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Abstract. In this paper, we consider a class of nonsmooth nonconvex optimization problems whose objective is5
the sum of a block relative smooth function and a proper and lower semicontinuous block separable6
function. Although the analysis of block proximal gradient (BPG) methods for the class of block L-7
smooth functions have been successfully extended to Bregman BPG methods that deal with the class8
of block relative smooth functions, accelerated Bregman BPG methods are scarce and challenging to9
design. Taking our inspiration from Nesterov-type acceleration and the majorization-minimization10
scheme, we propose a block alternating Bregman Majorization-Minimization framework with Extrap-11
olation (BMME). We prove subsequential convergence of BMME to a first-order stationary point12
under mild assumptions, and study its global convergence under stronger conditions. We illustrate13
the effectiveness of BMME on the penalized orthogonal nonnegative matrix factorization problem.14
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1. Introduction. In this paper, we consider the following nonsmooth nonconvex optimiza-18

tion problem19

minimizex=(x1,...,xm) F (x) := f(x) +

m∑
i=1

gi(xi)

subject to xi ∈ Xi for i = 1, . . . ,m,

(1.1)20

where Xi is a closed convex set of a finite dimensional real linear space Ei for i ∈ [m] :=21

{1, 2, . . . ,m}, x can be decomposed into m blocks x = (x1, . . . , xm) with xi ∈ Xi, f is a22

continuously differentiable function, and gi is a proper and lower semicontinuous function23

(possibly with extended values), and Xi ∩ dom gi 6= ∅. We denote X :=
∏m
i=1Xi. We assume24

F is bounded from below throughout the paper.25

1.1. Related works. The composite separable optimization problem (CSOP) (1.1) has26

been widely studied. It covers many applications including compressed sensing [7], sparse27

dictionary learning [1, 35], nonnegative tensor factorization [34, 19], and regularized sparse28

regression problems [11, 25]. When f has the block Lipschitz smooth property (that is, for29
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all i ∈ [m] and fixing the values of xj for j 6= i, the block function xi 7→ f(x) admits an Li-30

Lipschitz continuous gradient), then the nonconvex CSOP can be efficiently solved by block31

proximal gradient (BPG) methods [10, 13, 31, 33]. These methods update each block i, while32

fixing the value of blocks xj for j 6= i, by minimizing over xi ∈ Xi the block Lipschitz gradient33

surrogate function (see [20, Section 4]) as follows34

(1.2) xk+1
i ∈ argmin

xi∈Xi

〈
∇fki (xki ), xi − xki

〉
+

1

2γki
‖xi − xki ‖2 + gi(xi),35

where xki is the value of block i at iteration k, fki (·) denotes the value of the block function xi →36

f(xk+1
1 , . . . , xk+1

i−1 , xi, x
k
i+1, . . . , x

k
m), and γki is a step-size. To accelerate the BPG methods,37

several inertial versions have been proposed, including38

(i) the heavy ball type acceleration methods in [28] that calculate an extrapolation point39

x̄ki = xki +βki (xki−x
k−1
i ), then solving (1.2) by replacing the proximal term 1

2γki
‖xi−xki ‖240

by 1
2γki
‖xi − x̄ki ‖2,41

(ii) the Nesterov-type acceleration methods in [34, 36] that takes the same step as the42

heavy ball acceleration but also replace ∇fki (xki ) in (1.2) by ∇fki (x̄ki ), and43

(iii) the acceleration methods using two extrapolation points in [19, 29] that evaluate the44

gradient ∇fki in (1.2) at an extrapolation point different from x̄ki .45

These methods were proved to have convergence guarantees when solving the nonconvex46

CSOP. The analysis of BPG methods has been extended to Bregman BPG methods [3, 18, 32]47

that replace the proximal term 1
2‖xi − xki ‖2 in (1.2) by a Bregman divergence Dψi

(xi, x
k
i )48

associated with a kernel function ψi (see Definition 2.2) as follows49

(1.3) min
xi∈Xi

〈
∇fki (xki ), xi − xki

〉
+

1

γki
Dψi

(xi, x
k
i ) + gi(xi).50

The Bregman BPG methods can deal with a larger class of nonconvex CSOP in which the block51

function xi 7→ f(x) may not have a Li-Lipschitz continuous gradient, but is a relative smooth52

function (also known as a smooth adaptable function) [9, 22, 14]. Although the convergence53

analysis of BPG methods has been successfully extended to Bregman BPG methods, the54

convergence guarantees of their inertial versions for solving the nonconvex CSOP have not55

been studied much. In fact, to the best of our knowledge, there are only two papers addressing56

the convergence of inertial versions of Bregman BPG methods for solving (1.1), namely [2]57

and [20]. In [2], the authors consider an inertial Bregman BPG method that adds to ∇fki (xki )58

in (1.3) a weak inertial force, αki (x
k
i − x

prev
i ), where αki is some extrapolation parameter and59

xprevi is the previous value of xki . In [20, Section 4.3], the authors introduce a heavy ball type60

acceleration with backtracking. The analysis of this method can be extended to a Nesterov-61

type acceleration with backtracking; however, the back-tracking procedure in [20, Section 4.3]62

for the Nesterov-type acceleration would be quite expensive since the computation of fki (x̄ki )63

and ∇fki (x̄ki ) would be required in the back-tracking process. Furthermore, there are no64

experiments in [2] and [20] to justify the efficacy of the inertial versions for Bregman BPG65

methods.66

BPG and Bregman BPG methods belong to the block majorization minimization frame-67

work [20, 31] that updates one block xi of x by minimizing a block surrogate function of68
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the objective function. In [20, Section 6.2], the matrix completion problem (MCP), which69

also has the form of Problem (1.1), illustrates the advantage of using suitable block surrogate70

functions and the efficacy of TITAN, the inertial block majorization minimization framework71

proposed in [20]. Specifically, each subproblem of TITAN that minimizes the block composite72

surrogate function1 for F (which is formed by summing the Lipschitz gradient surrogate of73

f and a surrogate of gi, see [20, Section 6.2]) has a closed-form solution while each proximal74

gradient step in the BPG method does not. Furthermore, TITAN outperforms BPG for the75

MCP. This motivates us to design an algorithm that allows using surrogate functions of gi to76

replace gi, in contrast to the current Bregman BPG methods which do not change gi in the77

sub-problems; see (1.3).78

1.2. Contribution and organization of the paper. After having introduced some pre-79

liminary notions of the Bregman distances and block relative smooth functions in Section 2,80

we propose in Section 3 a block alternating Bregman Majorization Minimization framework81

with Extrapolation (BMME) that uses Nesterov-type acceleration to solve Problem (1.1) in82

which f is assumed to be a block relative smooth function with respect to (ϕ1, . . . , ϕm); see83

Definition 2.4. This means that the gradient and the Bregman divergence in (1.3) are replaced84

with ∇fki (x̄ki ) and Dϕk
i
(xi, x̄

k
i ), respectively; see Algorithm 3.1. We use a line-search strategy85

proposed in [24] to determine the extrapolation point x̄ki . We remark that the inertial Breg-86

man BPG method proposed in [24], named CoCaIn, is for solving the CSOP with m = 1 while87

BMME is for solving (1.1) with multiple blocks. Furthermore, CoCaIn requires its subprob-88

lem, which is Problem (1.3) with the gradient and the Bregman divergence being replaced89

by ∇fki (x̄ki ) and Dϕk
i
(xi, x̄

k
i ) (note that we can omit the index i as m = 1 for CoCaIn), to90

be solved exactly (in other words, to have a closed-form solution). This requirement would91

be restrictive in applications where the nonsmooth part gi is nonconvex and does not allow92

a closed form solution for the subproblem. In contrast, BMME employs surrogate functions93

for gi, i ∈ [m], that may lead to closed-form solutions for its subproblem, see an example in94

Section SM3. We note that CoCaIn requires gi(·) + α/2‖ · ‖2 to be convex for some constant95

