̄

(A))2 ≥ Ω(RfB(A))2 − 4ε(K(A) +K(B)).

Proof. Let us look at the two terms of Ω(Rf
B̄

(A)):

• Denoting zaj = argminx∈∆

∥∥aj − B̄x
∥∥

2
, we have, for j ∈ [[k]],∥∥∥Rf

B̄
(aj)

∥∥∥
2

=
∥∥aj − B̄zaj

∥∥
2

=
∥∥aj − (B + N)zaj

∥∥
2
≥
∣∣∥∥aj −Bzaj

∥∥
2
−
∥∥Nzaj

∥∥
2

∣∣
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Thus, for j ∈ [[k]],∥∥∥Rf
B̄

(aj)
∥∥∥2

2
≥
(∥∥aj −Bzaj

∥∥
2
−
∥∥Nzaj

∥∥
2

)2
≥
∥∥aj −Bzaj

∥∥2

2
− 2

∥∥aj −Bzaj

∥∥
2
‖Nzak‖2 +

∥∥Nzaj

∥∥2

2

≥
∥∥∥RfB(aj)

∥∥∥2

2
− 2(K(A) +K(B))ε,

where the last line is obtained since zaj ∈ ∆. This yields

K(Rf
B̄

(A))2 ≥ K(RfB(A))2 − (K(A) +K(B))ε,

and, as 0 ≤ µ
L

[
1− 1

G

]2 ≤ 1,

K(Rf
B̄

(A))2

4

µ

L

[
1− 1

G

]2

≥
K(RfB(A))2

4

µ

L

[
1− 1

G

]2

− ε(K(A) +K(B))

2
.

• Denoting

zai = argmin
x∈∆

∥∥ai − B̄x
∥∥

2
and zaj = argmin

x∈∆

∥∥aj − B̄x
∥∥

2
,

we have, for i 6= j, i, j ∈ [[k]],∥∥∥Rf
B̄

(ai)−RfB̄(aj)
∥∥∥

2
≥
∣∣∥∥ai −Bzai − (aj −Bzaj )

∥∥
2
−
∥∥N(zai − zaj )

∥∥
2

∣∣ .
This yields ∥∥∥Rf

B̄
(ai)−RfB̄(aj)

∥∥∥2

2
≥ γ(RfB(A))2 − 4ε(K(A) +K(B)),

which gives the result.

Lemma B.3. Let A ∈ Rm×k such that B̄ ∈ Rm×s be such that B− B̄ = N and ‖N‖2 < ε,
and let f satisfy Assumption 2.1. Then,

Ω(Rf
Π2(B̄)

(A))2 ≥ Ω(RfΠ2(B)(A))2 − 4(K(A) +K(Π2(B))) max(ε, 2εK(B) + ε2).

Proof. The result follows directly from the previous Lemma B.2, by noting that∥∥Π2(B̄)−Π2(B)
∥∥

2
≤ max(ε, 2εK(B) + ε2).

Theorem B.4 (Robustness of SNPAB when applied on linear-quadratic mixings - induction
step). Let the following hold:

• X follows a (r, ε)-LQ near-separable mixing model. Precisely, X̄ satisfies Definition 1.4
with

X̄ = Π2(W)H + N, W = [A,B] and A ∈ Rm×k, B ∈ Rm×s,

H ∈ R
r(r+1)

2
×n

+ with ∀j ∈ [[n]],hj ∈ ∆.
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Let us further assume the noise to be bounded as ‖N‖1,2 ≤ ε, and denote by X =

Π2(W)H the noiseless version of X̄. Note that, with these notations,

Π2(W) =

(ai)i∈[[k]], (bi)i∈[[s]], (ai � aj) i≤j
i∈[[k]]
j∈[[k]]

, (bi � bj) i≤j
i∈[[s]]
j∈[[s]]

, (ai � bj)i∈[[k]]
j∈[[s]]

 .
• B̄ ∈ Rm×s satisfies K(B− B̄) ≤ Cε for some C > 0.

• W = [A,B] is such that αΠ2(B)(A) > 0, γ(RfΠ2(B)(A)) > 0.
• For some G > 1, the matrix W and the considered A and B satisfy:

(B.7)

K
(
Rf

Π2(B̄)
(A)

)
≥ 2GK

RfΠ2(B̄)

(bi)i∈[[s]], (ai � aj) i≤j
i∈[[k]]
j∈[[k]]

, (bi � bj) i≤j
i∈[[s]]
j∈[[s]]

, (ai � bj)i∈[[k]]
j∈[[s]]


 .