α ≥ 0 (see [24, Assumption C]) while BMME requires xi 7→ ui(xi, yi) to be convex for any96

yi ∈ Xi, where ui(·, ·) is a surrogate function of gi (see Definition 3.1). And as such, our analy-97

sis may allow a larger class of gi than CoCaIn since ui with ui(xi, yi) = gi(xi) +α/2‖xi− yi‖298

is a surrogate function of gi. It is important noting that the convexity assumption for the99

surrogate of gi allows BMME to use stepsizes that only depend on the relative smooth con-100

stants of f . In contrast, CoCaIn needs to start with an initial relative smooth constant that101

linearly depends on the value of α that makes gi(·) + α/2‖ · ‖2 convex. This initial relative102

smooth constant could be very large and lead to a very small stepsizes which results in a slow103

convergence. To illustrate this fact, we provide an experiment in Section SM3 to compare the104

performance of BMME and CoCaIn on the matrix completion problem.105

In Section 4, we prove subsequential convergence of the sequence generated by BMME to a106

first-order stationary point of (1.1) under mild assumptions, and prove the global convergence107

under stronger conditions. Furthermore, the analysis in [24] does not consider the subse-108

1It is worth noting that, in general, when TITAN uses Bregman surrogate functions for f , it does not change
gi in the subproblems, see [20, Section 4.3].
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quential convergence but only proves the global convergence for F satisfying the Kurdyka-109

 Lojasiewicz (KL) property [21], and under the assumption that the domains of the kernel110

functions are the full space. In our convergence analysis, we assume that every limit point111

x∗ of the generated sequence by BMME satisfying the condition that x∗i lies in the interior112

of the domain of xi 7→ ϕi(x
∗
1, . . . , x

∗
i−1, xi, x

∗
i+1, x

∗
m) for i ∈ [m]. This assumption is naturally113

satisfied when the ϕi’s have a full domain or X ⊂ int domϕi. For example, the feasible set114

X = {x : xi ∈ Rdi , xi ≥ ε > 0} (that is, each component of xi is lower bounded by a posi-115

tive constant ε) and the Burg entropy ϕi(x) = −
∑di

j=1 log xij satisfy our assumption; see for116

example the perturbed Kullback-Leibler nonnegative matrix factorization in [18]. We then117

prove subsequential convergence without the assumption that F satisfies the KL property, and118

prove global convergence (that is, the whole generated sequence converges from any feasible119

initial point) with this assumption.120

In Section 5, we apply BMME to solve a penalized orthogonal nonnegative matrix factor-121

ization problem (ONMF). We conclude the paper in Section 6.122

2. Preliminaries: Bregman distances and relative smoothness. In this section, we pres-123

ent preliminaries of Bregman distances and relative smoothness. We adopt [14, Definition 2.1]124

to define a kernel generating distance which, for simplicity, we refer to as “kernel function”.125

Definition 2.1 (Kernel generating distance). Let C be a nonempty, convex and open subset126

of Ei. A function ψ : Ei → R̄ := (−∞,+∞] associated with C is called a kernel generating127

distance if it satisfies the following:128

(i) ψ is proper, lower semicontinuous and convex with domψ ⊂ C̄, where C̄ is the closure of129

C, and dom ∂ψ = C.130

(ii) ψ is continuously differentiable on int domψ ≡ C.131

Let us denote the class of kernel generating distances by G(C).132

Definition 2.2. Given ψ ∈ G(C), we define Dψ : domψ× int domψ → R+ as the Bregman133

divergence associated with the kernel function ψ as follows134

Dψ(xi, yi) := ψ(xi)− ψ(yi)− 〈∇ψ(yi), xi − yi〉 .135136

Definition 2.3 ((L, l)-relative smooth function). Given ψ ∈ G(C), let φ : Ei → (−∞,+∞]137

be a proper and lower semicontinuous function with domψ ⊂ domφ, which is continuously138

differentiable on C = int domψ. We say φ is (L, l)-relative smooth to ψ if there exist L > 0139

and l ≥ 0 such that for any xi, yi ∈ C,140

(2.1) φ(xi)− φ(yi)− 〈∇φ(yi), xi − yi〉 ≤ LDψ(xi, yi),141

and142

(2.2) − lDψ(xi, yi) ≤ φ(xi)− φ(yi)− 〈∇φ(yi), xi − yi〉 .143

Whenever φ is convex, we may take l = 0 and Definition 2.3 recovers [22, Definition 1.1]. In144

the case l = L, Definition 2.3 recovers [14, Definition 2.2].145

Given a function f : E→ (−∞,+∞], for each i ∈ [m] and any fixed yj for j 6= i, we define146

a block function f(·, y6=i) : Ei → (−∞,+∞] by147

(2.3) xi 7→ f(xi, y6=i) := f(y1, . . . , yi−1, xi, yi+1, . . . , ym).148
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Definition 2.4 (Block relative smooth function). We say that f : E→ (−∞,+∞] is a block149

relative smooth function with respect to (ϕ1, . . . , ϕm), where f is continuously differentiable150

on C = int domϕ1 = · · · = int domϕm and domϕ1 = . . . = domϕm ⊂ dom f , if, for any151

y ∈ domϕi we have ϕi(·, y6=i) is a kernel generating function and the function f(·, y6=i) is a152

(L
y6=i

i , l
y6=i

i )-relative smooth to ϕi(·, y6=i), where (L
y6=i

i , l
y6=i

i ) may depend on yj, j 6= i.153

Throughout this paper we will assume the following.154

Assumption 1. We suppose C = int domϕ1 = · · · = int domϕm, domϕ1 = . . . =155

domϕm ⊂ dom f , X ∩ domϕ1 6= ∅, the function f in (1.1) is a block relative smooth156

function with respect to (ϕ1, ..., ϕm).157

Let us make an important remark regarding Definition 2.4.158

Flexibility of Definition 2.4.. Let us consider the notion of block relative smoothness in159

Definition 2.4 without l
y 6=i

i , that is, the condition (2.2) is discarded. Similar definitions have160

been considered in [3] and [2]. In [3], the authors first define a multi-block kernel function ψ :161

E1×. . .×Em → R̄ [3, Definition 3.1], and then define multi-block relative smoothness of f with162

respect to this multi-block kernel function with the relative smooth constants (L1, . . . , Lm) [3,163

Definition 3.4]. In [2], the authors define the block relative smoothness of f with respect to164

(ψ1, . . . , ψm), where ψi : E1 × . . .Em → R̄ is an i-th block kernel function [2, Definition 2.1],165

with the relative smooth constants (L1, . . . , Lm) [2, Definition 2.2]. It is crucial to note that166

L1, . . . , Lm in these definitions are constants and the stepsize used in the algorithms proposed167

in [3] and [2] to update each block i is strictly less than 1/Li. In contrast, our Definition 2.4168

allows the block i relative smooth constant to change in the iterative process, that is, L
y 6=i

i and169

l
y6=i

i are not constants but vary with respect to the values of the other blocks yj for j 6= i. This170

flexibility in Definition 2.4 will lead to more flexible choices for the block kernel functions, and171

also leads to variable step-sizes in designing Bregman BPG algorithms for solving the multi-172

block CSOP. In fact, as we will see in Algorithm 3.1, the stepsize to update block i is 1/Lki173

which changes in the course of the iterative process. We will illustrate this crucial advantage174

of Algorithm 3.1 for solving the penalized ONMF problem in Section 5. Furthermore, it is175

important noting that if f satisfies [2, Definition 2.1] or [3, Definition 3.4], then f satisfies176

Definition 2.4 with the corresponding L
y 6=i

i being the constant Li for all i ∈ [m]. However,177

the converse does not hold; see an example in Section 5.1. Hence Algorithm 3.1 applies to a178

broader class of problems, while allowing a more flexible choice of the step-sizes which will179

lead to faster convergence; see Section 5.2.180

3. Block Alternating Majorization Minimization with Extrapolation. Before introducing181

BMME, let us first recall the definition of a surrogate function as follows.182

Definition 3.1. A function ui : Xi ×Xi → R̄ is called a surrogate function of gi : Xi → R̄ if183

the following conditions are satisfied:184

(a) ui(yi, yi) = gi(yi) for all yi ∈ Xi,185

(b) ui(xi, yi) ≥ gi(xi) for all xi, yi ∈ Xi.186

The approximation error is defined as hi(xi, yi) := ui(xi, yi)− gi(xi).187

For example, ui(xi, yi) = gi(xi) + α
2 ‖xi − yi‖

2, where α is a nonnegative constant, is always188

a surrogate function of gi. In this case, hi(xi, yi) = α
2 ‖xi − yi‖2. We refer the readers to189

[20, 31, 23] for more examples.190
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Denote xk,0 = xk and

xk,i = (xk+1
1 , . . . , xk+1

i , xki+1, . . . , x
k
m).

For notation succinctness, we denote ϕki (·) := ϕi(·, xk,i−16=i ), Lki := L
xk,i−1
6=i

i , and lki := l
xk,i−1
6=i

i .191

We can now introduce our BMME algorithm; see Algorithm 3.1. In particular, at iteration192

k, for each block i, BMME chooses a surrogate function ui of gi such that xi 7→ ui(xi, yi) is193

convex (as mentioned in the introduction, this condition is satisfied by the requirement that194

gi(·)+α/2‖ ·‖2 is convex for some constant α ≥ 0 of [24]) and computes an extrapolated point195

x̄ki = xki + βki (xki − x
k−1
i ) ∈ int domϕki , where βki is an extrapolation parameter satisfying196

Dϕk
i
(xki , x̄

k
i ) ≤

δiL
k−1
i

Lki + lki
Dϕk−1

i
(xk−1i , xki ),197

for some δi ∈ (0, 1). BMME then updates xk,i by198

xk,ii ∈ argmin
xi∈Xi

{
LkiDϕk

i
(xi, x̄

k
i ) +

〈
∇if(x̄ki , x

k,i−1
6=i ), xi

〉
+ ui(xi, x

k
i )

}
= argmin

xi∈Ei

{
LkiDϕk

i
(xi, x̄

k
i ) +

〈
∇if(x̄ki , x

k,i−1
6=i ), xi

〉
+
(
ui(xi, x

k
i ) + IXi(xi)

)}
,

199

where IXi is the indicator function of Xi. We make the following standard assumption for200

{xk}, see for example [14, Assumption C]. Note that the initial points x−1 and x0 are chosen201

in the interior domain of ϕi, i ∈ [m].202

Assumption 2. We have xk ∈ int domϕi, i ∈ [m].203

Assumption 2 is naturally satisfied when the domain of ϕi is full space. See [14, Lemma204

3.1] and [14, Remark 3.1] for a sufficient condition that ensures (3.2) to produce xk+1
i ∈205

int domϕki , which implies that Assumption 2 holds.206

Choice of the extrapolation parameters.. BMME needs to adequately choose the extrapola-207

tion parameters βki ’s. Let us mention some special choices.208

When xi 7→ f(xi, y6=i) admits an L
y 6=i

i -Lipschitz continuous gradient, that is, ϕ(·, y6=i) =209
1
2‖ · ‖

2, Condition (3.1) becomes210

(βki )2‖xki − xk−1i ‖2 ≤
δiL

k−1
i

Lki + lki
‖xki − xk−1i ‖2.211

Therefore, we can choose any βki such that βki ≤
√

δiL
k−1
i

Lk
i +l

k
i

. Moreover, if f(·, y6=i) is convex, we212

can take lki = 0 and hence we can choose any βki ≤
√

δiL
k−1
i

Lk
i

.213

In general, [24, Lemma 4.2] showed that if the symmetry coefficient of ϕki , which is defined214

by inf
{D

ϕk
i
(xi,yi)

D
ϕk
i
(yi,xi)

: xi, yi ∈ int domϕki

}
, is positive then, for a given215

κ =
δiL

k−1
i

Lki + lki
Dϕk−1

i
(xk−1i , xki )/Dϕk

i
(xk−1i , xki ) > 0,216
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Algorithm 3.1 BMME

1: Choose x−1, x0 ∈ int domϕi, δi ∈ (0, 1), and set k = 0. Let ui be a surrogate function of
gi such that xi 7→ ui(xi, yi) is convex for any yi ∈ Xi.

2: repeat
3: for i = 1, ...,m do
4: Compute an extrapolation parameter βki such that

(3.1) Dϕk
i
(xki , x̄

k
i ) ≤

δiL
k−1
i

Lki + lki
Dϕk−1

i
(xk−1i , xki ),

where x̄ki = xki + βki (xki − x
k−1
i ) ∈ int domϕki .

5: Update xk,i by

xk+1
i ∈ argmin

xi∈Xi

{
LkiDϕk

i
(xi, x̄

k
i ) +

〈
∇if(x̄ki , x

k,i−1
6=i ), xi

〉
+ ui(xi, x

k
i )

}
.(3.2)

6: end for
7: k ← k + 1.
8: until Stopping criterion.

there always exists γki > 0 such that the following condition is satisfied for all βki ∈ [0, γki ]217

(3.3) Dϕk
i
(xki , x̄

k
i ) ≤ κDϕk

i
(xk−1i , xki ),218

which is equivalent to the condition (3.1). Therefore, βki can be determined by a line search219

as follows. At each iteration, we initialize βki =
νk−1
i −1
νki

, where νki = 1
2

(
1 +

√
1 + 4(νk−1i )2

)
220

and ν0i = 1 as in Nesterov [26], and, while the inequality (3.1) does not hold, we decrease βki221

by a constant factor ηi ∈ (0, 1), that is, βki ← βki ηi.222

Before proceeding to the convergence analysis, we make an important remark: the relative223

smoothness constants Lki and lki in Algorithm 3.1 are assumed to be known at the moment of224

updating xki . In case these values are unknown (or their known lower/upper bounds are too225

loose), we can employ the convex-concave backtracking strategy as in the algorithm CoCaIn226

BPG proposed in [24, Section 3.1] to determine these values as well as the extrapolation pa-227

rameter βki . The upcoming convergence analysis would be similar in that case. In Section SM3,228

we consider the matrix completion problem (MCP) which has the form of Problem (1.1) with229

m = 1, and we illustrate BMME with the backtracking strategy on this problem when the230

values of the relative smooth constants are too small/large. The experiment presented in Sec-231

tion SM3 on the MCP shows the backtracking strategy significantly improves the performance232

of BMME, and also outperforms CoCaIn BPG. However, to simplify the presentation, we will233

only consider the convergence analysis of BMME for solving the multi-block Problem (1.1)234

when the relative smooth constants are assumed to be known.235
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4. Convergence analysis. In this section, we study the subsequential convergence of236

BMME under standard assumptions, and the global convergence under stronger conditions.237

For our upcoming analysis, we need the following first-order optimality condition of (1.1): x∗238

is a first-order stationary point of (1.1) if239

(4.1) 〈p(x∗), x− x∗〉 ≥ 0 for all x ∈ X and for some p(x∗) ∈ ∂F (x∗).240

As f is continuously differentiable as defined in Assumption 1, ∂F (x∗) = {∂x1F (x∗)} × . . .×241

{∂xmF (x∗)}, where ∂F (x∗) is the limiting-subdifferential of F at x∗, see Definition A.1 in242

Appendix A. Therefore, (4.1) is equivalent to243

(4.2) 〈pi(x∗), xi − x∗i 〉 ≥ 0 for all xi ∈ Xi, for some pi(x
∗) ∈ ∂xiF (x∗) for i ∈ [m].244

If x∗ is in the interior of X or Xi = Ei then (4.1) reduces to the condition 0 ∈ ∂F (x∗), that245

is, x∗ is a critical point of F .246

4.1. Subsequential convergence. The following theorem presents the subsequential con-247

vergence of the sequence generated by Algorithm 3.1 under an additional assumption on the248

surrogate function of gi.249

Assumption 3. (A) For i ∈ [m], the surrogate function ui(·, ·) of gi used in (3.2) in250

Algorithm 3.1 satisfies that xi 7→ ui(xi, yi) is convex.251

(B) For i ∈ [m], ui(xi, yi) is continuous in yi and lower semicontinuous in xi.252

(C) For i ∈ [m], given yi ∈ Xi, there exists a function xi 7→ h̄i(xi, yi) such that h̄i(·, yi)253

is continuously differentiable at yi and ∇xi h̄i(yi, yi) = 0, and the approximation error254

xi 7→ hi(xi, yi) := ui(xi, yi)− gi(xi) satisfies255

(4.3) hi(xi, yi) ≤ h̄i(xi, yi) for all xi ∈ Xi.256

For example, if gi(·)+ α
2 ‖ ·‖

2 is convex for some constant α ≥ 0 then the surrogate ui(xi, yi) =257

gi(xi) + α
2 ‖xi − yi‖

2 satisfies Assumption 3 with h̄i(xi, yi) = hi(xi, yi) = α
2 ‖xi − yi‖

2. More258

examples can be found in [20].259

Theorem 4.1. Let {xk} be the sequence generated by Algorithm 3.1, and let Assumptions260