• f satisfies Assumption 2.1 with strong convexity parameter µ and gradient Lipschitz
constant L such that L < µG2.
• ε is sufficiently small so that

(B.8)

Cε < min

−40L3/2 − 16µ3/2CK(W) +

√
(40L3/2 + 16µ3/2CK(W))

2
+

32µ3C2Ω(Rf
Π2(B)

(A))2

K(Π2(W))

16µ3/2C
,

µ3/2CΩ(RfΠ2(B)(A))2

K(Π2(W))(40L3/2 + 8Cµ3/2)
,

min(M,Ω(RfΠ2(B)(A)))2

8K(Π2(W))
,√

K(W)2 +
min(M,Ω(RfΠ2(B)(A)))2

8K(Π2(W))
−K(W)


with M ≥ 0 a constant and

Ω(RfΠ2(B)(A)) = min

γ(RfΠ2(B)(A)),
K(RfΠ2(B)(A))

2

√
µ

L

[
1− 1

G

] .

Then the index i corresponding to a column x̄i of X̄ maximizing the function f(Rf
Π2(B̄)

(.))

satisfies

xi = Π2(W)hi with hil ≥ 1− δ for some l ∈ [[k]],(B.9)

and

(B.10) δ =
20εK(Π2(W))

Ω(RfΠ2(B)(A))2 − 8K(Π2(W))Cεmax(1, 2K(W) + Cε)

L3/2

µ3/2
≤ 1

2
.
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This implies

(B.11) ‖x̄i −wl‖2 = ‖x̄i − al‖2 ≤ ε

1 +
40K(Π2(W))2

Ω(RfΠ2(B)(A))2 −M2

L3/2

µ3/2

 .
Proof. The robustness is proved by contradiction. Let us assume that the column of X̄

maximizing f(Rf
Π2(B̄)

(.)) satisfies x̄i = Π2(W)hi+ni with hil < 1− δ for 1 ≤ l ≤ k. We have

f
(
Rf

Π2(B̄)
(x̄i)

)
≤

Lemma A.2
f
(
Rf

Π2(B̄)
(Π2(W)) hi + ni

)
≤

Lemma A.3
f
(
Rf

Π2(B̄)
(Π2(W)) hi

)
+

3

2
εK
(
Rf

Π2(B̄)
(Π2(W)) hi

)
L.

Using Lemma A.1,

∥∥∥Rf
Π2(B̄)

(Π2(W)) hi

∥∥∥
2
≤ max

i

∥∥∥Rf
Π2(B̄)

(Π2(W)i)
∥∥∥

2
≤

Lemma A.1

√
L

µ
K(Π2(W)),

we obtain

f
(
Rf

Π2(B̄)
(x̄i)

)
≤ f

(
Rf

Π2(B̄)
(Π2(W)) hi

)
+

3

2
εK(Π2(W))

L3/2

µ1/2

≤ max
x∈∆r

xl≤1−δ
1≤l≤k

f
(
Rf

Π2(B̄)
(Π2(W)) x

)
+

3

2
εK(Π2(W))

L3/2

µ1/2

≤
Lem (B.1)
Eq. (B.7)

max
j
f
(
Rf

Π2(B̄)
(aj)

)
− 1

2
µδ(1− δ)Ω

(
Rf

Π2(B̄)
(A)

)2

+
3

2
εK(Π2(W))

L3/2

µ1/2

≤
Lemma A.2

max
j
f
(
Rf

Π2(B̄)
(āj)− nj

)
− 1

2
µδ(1− δ)Ω

(
Rf

Π2(B̄)
(A)

)2

+
3

2
εK(Π2(W))

L3/2

µ1/2

≤
Lemma A.3

max
j
f
(
Rf

Π2(B̄)
(āj)

)
− 1

2
µδ(1− δ)Ω

(
Rf

Π2(B̄)
(A)

)2

+
9

2
εK(Π2(W))

L3/2

µ1/2

≤
Lem (B.3)

max
j
f
(
Rf

Π2(B̄)
(āj)

)
− 1

2
µδ(1− δ)

[
Ω
(
RfΠ2(B) (A)

)2

−4(K(A) +K(Π2(B)))Cεmax(1, 2K(B) + Cε)] +
9

2
εK(Π2(W))

L3/2

µ1/2
.