1-3 be satisfied. The following statements hold.261

A) For k = 0, 1, ... we have262

(4.4) F (xk,i) ≤ F (xk,i−1)− LkiDϕk
i
(xki , x

k+1
i ) + δiL

k−1
i Dϕk−1

i
(xk−1i , xki ).263

B) If there exists a positive number L such that2 mink,i L
k
i ≥ L, we have264

(4.5)
+∞∑
k=0

m∑
i=1

Dϕk
i
(xki , x

k+1
i ) < +∞.265

2This is a standard assumption in analysing inertial block coordinate methods, see e.g., [34, Assumption 2],
[36, Assumption 2], [19, Assumption 3] for similar assumptions when f is a block Lipschitz smooth function.
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C) Assume that ∇xiϕi(·, y6=i) for i ∈ [m] is continuous in y6=i, {Lki } for i ∈ [m] and266

{xk} are bounded3, and {ρki } for i ∈ [m] is bounded from below by ρ > 0, where267

ρki is the modulus of the strong convexity of ϕki . If x∗ is a limit point of {xk} and4268

x∗i ∈ int domϕi(·, x∗6=i), then x∗ is a first-order stationary point of Problem (1.1).269

Proof. A) Since xk+1
i is a solution to the convex problem (3.2), it follows from [27, Theorem270

3.1.23] that for every xi ∈ Xi we have271 〈
Lki (∇ϕki (xk+1

i )−∇ϕki (x̄ki )) +∇f(x̄ki , x
k,i−1
6=i ), xi − xk+1

i

〉
+ui(xi, x

k
i ) ≥ ui(xk+1

i , xki ).

(4.6)272

By choosing xi = xki , we obtain273 〈
Lki (∇ϕki (xk+1

i )−∇ϕki (x̄ki )) +∇f(x̄ki , x
k,i−1
6=i ), xki − xk+1

i

〉
+ui(x

k
i , x

k
i ) ≥ ui(xk+1

i , xki ).

(4.7)274

Substituting ui(x
k+1
i , xki ) ≥ gi(x

k+1
i ) and ui(x

k
i , x

k
i ) = gi(x

k
i ) into this inequality gives275 〈

Lki (∇ϕki (xk+1
i )−∇ϕki (x̄ki )) +∇f(x̄ki , x

k,i−1
6=i ), xki − xk+1

i

〉
+ gi(x

k
i ) ≥ gi(xk+1

i ).276

On the other hand, since f is a block relative smooth function, we have277

f(xk,i) ≤ f(x̄ki , x
k,i−1
6=i ) + 〈∇f(x̄ki , x

k,i−1
6=i ), xk+1

i − x̄ki 〉+ LkiDϕk
i
(xk+1
i , x̄ki ),278

and279

f(x̄ki , x
k,i−1
6=i ) + 〈∇f(x̄ki , x

k,i−1
6=i ), xki − x̄ki 〉 ≤ f(xk,i−1) + lkiDϕk

i
(xki , x̄

k
i ),280

By summing the three inequalities above, we obtain281

F (xk,i) ≤ F (xk,i−1) + Lki

〈
∇ϕki (xk+1

i )−∇ϕki (x̄ki ), xki − xk+1
i

〉
+LkiDϕk

i
(xk+1
i , x̄ki ) + lkiDϕk

i
(xki , x̄

k
i ).

(4.8)282

Moreover, we have283

Lki

〈
∇ϕki (xk+1

i )−∇ϕki (x̄ki ), xki − xk+1
i

〉
+ LkiDϕk

i
(xk+1
i , x̄ki )

= −LkiDϕk
i
(xki , x

k+1
i ) + LkiDϕk

i
(xki , x̄

k
i ),

(4.9)284

3It follows from Inequality (4.4) that if F has bounded level sets then {xk} is bounded.
4As mentioned in the introduction, this condition is satisfied when ϕi has full domain or X ⊂ int domϕi
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Therefore, we obtain285

F (xk,i) ≤ F (xk,i−1)− LkiDϕk
i
(xki , x

k+1
i ) +

(
Lki + lki

)
Dϕk

i
(xki , x̄

k
i )

≤ F (xk,i−1)− LkiDϕk
i
(xki , x

k+1
i ) + δiL

k−1
i Dϕk−1

i
(xk−1i , xki ),

(4.10)286

where the second inequality holds by (3.1). This implies A).287

B) Summing (4.4) over i = 1, ..,m gives288

(4.11) F (xk+1) ≤ F (xk)−
m∑
i=1

LkiDϕk
i
(xki , x

k+1
i ) +

m∑
i=1

δiL
k−1
i Dϕk−1

i
(xk−1i , xki ).289

By summing up this inequality from k = 0 to K − 1, we obtain290

F (xK) +
m∑
i=1

δiL
K−1
i DϕK−1

i
(xK−1i , xKi ) +

K−1∑
k=0

m∑
i=1

(1− δi)LkiDϕk
i
(xki , x

k+1
i )

≤ F (x0) +
m∑
i=1

δL−1i Dϕ−1
i

(x−1i , x0i ),

291

which gives the result.292

C) Let x∗ be a limit point of {xk}. There exists a subsequence {xkn} of {xk} converging293

to x∗. We have Dϕk
i
(xki , x

k+1
i ) ≥ ρki

2 ‖x
k
i −x

k+1
i ‖2 since ϕki is ρki -strongly convex. Together with294

the assumption ρki ≥ ρ > 0 and (4.5) we have ‖xk − xk+1‖ converges to 0. Hence, {xkn+1}295

and {xkn−1} converge to x∗. Substituting xi = x∗i and k = kn into (4.6) gives296 〈
Lkni (∇ϕkni (xkn+1

i )−∇ϕkni (x̄kni )) +∇f(x̄kni , x
kn,i−1
6=i ), x∗i − x

kn+1
i

〉
+ui(x

∗
i , x

kn
i ) ≥ ui(xkn+1

i , xkni ).

(4.12)297

By taking n→ +∞, we have298

(4.13) lim sup
n→+∞

ui(x
kn+1
i , xkni ) ≤ gi(x∗i ),299

where we have used the boundedness of Lkni , the continuity of ui(xi, ·), ∇ϕi, and ∇f , x∗i ∈300

int domϕi(·, x∗6=i), and the fact that xkn+1 → x∗ as n → +∞. From this and the lower301

semi-continuity of ui(xi, yi), we have302

(4.14) lim
n→+∞

ui(x
kn+1
i , xkni ) = gi(x

∗
i ).303

Choosing k = kn in (4.6) and letting n→ +∞ implies that, for all xi ∈ Xi,304

(4.15) gi(x
∗
i ) ≤ ui(xi, x∗i ) +

〈
∇f(x∗i , x

∗
6=i), xi − x∗i

〉
.305
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Note that ui(xi, x
∗
i ) = gi(xi) + hi(xi, x

∗
i ) and f(·, x∗6=i) is (L∗i , l

∗
i )-relative smooth to ϕ∗i (·) =306

ϕi(·, x∗6=i) for some constant L∗i , l
∗
i . Therefore, from (4.15) we have for all xi ∈ Xi that307

F (x∗) ≤ F (xi, x
∗
6=i) + l∗iDϕ∗i

(xi, x
∗
i ) + hi(xi, x

∗
i )

≤ F (xi, x
∗
6=i) + l∗iDϕ∗i

(xi, x
∗
i ) + h̄i(xi, x

∗
i ),

(4.16)308

where h̄i satisfies Assumption B (3). This implies that x∗i is a minimizer of the following309

problem310

(4.17) min
xi∈Xi

F (xi, x
∗
6=i) + l∗iDϕ∗i

(xi, x
∗
i ) + h̄i(xi, x

∗
i ).311

The result follows the optimality condition of (4.17) and ∇h̄i(x∗i , x∗) = 0.312

4.2. Global convergence. In order to prove the global convergence of Algorithm 3.1, we313

need to make an additional assumption.314

Assumption 4. For every iteration k of Algorithm 3.1, f(·, xk,i−16=i ) is relative smooth with315

respect to ϕki with constants (Lki , l
k
i ) for i ∈ [m]. We will assume the following:316

(A) There exist a positive integer number N , and Li, L̄i > 0 such that317

• Li ≤ mink≥N L
k
i ≤ maxk≥N L

k
i ≤ L̄i and δi < Li/L̄i;318

• for i ∈ [m], ϕki is ρki - strongly convex and there exists ρ > 0 such that mink≥N ρ
k
i ≥ ρ.319

(B) ∇f and ∇ϕi, for i ∈ [m], are Lipschitz continuous on any bounded subsets of E.320

We remark that Assumption 4 (A) on the boundedness of Lki is considered to be standard in321

the literature of inertial block coordinate methods, see [34, Assumption 2], [36, Assumption 2],322

[19, Assumption 3] for similar assumptions when considering block Lipschitz smooth problems.323

Assumptions 4 (B) is naturally satisfied when f and ϕi are twice continuously differentiable.324

The global convergence of Algorithm 3.1 now can be stated for F satisfying the KL prop-325

erty, see Definition A.3 in Appendix A.326

Theorem 4.2. Assume that Assumptions 1 to 4 hold. Let {xk} be the sequence generated327

by Algorithm 3.1. We further assume that (i) {xk} is bounded, (ii) for any xi, yi in a bounded328

subset of Xi if si ∈ ∂xi(IXi(xi) + ui(xi, yi)), there exists ξi ∈ ∂(IXi(xi) + gi(xi)) such that329

‖ξi − si‖ ≤ Ai‖xi − yi‖ for some constant5 Ai, and (iii) F satisfies the KL property at any330

point x∗ ∈ dom ∂F. Then the whole sequence {xk} converges to a critical point Φ(x) =331

F (x) +
∑m

i=1 IXi(xi).332

Proof. Consider the following auxiliary function333

Φγ(x, y) =

Φ(x) +

m∑
i=1

γiDϕi

(
(x1, . . . , xi−1, yi, . . . , ym), (x1, . . . , xi, yi+1, . . . , ym)

)(4.18)334

5This assumption is naturally satisfied if ui(xi, yi) = gi(xi) (that is, we use gi itself as its surrogate). It is
also satisfied if gi and ui are continuously differentiable, ∇xiui(xi, xi) = ∇gi(xi), and (xi, yi) 7→ ∇xiui(xi, yi)
is Lipschitz continuous on any bounded subsets of Xi × Xi since we then have ∇xiui(xi, yi) − ∇gi(xi) =
∇xi(ui(xi, yi)− ui(xi, xi)), see [20] for some examples that satisfy these conditions.
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where γi = (Li + δiL̄i)/2, and let us denote zk = (xk, xk−1). Then we have Φγ(zk) =335

Φ(xk) +
∑m

i=1 γiDϕk−1
i

(xk−1i , xki ). Here we only need to prove that the sequence {zk} satisfies336

the three conditions H1,H2, and H3 in [8] since the result can be derived by using these337

conditions and the same arguments of the proof for [8, Theorem 2.9].338

(H1) Sufficient decrease condition. It follows from (4.11) that for all k ≥ N + 1339

(4.19)
m∑
i=1

LiDϕk
i
(xki , x

k+1
i ) + F (xk+1) ≤ F (xk) +

m∑
i=1

δiL̄iDϕk−1
i

(xk−1i , xki ).340

Therefore, we have341

Φγ(zk)− Φγ(zk+1) ≥
m∑
i=1

Li − δiL̄i
2

(
Dϕk−1

i
(xk−1i , xki ) +Dϕk

i
(xki , x

k+1
i )

)

≥
m∑
i=1

(Li − δiL̄i)ρi
4

(
‖xk−1i − xki ‖2 + ‖xki − xk+1

i ‖2
)

≥ τ‖zk+1 − zk‖2,

342

where τ = mini(Li − δiL̄i)ρi/4 > 0 due to Assumption 4.343

(H2) Relative error condition. By using the optimal condition of the subproblem (3.2) in344

BMME, we have for all k ≥ N + 1345

sk+1
i := Lki (∇ϕki (x̄ki )−∇ϕki (xk+1

i ))−∇if(x̄ki , x
k,i−1
6=i ) ∈ ∂(IXi(x

k+1
i ) + ui(x

k+1
i , xki )).346

Hence, there exists ξk+1
i ∈ ∂(IXi(x

k+1
i ) + gi(x

k+1
i )) such that347

(4.20) ‖ξk+1
i − sk+1

i ‖ ≤ Ai‖xk+1
i − xki ‖,348

for some Ai. Therefore, we have dk+1
i := ∇xif(xk+1) + ξk+1

i ∈ ∂xiΦ(xk+1) and349 ∥∥∥dk+1
i

∥∥∥ =
∥∥∥∇xif(xk+1) + sk+1

i + ξk+1
i − sk+1

i

∥∥∥ ≤ ∥∥∥Lki (∇ϕki (x̄ki )−∇ϕki (xk+1
i ))

∥∥∥
+
∥∥∥∇xif(xk+1)−∇if(x̄ki , x

k,i−1
6=i )

∥∥∥+
∥∥∥ξk+1
i − sk+1

i

∥∥∥
≤
((
L̄iL

ϕi + Lfi

)(
1 + βki

)
+Ai

)(∥∥∥xk+1
i − xki

∥∥∥+
∥∥∥xki − xk−1i

∥∥∥) ,
350

where the second inequality holds by (4.20), the boundedness of {xk}, and the local Lipschitz351

continuity of ∇ϕi and ∇f . On the other hand, ∂Φγ(zk+1) =
(
∂xΦγ(zk+1), ∂yΦ

γ(zk+1)
)

,352

where353

∂xiΦ
γ(zk+1) = ∂xiΦ(xk+1) +

m∑
j=i+1

γj
(
∇iϕj(xk,j−1)−∇iϕj(xk,j)

)
−

m∑
j=i

γj∇2
ijϕj(x

k,j)(xkj − xk+1
j )

(4.21)354
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and355

∂yiΦ
γ(zk+1) =

i−1∑
j=1

γj
(
∇iϕj(xk,j−1)−∇iϕj(xk,j)

)
−

i∑
j=1

γj∇2
ijϕj(x

k,j)(xkj − xk+1
j ).(4.22)356

Therefore, we can deduce the relative error condition from the results above.357

(H3) Continuity condition. Let x∗ be a limit point of {xk}. Since {xk} is bounded, there358

exists a subsequence {xkn} of {xk} converging to x∗. Similarly to the proof of Theorem 4.1359

(C), we can show that ui(x
kn
i , x

kn−1
i )→ gi(x

∗
i ) as n→ +∞. Therefore, we have360

lim sup
n→+∞

F (xkn) ≤ lim sup
n→+∞

f(xkn) +
m∑
i=1

ui(x
kn
i , x

kn−1
i )

= f(x∗) +
m∑
i=1

gi(x
∗
i ).

(4.23)361

On the other hand, since {Φγ(xk, xk−1)} is non-increasing and bounded below, there exists362

F ∗ = limk→+∞Φγ(xk, xk−1). Moreover, limk→+∞Dϕk−1
i

(xk−1i , xki ) = 0. This implies that363

limk→+∞ F (xk) = limk→+∞Φγ(xk, xk−1) = F ∗. By the uniqueness of the limit, we have364

F ∗ = F (x∗).365

By [8, Theorem 2.9] we have zk converges to a critical point (x∗, x∗) of Φγ . Note that366

∂Φγ(x∗, x∗) = (∂Φ(x∗), 0). The result follows then.367

Convergence rate.. We end this section by a remark on the convergence rate of BMME.368

By using the same arguments of the proof for [6, Theorem 2] we can derive a convergence369

rate for the generated sequence of BMME (see also [2, Theorem 3.14], [3, Theorem 4.7], [19,370

Theorem 3] and [34, Theorem 2.9]). We note that the convergence rate appears to be the same371

in different papers using the technique in [6]. Specifically, suppose a be a constant such that372

ξ(s) = cs1−a, where c is a constant, see Definition A.3. Then if a = 0, BMME converges after373

a finite number of steps; if a ∈ (0, 1/2], BMME has linear convergence; and if a ∈ (1/2, 1),374

BMME has sublinear convergence. Determining the K L exponent a is out of the scope of this375

paper.376

5. Numerical results. In this section, we apply BMME to solve the following penalized377

orthogonal nonnegative matrix factorization (ONMF) [3]378

(5.1) min
U∈Rm×r

+ ,V ∈Rr×n
+

f(U, V ) := 1
2‖X − UV ‖

2
F + λ

2‖Ir − V V
>‖2F ,379

where X ∈ Rm×n
+ is a given input nonnegative data matrix and λ > 0 is a penalty parameter.380