≤
Lem (B.3)

max
j
f
(
Rf

Π2(B̄)
(āj)

)
− 1

2
µδ(1− δ)

[
Ω
(
RfΠ2(B) (A)

)2

− 8K(Π2(W))Cε

×max(1, 2K(W) + Cε)] +
9

2
εK(Π2(W))

L3/2

µ1/2
.

(B.12)
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The fifth inequality follows from Lemma A.1 since

∥∥∥Rf
Π2(B̄)

(āj)
∥∥∥

2
≤

√
L

µ
‖āj‖2 ≤

√
L

µ
(K(Π2(W)) + ε) ≤ 2

√
L

µ
K(Π2(W)),

if ε ≤ K(Π2(W)), which implies that

f∗ < max
j
f
(
Rf

Π2(B̄)
(āj)

)
− 1

2
µδ(1− δ)

[
Ω
(
RfΠ2(B) (A)

)2

− 8K(Π2(W))Cεmax(1, 2K(W) + Cε)

]
+

10

2
εK(Π2(W))

L3/2

µ1/2
.

Then, replacing δ by its expression (B.10), we obtain

1

2
µδ(1− δ)

[
Ω(RfΠ2(B)(A))2 − 8K(Π2(W))Cεmax(1, 2K(W) + Cε)

]
≥ 1

4
µδ
[
Ω(RfΠ2(B)(A))2 − 8K(Π2(W))Cεmax(1, 2K(W) + Cε)

]
=

1

4
µ

20
εK(Π2(W))

Ω(RfΠ2(B)(A))2 − 8K(Π2(W))Cεmax(1, 2K(W) + Cε)

L3/2

µ3/2


×
[
Ω(RfΠ2(B)(A))2 − 8K(Π2(W))Cεmax(1, 2K(W) + Cε)

]
=

10

2
εK(Π2(W))

L3/2

µ3/2
.

Therefore we finally obtain a contradiction since we should have

f
(
Rf

Π2(B̄)
(x̄i)

)
< max

j
f
(
Rf

Π2(B̄)
(āj)

)
,

which is impossible since x̄i should maximize f
(
Rf

Π2(B̄)
(.)
)

among the columns of X̄ and the

āj are among these columns.
Note that in the previous reasoning, we have assumed δ to be in

[
0, 1

2

]
, which is satisfied

if:

Cε <min

−40L3/2 − 16µ3/2CK(W) +

√(
40L3/2 + 16µ3/2CK(W)

)2
+

32µ3C2Ω(Rf
Π2(B)

(A))2

K(Π2(W))

16µ3/2C
,

Cµ3/2Ω(RfΠ2(B)(A))2

K(Π2(W))(40L3/2 + 8Cµ3/2)
,

Ω(RfΠ2(B)(A))2

8K(Π2(W))
, −K(W) +

√
K(W)2 +

Ω(RfΠ2(B)(A))2

8K(Π2(W))


The proof of (B.11) follows from result (B.9). We have

xi = (1− δ′)wl +
∑
k 6=l

γkwk +
∑
i,j

gijwi �wj for some l and 1− δ′ ≥ 1− δ
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so that
∑

k 6=l γk +
∑

i,j gij ≤ δ′ ≤ δ. Hence

‖xi −wl‖2 =

∥∥∥∥∥∥−δ′wl +
∑
k 6=l

γkwk +
∑
i,j

gijwi �wj

∥∥∥∥∥∥
2

≤ 2δ′max
j
‖Π2(W)j‖2

= 2δ′K(Π2(W))

≤ 2δK(Π2(W)),

which gives, when considering the noisy version of X,

‖x̄i −wl‖2 ≤ (‖x̄i − xi) + (xi −wl)‖2 ≤ ε+ 2K(Π2(W))δε for some 1 ≤ l ≤ k.

To conclude the proof, we use the fact that

ε+ 2K(Π2(W))δε ≤ ε

1 +
40K(Π2(W))2

Ω(RfΠ2(B)(A))2 −M2

L3/2

µ3/2

 = Ĉε,

where M2 is a constant6 chosen such that M2 > 8K(Π2(W))Cεmax(1, 2K(W) +Cε) , which
requires

Cε <
M2

8K(Π2(W))

and

Cε < −K(W) +

√
K(W)2 +

M2

8K(Π2(W))
.