ONMF is equivalent to a clustering problem. In fact, orthogonality (V V > = Ir) and nonneg-381

ativity of V implies that each column of V contains at most one non-zero entry; see [30] and382

the references therein. We implement all of the algorithms in MATLAB R2018a and run the383

experiments on a laptop with 1.8 GHz Intel Core i7 CPU and 16 GB RAM. The codes are384

available from https://github.com/LeThiKhanhHien/BMME.385
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5.1. Kernel functions and block updates of BMME. To implement BMME (Algo-386

rithm 3.1), we use the following kernel functions387

ϕ1(U, V ) =
1

2
‖U‖2F ,

ϕ2(U, V ) = 6λ
4 ‖V ‖

4
F + 1

2ε(U)‖V ‖2F ,
(5.2)388

where ε(U) > 0 may depend on U . Let us choose ε(U) = max{‖U>U‖, 2λ}. Let us show that389

f is block relative smooth with respect to these kernel functions.390

Proposition 5.1. Fixing V , the function f(·, V ) is (L1(V ), l1)-relatively smooth with respect391

to ϕ1(·, V ), with L1(V ) = ‖V V >‖ and l1 = 0. Fixing U , f(U, ·) is (L2, l2)- relatively smooth392

with respect to ϕ2(U, ·), with L2 = 1 and l2 = 1.393

Proof. The first statement is straightforward. Let us prove the second one. From [3,
Proposition 5.1], we have

∇2
V f(U, V )[Z] = U>UZ + 2λ(ZV >V + V Z>V + V V >Z − Z).

Note that394

(5.3)
∣∣∣〈ZV >V + V Z>V + V V >Z,Z

〉∣∣∣ ≤ 3‖V ‖2F ‖Z‖2F .395

Hence 〈
∇2
V f(U, V )[Z], Z

〉
≤
∥∥∥U>U∥∥∥ ‖Z‖2F + 6λ ‖V ‖2F ‖Z‖

2
F .

Furthermore, we have

∇2
V ϕ2(U, V )[Z] = 6λ

(
‖V ‖2FZ + 2 〈V,Z〉V

)
+ max{‖U>U‖, ε}Z,

which implies396

L2

〈
∇2
V ϕ2(U, V )[Z], Z

〉
= max{

∥∥∥U>U∥∥∥ , 2λ} ‖Z‖2 + 6λ
(
‖V ‖2F ‖Z‖

2
F + 2 〈V,Z〉2

)
397

≥
∥∥∥U>U∥∥∥ ‖Z‖2F + 6λ‖V ‖2F ‖Z‖

2
F ≥

〈
∇2
V f(U, V )[Z], Z

〉
.398

399

On the other hand, since max{‖U>U‖, 2λ} ≥ 2λ we have400 〈
∇2
V f(U, V )[Z], Z

〉
+ l2

〈
∇2
V ϕ2(U, V )[Z], Z

〉
401

≥
〈
U>UZ + 2λ(ZV >V + V Z>V + V V >Z), Z

〉
+ 6λ‖V ‖2F ‖Z‖2F ≥ 0,402

403

where we have used (5.3) for the last inequality. The result follows, see [22, Proposition 1.1],404

[4, Proposition 2.6].405

Proposition 5.1 shows that the kernel functions in (5.2) allow f to satisfy Definition 2.4,406

that is, f is block relative smooth with respect to these kernels. This would not hold for the407

block relative smoothness definitions from [2, Definition 2.2] and [3, Definition 3.4]. In fact,408

L1(V ) depends on V so [2, Definition 2.2] does not apply, while ϕ1 and ϕ2 are two different409

functions so [3, Definition 3.4] does not apply either as it requires a sole multi-block kernel410

function to define block relative smoothness.411

In the following we provide closed-form solutions of the sub-problems in (3.2) for the412

penalized ONMF problem.413
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Proposition 5.2. Let ϕ1 and ϕ2 be defined in (5.2). Given Ū , V , and L1, we have

arg min
U≥0

〈
∇Uf(Ū , V ), U

〉
+ L1Dϕ1(·,V )(U, Ū) = max

(
Ū − 1

L1

(
ŪV V > −XV >

)
, 0

)
.

Given V̄ , U , and L2 we have

arg min
V≥0

〈
∇Uf(U, V̄ ), V

〉
+ L2Dϕ2(U,·)(V, V̄ ) =

1

ρ
max(G(V̄ ), 0),

where414

G(V̄ ) = ∇V ϕ2(U, V̄ )− 1

L2
∇V f(U, V̄ )415

= (6λ‖V̄ ‖2F + ε(U))V̄ − 1

L2

(
U>UV̄ − U>X + 2λ(V̄ V̄ >V̄ − V̄ )

)
,416

417

and ρ is the unique real solution of the equation ρ2(ρ − a) = c, where a = ε(U) and c =
6λ‖max(G(V̄ ), 0)‖2, so that ρ has the following closed form

ρ =
a

3
+

3

√
c+
√

∆

2
+
a3

27
+

3

√
c−
√

∆

2
+
a3

27
,

where ∆ = c2 + 4
27ca

3.418

Proof. For the update of U , we have419

arg min
U≥0

〈
∇Uf(Ū , V ), U

〉
+ L1Dϕ1(·,V )(U, Ū)420

= arg min
U≥0

〈
∇Uf(Ū , V ), U

〉
+ L1

(
ϕ1(U, V )− ϕ1(Ū , V )−

〈
∇Uϕ1(Ū , V ), U − Ū

〉)
421

= arg min
U≥0

ϕ1(U, V )−
〈
∇Uϕ1(Ū , V )− 1

L1
∇Uf(Ū , V ), U

〉
422

= max

(
∇Uϕ1(Ū)− 1

L1
∇Uf(Ū , V ), 0

)
423

= max

(
Ū − 1

L1

(
ŪV V > −XV >

)
, 0

)
.424

425

For the update of V , we have426

arg min
V≥0

〈
∇V f(U, V̄ ), V

〉
+ L2Dϕ2(U,·)(V, V̄ )427

= arg min
V≥0

〈
∇V f(U, V̄ ), V

〉
+ L2

(
ϕ2(U, V )− ϕ2(U, V̄ )−

〈
∇V ϕ2(U, V̄ ), V

〉)
428

= arg min
V≥0

ϕ2(U, V )−
〈
G(V̄ ), V

〉
.429

430

Using the same technique as in the proof of [3, Theorem 5.2], we obtain the result.431
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Computational cost of BMME for Penalized ONMF. The updates of BMME for (5.1) are432

given by Proposition 5.2. The main cost of the update of U is to compute U(V V >) and XV >433

which require O((m + n)r2) and O(mnr) operations, respectively. Since r� min(m,n), the434

update of U costs O(mnr) operations, and is linear in the dimensions of the input matrix,435

as most NMF algorithms. The main cost of the update of V is to compute (U>U)V̄ , U>X,436

and V̄ (V̄ >V̄ ) which require O((m + n)r2), O(mnr) and O(nr2) operations, respectively.437

Evaluating D(·, ·) in the backtracking line search to compute the extrapolation parameter438

costs O(nr) operations. In summary, BMME requires O(mnr) operations per iteration. Note439

that, if X is sparse, the cost per iteration reduces to O(nnz(X)r) operations where nnz(X) is440

the number of nonzero entries of X.441

In summary, BMME has the same computational cost per iteration as most NMF algo-442

rithms, requiring O(nnz(X)r) operations per iteration, the main cost being the computation443

of U(V V >), XV >, (U>U)V , and U>X; see [15, Chapter 8] for a discussion.444

Discussion on the assumptions for convergence. One can check that Assumptions 1, 2 and 3445

are satisfied for Problem (5.1). Moreover, Equation (4.4) implies that f(Uk, V k) is upper446

bounded. Hence, to guarantee the boundedness of the generated sequence (as required in447

Theorem 4.1 (C) and Theorem 4.2), a possibility6 is to lower bound the elements of U and448

V by a sufficiently small positive number, that is, Uik ≥ ε and Vkj ≥ ε for some ε > 0. We449

recommend to set ε as the machine precision which we did in our implementation; see [15,450

Section 8.2.5] for a discussion. With this restriction, we also have L1(V ) = ‖V V >‖ ≥ L451

for some positive number L. On the other hand, U 7→ ϕ1(U, V ) is 1-strongly convex and452

V 7→ ϕ2(U, V ) is 2λ-strongly convex. Therefore, all the assumptions for Theorem 4.1 (C) are453

satisfied and as such BMME for solving Problem (5.1) guarantees a subsequential convergence.454

We note that ϕ2 defined in (5.2) does not satisfy Assumption 4 (B), hence BMME using the455

kernel functions in (5.2) does not guarantee a global convergence for this problem.456

5.2. Experiments on synthetic and real data sets. In the following, we compare the457

following algorithms on the penalized ONMF problem:458

• BMME with the kernel functions defined in (5.2). At iteration k and for updating the459

blocks U and V , we find the extrapolation parameter βki for BMME by starting from460

νk, where ν0 = 1 and νk = 1/2(1 +
√

1 + 4νk−1) for k ≥ 1, and then reducing it by a461

factor 0.9 until the condition (3.1) is satisfied.462

• BMM, the non-extrapolated version of BMME.463

• A-BPALM proposed in [3].464

• BIBPA proposed in [2].465

We provide the pseudo codes of A-BPALM and BIBPA in the supplementary mate-466

rial SM4. We use the kernel function ϕ(U, V ) = α
2 ‖U‖

2
F ‖V ‖2F + β

4 ‖V ‖
4
F + ε1

2 ‖U‖
2
F + ε2

2 ‖V ‖
2
F ,467

where α, β, ε1 and ε2 are positive constants, for A-BPALM and BIBPA as proposed in [3,468

Proposition 5.1], and choose the default values for the parameters of A-BPALM and BIBPA469

in the upcoming experiments. All of these algorithms have convergence guarantee for solving470

the penalized ONMF problem (5.1), and have roughly the same computational cost per itera-471

tion, requiring O(nnz(X)r) operations. We will display the evolution of the objective function472

6Other strategies exist, for example adding an upper bound on the norm of the columns of U ; see [15,
Section 8.1.4] for a discussion.
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values with respect to time; the evolution with respect to the iterations being very similar.473

In the following four sections, we compare the four algorithms above on three types of474

data sets: synthetic data sets (Section 5.2.1), facial images (Section 5.2.2), and document data475

sets (Section 5.2.3).476

5.2.1. Synthetic data sets. Let us compare the algorithms on synthetic data sets, as477

done in [3]. We use (m,n, r) = (500, 500, 10) and (m,n, r) = (500, 2000, 10). For each choice478

of (m,n, r), we generate 30 synthetic data sets; each data set is generated as in. Specifically,479

we generate randomly the factor U ∈ Rm×r
+ using the MATLAB command rand. For V to480

have orthogonal rows (that is, V V > = I) and be nonnegative, V cannot have more than one481

non-zero entry per column. We generate an orthogonal nonnegative matrix V ∈ Rr×n
+ with482

a single nonzero entry in each column of V as follows. The position of the nonzero entry is483

picked at random7 (with probability 1/r for each position), then the nonzero entry is generated484

using the uniform distribution in the interval [0, 1], and finally we normalize each row of V .485

We construct a noiseless X = UV . Then we generate a noise matrix R ∈ Rm×n
+ using the486

MATLAB command rand. Finally we add 5% of noise, replacing the noiseless X as follows487

X ← X + 0.05
‖X‖F
‖R‖F

R.488

For each data set, we run each algorithm for 15 seconds and use the same initialization for all489

algorithms, namely the successive projection algorithm (SPA) [5, 17] as done in [3]. We set490

the penalty parameter λ = 1000 in our experiments. We report the evolution of the objective491

function with respect to time in Figure 1. We observe that BMME consistently outperforms492

the other algorithms in term of convergence speed, followed by BMM and A-BPALM. Note493

that the results are very consistent among various runs on different input matrices.494

These experiments illustrate two facts:495

1. Using extrapolation in BMME is useful and accelerates the convergence, as BMME496

outperforms BMM.497

2. The flexibility of Definition 2.4 allows BMME to choose the kernel functions in (5.2)498

that also leads to a significant speedup as BMME outperforms A-BPALM and BIBPA.499

This illustrates our arguments in the paragraph “Flexibility of Definition 2.4” at the500

end of Section 2 (page 5).501

In the next sections, we perform numerical experiments on real data sets to further validate502

these two key observations.503

5.2.2. Facial images. In the second experiment, we compare the algorithms on four facial504

image data sets widely used in the NMF community: CBCL8 (2429 images of dimension 19 ×505

19), Frey9 (1965 images of dimension 28×20), ORL10 (400 images of dimension 92×112), and506

Umist11 (575 images of dimension 92 × 112). We construct X as an image-by-pixel matrix,507

7Two non-zero entries of V in the same position in two different columns means that the two corresponding
data points belong to the same cluster. In expectation, each row of V will have n/r non-zero entries (that is,
there are n/r data points per cluster, in expectation).

8http://cbcl.mit.edu/software-datasets/heisele/facerecognition-database.html
9https://cs.nyu.edu/∼roweis/data.html

10https://cam-orl.co.uk/facedatabase.html
11https://cs.nyu.edu/∼roweis/data.html
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Figure 1. Evolution of the objective functions with respect to the running time for 30 synthetic data sets
with (m,n, r) = (500, 500, 10) (left) and (m,n, r) = (500, 2000, 10) (right), in a log-log scale. The average curve
is plotted in bold.

that is, each row of X is a vectorized facial image. As we will see, this allows ONMF to508

extract disjoint facial features as the rows of V . We set r = 25 and use SPA initialization in509

all runs. We choose the penalty parameter λ = ‖X − U0V0‖2F /r, where (U0, V0) is the SPA510

initialization. We run each algorithm 100 seconds for each data set. The evolution of the511

scaled objective function values, which equal the objective function values divided by ‖X‖2F ,512

with respect to time is reported in Figure 2.513

We observe a similar behavior as for the synthetic data sets: A-BPALM decreases the514

objective faster than BMME during the first milliseconds for these dense data sets12 but, after515

about a hundredth of a second, BMME converges the fastest, followed by BMM. Figures 3516

and 4 display the reshaped rows of V , corresponding to facial features, obtained by the different517

algorithms for the CBCL and ORL data sets, respectively. For the other data sets, Frey and518

Umist; see Section SM1.519

In Figure 3, we observe that the solutions obtained by the 4 algorithms are similar. Because520

BIBPA did not have time to converge (see Figure 2), it generates slightly worse facial features,521

with some isolated pixels, and edges of the facial features being sharper.522

In Figure 4, as BMM and BMME both converged to similar objective function values (see523

Figure 2), they provide very similar facial features; although slightly different. For example,524

the first facial feature of BMME is sparser than that of BMM. A-BPALM and BIBPA were525

not able to converge within the 100 seconds, and hence provide worse facial features. For526

example, the first facial feature is much denser than for BMM and BMME, overlapping with527

other facial features (meaning that the orthogonality constraints is not well satisfied). (A very528

similar observation holds for the Umist data set; see Section SM1.)529

12This does not happen for the sparse document data sets la1, tr11, tr23, tr41 and tr45, but it happens for
the other document data sets (the experiments for these data sets can be found in the supplementary material).
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Figure 2. Evolution of the scaled objective function values with respect to running time on the CBCL (top
left), Frey (top right), Umist (bottom left) and ORL (bottom right) data sets, in loglog scale.