Theorem B.5 (Robustness of SNPALQ when applied on LQ mixings). Let

X̄ = Π2(W)H + N ∈ Rm×n

be an (ε, r)-LQ near-separable mixing (Definition 1.4) with

αΠ2(W)(W) > 0 and βLQΠ2(W)(W) > 0.

Let f satisfy Assumption 2.1, and let
(B.13)

Ĉε <min

−40L3/2 − 16µ3/2ĈK(W) +

√(
40L3/2 + 16µ3/2ĈK(W)

)2

+
32µ3Ĉ2β

LQ
Π2(W)

(W)2

K(Π2(W))

16µ3/2Ĉ
,

µ3/2ĈβLQ
Π2(W)(W)2

K(Π2(W))(40L3/2 + 8Ĉµ3/2)
,

min(M,βLQ
Π2(W)(W))2

8K(Π2(W))
,

√
K(W)2 +

min(M,βLQ
Π2(W)(W))2

8K(Π2(W))
−K(W)


6The reader might wonder why such a constant M does not appear in SNPALQ robustness proof for linear

mixings. Actually, it was implicitly chosen as M2 = Ω(RfΠ2(B)(A))2/2.
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where

Ĉ = 1 +
40K(Π2(W))2

βLQΠ2(W)(W)2 −M2

L3/2

µ3/2
,

with M a constant7 (the smaller M , the more restrictive the condition on the noise, but the
better the estimation). Furthermore, let us assume that at each iteration of SNPALQ the
following condition is fulfilled:

K
(
Rf

Π2(B̄)
(A)

)
≥ 2GK

RfΠ2(B̄)

(bi)i∈[[s]], (ai � aj) i≤j
i∈[[k]]
j∈[[k]]

, (bi � bj) i≤j
i∈[[s]]
j∈[[s]]

, (ai � bj)i∈[[k]]
j∈[[s]]


 ,

where B contains the columns of W already extracted by SNPALQ and B̄ the corresponding
columns with noise, A contains the remaining columns of W still-to-be extracted, and L <
µG2 is a constant. Then, SNPALQ identifies in r steps the columns of W up to an error
Ĉε. Precisely, denoting K the index set extracted by SNPALQ after r steps, there exists a
permutation π of [[r]] such that:

max
1≤j≤r

∥∥x̄K(j) −wπ(j)

∥∥
2
≤ Ĉε.

Proof. The result follows by induction.
• In the initialization step, B is the empty matrix.
• The induction step is given by Theorem B.4: the B matrix corresponds to the col-

umns of W extracted so far by SNPALQ, while the columns of A the ones still-to-be
extracted. Letting

Ĉ = 1 +
40K(Π2(W))2

βLQ
Π2(W)(W)2 −M2

L3/2

µ3/2

in Theorem B.4, we obtain that if the already extracted columns are at a distance
at most Ĉε of some columns of W (more exactly,

∥∥B̄−B
∥∥

2
≤ Ĉε), then the next

extracted column will be at distance at most Ĉε from a new column of W (that is, a
column of A), provided that ε is small enough.

B.2. Proofs for the Brute Force algorithm (BF).

Definition B.6 (LQ-robust loner). Let X̄ be an (ε, r)-LQ near-separable mixing satisfying
Definition 1.4. Let us denote L the set of indices k ∈ [[n]] such that

f(x̄k − x̄j) ≤ d = εV,(B.14)

7Despite a slight loss of generality, the reader can think of M2 = Ω(RfΠ2(B)(A))2/2 to create a link with
the linear case.
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where

V =
L2

2µαΠ4(W)(W)2
K(X)2Y 2

[
ε(1 + max(1, 2K(X) + ε))2 + 2K(X)Y + 2 max(1, 2K(X)+ε)(ε+K(X)Y )

]
+

3

2
L(4K(X) + ε),

with Y = 1 + max(1,K(X)). We call x̄j a robust loner if

min
h∗∈∆

f(x̄j −Π2(X̄[[n]]\L)h∗) >
L

2
ε2(1 + max(1, 2K(X) + ε))2.

Definition B.7 (Canonical columns). Let X̄ be (ε, r)-LQ near-separable; see Definition 1.4.
We call canonical columns (associated to i ∈ [[r]]), the columns X̄k(i), k(i) ∈ [[n]], of X̄ such
that all the columns of Hk(i) have a single nonzero entry located in their ith row.
Note that by definition of near-separability, there exists at least a canonical column for all i ∈
[[r]]. Moreover, all the canonical columns x̄k(i) associated to i ∈ [[r]] satisfy f(x̄k(i)−wi) <

L
2 ε

2.

Lemma B.8. Let X̄ be (ε, r)-LQ near-separable (Definition 1.4). Considering all the canon-
ical columns, written as X̄K (that is, the canonical columns associated to all i ∈ [[r]]), every
column x̄j of X̄ is such that

min
h∗∈∆

f
(
x̄j −Π2

(
X̄K
)
h∗
)
≤ L

2
ε2(1 + max(1, 2K(X) + ε))2.

Proof. For all h ∈∆, we have:

f
(
x̄j −Π2

(
X̄K
)
h
)
≤ L

2

∥∥x̄j −Π2

(
X̄K
)
h
∥∥2

2

≤ L

2

(
‖x̄j − xj‖2 + ‖xj −Π2(XK)h‖2

+
∥∥(Π2(XK)−Π2

(
X̄K
))

h
∥∥

2

)2
.

Moreover

‖x̄j − xj‖2 + ‖xj −Π2(XK)h‖2 +
∥∥(Π2(XK)−Π2

(
X̄K
))

h
∥∥

2

≤ ε+ ‖xj −Π2(XK)h‖2 + max(ε, 2K(X)ε+ ε2).

Thus,

min
h∗∈∆

f
(
x̄j −Π2

(
X̄K
)
h∗
)
≤ L

2
ε2(1 + max(1, 2K(X) + ε))2.

Lemma B.9. Let X̄ = Π2(W)H + N be (ε, r)-LQ near-separable (Definition 1.4). Let us
denote x̄k(i) any robust loner associated to i ∈ [[r]]. If f(x̄j −wi) > d+ εL(2K(X) + ε) for
some j ∈ [[t]], then f(x̄j − x̄k(i)) > d.
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Proof. We have

f(x̄j − x̄k(i)) = f(x̄j −wi − nk(i))

≥ f(x̄j −wi)− εK(x̄j −wi)L

> d+ εL(2K(X) + ε)− ε(2K(X) + ε)L

= d.

Lemma B.10. Let X̄ = Π2(W)H + N be (ε, r)-LQ near-separable (Definition 1.4). If a
column x̄j is a robust loner, then there is an index i ∈ [[r]] such that

f(x̄j −wi) ≤ d+ εL(2K(X) + ε).

Proof. The result is proved by contraposition. We want to show that

If ∀i ∈ [[r]], f(x̄j −wi) > d+ ε(2K(X) + ε), then x̄j is not a robust loner.

If x̄j is such that ∀i ∈ [[r]], f(x̄j −wi) > d+ εL(2K(X) + ε), then ∀i ∈ [[r]], f(x̄j − x̄k(i)) > d,
with x̄k(i) the canonical columns associated to i; see lemma B.9. As such,denoting X̄K all the
canonical columns, to be a robust loner x̄j must satisfy

min
h∗∈∆

f
(
x̄j −Π2(X̄K)h∗

)
>
L

2
ε2(1 + max(1, 2K(X) + ε))2.

This is however not the case according to Lemma B.8. Thus, by definition, x̄j is not a robust
loner.

Lemma B.11. Let X̄ = Π2(W)H + N be (ε, r)-LQ near-separable (Definition 1.4), i ∈ [[r]]
and x̄k(i) a canonical column associated to i. If, for some k ∈ [[n]], f(x̄k − wi) ≤ d −
3
2εL(2K(X) + ε), then f(x̄k − x̄k(i)) ≤ d.

Proof. We have

f(x̄k − x̄k(i)) = f(x̄k −wi − nk(i))

≤ f(x̄k −wi) +
3

2
εLK(x̄k −wi)

= d− 3

2
εL(2K(X) + ε) +

3

2
εL(2K(X) + ε)

= d

Lemma B.12. Let X̄ = Π2(W)H + N be (ε, r)-LQ near-separable (Definition 1.4). All
the columns x̄j, j ∈ [[n]], with xj =

∑r
k=1 akjwk +

∑r
l=1

∑r
q=l+1 bjlqwl � wq and aij > 1 −√

2d−3εL(4K(X)+ε)
LK(X)2[1+max(1,K(X))]2

for some i ∈ [[r]] satisfy f(x̄j −wi) ≤ d− 3
2εL(2K(X) + ε).

Proof. We want to prove that{
x̄j

∣∣∣∣∣ aij > 1−

√
2d− 3εL(4K(X) + ε)

LK(X)2[1 + max(1,K(X))]2

}
⊆
{

x̄j

∣∣∣∣ f(x̄j −wi) ≤ d−
3

2
εL(2K(X) + ε)

}
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Let us consider a column x̄j ∈
{

x̄j

∣∣∣ aij > 1−
√

2d−3εL(4K(X)+ε)
LK(X)2[1+max(1,K(X))]2

}
. We have (looking

at the noiseless version xj of x̄j) that

f(xj −wj) ≤
L

2
‖xj −wi‖22

=
L

2

∥∥∥∥∥∥wi − aijwi −
r∑
k 6=i

akjwk −
r∑
l=1

r∑
q=l

bjlqwl �wq

∥∥∥∥∥∥
2

2

=
L

2
(1− aij)2

∥∥∥∥∥∥wi −
1

1− aij

 r∑
k 6=i

akjwk +

r∑
l=1

r∑
q=l

bjlqwl �wq

∥∥∥∥∥∥
2

2

.

Moreover ∥∥∥∥∥∥wi −
1

1− aij

 r∑
k 6=i

akjwk +
r∑
l=1

r∑
q=l

bjlqwl �wq

∥∥∥∥∥∥
2

≤ ‖wi‖2 +

∥∥∥∥∥∥ 1

1− aij

 r∑
k 6=i

akjwk +

r∑
l=1

r∑
q=l

bjlqwl �wq

∥∥∥∥∥∥
2

≤ K(X) + max(K(X),K(X)2),

where the second inequality is obtained using 1
1−aij

(∑r
k 6=i akj +

∑r
l=1

∑r
q=l bjlq

)
= 1. There-

fore,

f(xj −wj) ≤
L

2
(1− aij)2K(X)2[1 + max(1,K(X))]2.

To conclude the proof, let us consider the noisy x̄j , we have

f(x̄j −wi) = f(xj + nj −wi)

≤ f(xj −wi) +
3

2
LεK(xj −wi)

≤ L

2
(1− aij)2K(X)2[1 + max(1,K(X))]2 + 3LεK(X)

≤ d− 3

2
εL(2K(X) + ε).

Lemma B.13. Let X̄ be (ε, r)-LQ near-separable (Definition 1.4), J ⊆ [[n]] and x̄k(i) a
canonical column associated to i. If

for some i ∈ [[r]], f(wi −Π2(XJ )h) ≥ µ

2L

2d− 3εL(4K(X) + ε)

K(X)2[1 + max(1,K(X))]2
αΠ4(W)(W)2,

then

f(x̄k(i) −Π2(X̄J )h) ≥ L

2
ε2(1 + max(1, 2K(X) + ε))2.
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Proof. We have

f(x̄k(i) −Π2(X̄J )h) ≥ f(x̄k(i) −Π2(XJ )h)− Lεmax(1, 2K(X) + ε)K(x̄k(i) −Π2(XJ )h)

≥ f(wi −Π2(XJ )h)− LεK(wi −Π2(XJ )h)

− Lεmax(1, 2K(X) + ε) (ε+K(X)[1 + max(1,K(X))])

≥ f(wi −Π2(XJ )h)− LεK(X)[1 + max(1,K(X))]

− Lεmax(1, 2K(X) + ε) (ε+K(X)[1 + max(1,K(X))])

≥ L

2
ε2(1 + max(1, 2K(X) + ε))2.

Lemma B.14 (Extension of [5] – Claim 5.10). All canonical columns are LQ-robust loners.

Proof. Let x̄k(i) be a canonical column associated to i ∈ [[r]]: we have that f(x̄k(i)−wi) ≤
L
2 ε

2. To check whether x̄k(i) is a robust-loner, we must leave out of consideration the columns
x̄k such that f(x̄k − x̄k(i)) ≤ d. This particularly excludes all the columns satisfying

f(x̄k −wi) ≤ d−
3

2
εL(2K(X) + ε),

see Lemma B.11. In particular, only the columns x̄j , j ∈ J with xj =
∑r

k=1 akjwk +∑r
l=1

∑r
q=l+1 bjlqwl�wq and aij ≤ 1−

√
2d−3εL(4K(X)+ε)

LK(X)2[1+max(1,K(X))]2
are taken into account (Lemma

B.12).
Since the `2 distance of wi to the convex hull of Π4(W) is at least αΠ4(W)(W), the distance
between wi and the convex hull of the retained XJ columns and their quadratic product is

at least
√

2d−3εL(4K(X)+ε)
LK(X)2[1+max(1,K(X))]2

αΠ4(W)(W). As for all h ∈ ∆

f(wi −Π2(XJ )h) ≥ µ

2
‖wi −Π2(XJ )‖22 ,

we obtain

f(wi −Π2(XJ )h) ≥ µ

2L

2d− 3εL(4K(X) + ε)

K(X)2[1 + max(1,K(X))]2
αΠ4(W)(W)2.

Thus, f(x̄k(i)−Π2(X̄J )h) ≥ L
2 ε

2(1 + max(1, 2K(X) + ε))2 (see Lemma B.13) and hence x̄k(i)

is a robust loner.

Theorem B.15 (Robustness of BF when applied on LQ mixings). Let X = Π2(W) + N
satisfying Definition 1.4 with ‖ni‖1 ≤ ε for i ∈ [[n]]. Let also ε satisfy

4

√
2

µ
(d+ εL(2K(X) + ε)) < αW(W).

Then, BF with f satisfying Assumption 2.1 identifies the columns of W up to a `2 error of√
2

µ
(d+ εL(2K(X) + ε)).
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Proof. By Lemma B.14, all canonical columns are robust loners. Moreover, Lemma B.10
shows that every robust-loner x̄j satisfies f(x̄j −wi) ≤ d + εL(2K(X) + ε) for some i ∈ [[r]].
As such, identifying the robust loners enables to approximately identify the columns of W.
Since several robust-loners can correspond to the same source, we need to apply a clustering
step to regroup them. This is done easily, as two robust loners x̄j and x̄k correspond to the

same source if and only if they satisfy ‖x̄j − x̄k‖2 ≤ 2
√

2
µ(d+ εL(2K(X) + ε)). In fact,

• If two robust loners x̄j and x̄k correspond to the same source (in the sense that
f(x̄j − wi) ≤ d + εL(2K(X) + ε) and f(x̄k − wi) ≤ d + εL(2K(X) + ε)), they must
satisfy

‖x̄j − x̄k‖2 = ‖x̄j −wi + wi − x̄k‖2
≤ ‖x̄j −wi‖2 + ‖x̄k −wi‖2

≤
√

2

µ

[√
f(x̄j −wi) +

√
f(x̄k −wi)

]
≤ 2

√
2

µ
(d+ εL(2K(X) + ε)).

• If two robust loners satisfy ‖x̄j − x̄k‖2 ≤ 2
√

2
µ(d+ εL(2K(X) + ε)), they must corre-

spond to the same source wi. This follows by contradiction: suppose that x̄j corre-
sponds to a source wi (f(x̄j −wi) ≤ d+ εL(2K(X) + ε)) and x̄j to another source wl,
l 6= i (f(x̄j −wl) ≤ d+ εL(2K(X) + ε)). Then we obtain that:

‖x̄j −wi‖2 ≤
√

2

µ
f(x̄j −wi) ≤

√
2

µ
(d+ εL(2K(X) + ε)), and

‖x̄k −wl‖2 ≤
√

2

µ
f(x̄k −wl) ≤

√
2

µ
(d+ εL(2K(X) + ε)),

from which it can be deduced that

‖x̄j − x̄k‖2 = ‖x̄j −wi + wi −wl + wl + x̄k‖2
≥ ‖wi −wl‖2 − ‖x̄j −wi‖2 − ‖x̄k −wl‖2

≥ αW(W)− 2

√
2

µ
(d+ εL(2K(X) + ε))

> 4

√
2

µ
(d+ εL(2K(X) + ε))− 2

√
2

µ
(d+ εL(2K(X) + ε))

= 2

√
2

µ
(d+ εL(2K(X) + ε)),

which is a contradiction.
Therefore, once the robust-loners are found and the clustering described above performed,
each source can be identified by picking a point from each cluster. The `2-norm error is then

at most
√

2
µ (d+ εL(2K(X) + ε)).
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