5.2.3. Document data sets. In the third experiment, we compare the algorithms on 12530

sparse document data sets from [37], as in [30]. For such data sets, SPA does not provide a531

good initialization, because of outliers and gross corruptions. Hence we initialize U0 with the532

procedure provided by H2NMF from [16], while V0 is initialized by minimizing ‖X − U0V0‖2F533

while imposing V0 to have a single nonzero entry per column. The penalty parameter λ534

is chosen as before, namely λ = ‖X − U0V0‖2F /r. We run each algorithm 200 seconds for535

each data set. Table 1 reports the clustering accuracy obtained by the algorithms, which is536

defined as follows. Given the true clusters, Ck for k = 1, 2, . . . , r, and the clusters computed537

by an algorithm, C ′k for k = 1, 2, . . . , r (in ONMF, a data point is assigned to the cluster538

corresponding to the largest entry in the corresponding column of V ), the accuracy of the539
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BMM BMME

A-BPALM BIBPA

Figure 3. Display of the rows of the matrix V as facial features, computed by BMM, BMME, A-BPALM,
and BIBPA on the CBCL facial images.

algorithm is defined as540

Accuracy = max
π, a permutation of [r]

1

n

(
r∑

k=1

∣∣∣Ck ∩ C ′π(k)∣∣∣
)
.541

We observe on Table 1 that BMM and BMME provide, on average, better clustering542

accuracies than A-BPALM and BIBPA. In fact, in terms of accuracy, BMM performs similarly543

as BMME as both algorithms were able to converge within the allotted time (see Figure 5 and544

Section SM2). When A-BPALM or BIBPA have a better clustering accuracy, it is only by a545

small margin (less than 4% in all cases), while BMM and/or BMME sometimes outperform A-546

BPALM and BIBPA; in particular, by 6.8% for reviews, 7.2% for sports, 12% for la1, 10.7% for547

classic, and 7.8% for k1b. Interestingly, BMME and BMM actually return the same solutions548

when they have the same accuracy.549

The scaled objective function values with respect to time for the hitech and reviews data550

set are reported in Figure 5; the results for the other data sets are similar, and can be found551
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BMM BMME

A-BPALM BIBPA

Figure 4. Display of the rows of the matrix V as facial features, computed by BMM, BMME, A-BPALM,
and BIBPA on the ORL facial images.

in Section SM2. As before, BMME is the fastest, followed by BMM, A-BPALM and BIBPA552

(in that order).553

6. Conclusion. In this paper, we have developed BMME, a block alternating Bregman554

Majorization Minimization framework with Extrapolation that uses the Nesterov acceleration555

technique, for a class of nonsmooth nonconvex optimization problems that does not require556

the global Lipschitz gradient continuity. We have proved the subsequential and global conver-557

gence of BMME to first-order stationary points; see Theorems 4.1 and 4.2, respectively. We558

have evaluated the performance of BMME on the penalized orthogonal nonnegative matrix559

factorization problem on synthetic data sets, facial images, and documents. The numeri-560

cal results have shown that (1) Using extrapolation improves the convergence of BMME,561

and (2) BMME converges faster than previously introduced the Bregman BPG methods, A-562
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Table 1
Accuracy in percent obtained by the different algorithms on 12 document data sets. The best accuracy is

highlighted in bold.

Data set rank r BMM BMME A-BPALM BIBPA

hitech 6 39.94 39.93 38.98 37.07
reviews 5 73.56 73.53 66.70 66.31
sports 7 50.09 50.13 42.93 42.93
ohscal 10 31.70 31.52 27.25 27.25

la1 6 49.86 53.37 41.32 41.32
la2 6 53.43 52.46 54.83 50.34

classic 4 60.74 61.43 50.70 50.10
k1b 6 79.19 79.19 71.41 71.41
tr11 9 37.44 37.44 37.44 41.30
tr23 6 41.67 41.67 41.67 40.20
tr41 10 38.61 38.61 38.61 35.08
tr45 10 35.51 35.51 35.51 37.82

average 49.31 49.57 45.61 45.09
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Figure 5. Evolution of the scaled objective function values with respect to running time on the hitech (left)
and review (right) data sets, in loglog scale.

BPALM [3] and BIBPA [2], because BMME allows a much more flexible choice of the kernel563

functions and uses Nesterov-type extrapolation. We end the paper by an interesting question564

that we consider as a future research topic: can the cyclic update rule of BMME be extended565

to a randomized/non-cyclic update rule?566
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Appendix A. Preliminaries of nonconvex nonsmooth optimization.569

Let g : E→ R ∪ {+∞} be a proper lower semicontinuous function.570

Definition A.1. (i) For each x ∈ dom g, we denote ∂̂g(x) as the Frechet subdifferential571

of g at x which contains vectors v ∈ E satisfying572

lim inf
y 6=x,y→x

1

‖y − x‖
(g(y)− g(x)− 〈v, y − x〉) ≥ 0.573

If x 6∈ dom g, then we set ∂̂g(x) = ∅.574

(ii) The limiting-subdifferential ∂g(x) of g at x ∈ dom g is defined as follows.575

∂g(x) :=
{
v ∈ E : ∃xk → x, g

(
xk
)
→ g(x), vk ∈ ∂̂g

(
xk
)
, vk → v

}
.576

Definition A.2. We call x∗ ∈ dom F a critical point of F if 0 ∈ ∂F (x∗) .577

We note that if x∗ is a local minimizer of F then x∗ is a critical point of F .578

Definition A.3. A function φ(x) is said to have the KL property at x̄ ∈ dom ∂ φ if there579

exists η ∈ (0,+∞], a neighborhood U of x̄ and a concave function ξ : [0, η) → R+ that is580

continuously differentiable on (0, η), continuous at 0, ξ(0) = 0, and ξ′(s) > 0 for all s ∈ (0, η),581

such that for all x ∈ U ∩ [φ(x̄) < φ(x) < φ(x̄) + η], we have582

(A.1) ξ′ (φ(x)− φ(x̄)) dist (0, ∂φ(x)) ≥ 1.583

dist (0, ∂φ(x)) = min {‖y‖ : y ∈ ∂φ(x)}. If φ(x) has the KL property at each point of dom ∂φ584

then φ is a KL function.585

Many nonconvex nonsmooth functions in practical applications belong to the class of KL586

functions, for examples, real analytic functions, semi-algebraic functions, and locally strongly587

convex functions [12, 13].588
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SUPPLEMENTARY MATERIALS: Block Bregman Majorization Minimization1

with Extrapolation∗2

Le Thi Khanh Hien† , Duy Nhat Phan‡ , Nicolas Gillis† , Masoud Ahookhosh§ , and3

Panagiotis Patrinos¶4

5

SM1. Facial features extracted by the ONMF algorithms on the Frey and Umist facial6

images. Figures SM1, and SM2 display the facial features extracted by BMM, BMME, A-7

BPALM and BIBPA for the Frey and Umist facial images, respectively. In Figure SM1, facial

BMM BMME A-BPALM BIBPA

Figure SM1. Display of the rows of the matrix V as facial features, computed by BMM, BMME, A-BPALM,
and BIBPA on the Frey facial images.

8

features are rather similar, although BMM and BMME obtained smaller objective function9

values.10

In Figure SM2, as BMM and BMME both converged to similar objective function values11

(see Figure 2), they provide very similar facial features. A-BPALM and BIBPA were not able12

to converge within the 100 seconds, and hence provide worse facial features. For example, the13

first facial feature is much denser than for BMM and BMME, overlapping with other facial14

features (meaning that the orthogonality constraints is not well satisfied).15

SM2. Scaled objective function values for document data sets. Figures SM3 and SM416

display the scaled objective function values for the document data sets on the penalized ONMF17

problem. We observe that, except for tr41 and tr45 where A-BPALM is able to compete with18

BMM and BMME, BMM and BMME outperform A-BPALM and BIBPA which performs19

particularly badly on these sparse data sets.20
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BMM BMME A-BPALM BIBPA

Figure SM2. Display of the rows of the matrix V as facial features, computed by BMM, BMME, A-BPALM,
and BIBPA on the Umist facial images.

SM3. Comparison between BMME and CoCaIn on the matrix completion problem.21

In this section, we consider BMME for solving the CSOP (1.1) with m = 1. As m = 1, we22

can omit the index i. In addition, the relative smooth parameters and the kernel generating23

distance do not depend on k. Therefore, the condition (3.1) can be rewritten as follows24

Dϕ(xk, x̄k) ≤ δL

L+ l
Dϕ(xk−1, xk),25

and the update (3.2) becomes26

xk+1 ∈ argmin
x∈X

{
LDϕ(x, x̄k) +

〈
∇f(x̄k), x

〉
+ u(x, xk)

}
.27

In some applications, the constants L, l might be very large, leading to a slow convergence.28

Hence, like CoCaIn [SM4] we incorporate a backtracking line search for L and l into BMME.29

In particular, BMME with backtracking computes the extrapolation point x̄k = xk + βk(xk −30

xk−1) ∈ int domϕ, where βk satisfies the following condition31

Dϕ(xk, x̄k) ≤ δLk−1

Lk−1 + lk
Dϕ(xk−1, xk),32

where lk is updated via backtracking such that33

Df (xk, x̄k) ≥ −lkDϕ(xk, x̄k).34

The update xk+1 is computed by solving the following convex nonsmooth sub-problem35

min
x∈X

{
LkDϕ(x, x̄k) +

〈
∇f(x̄k), x

〉
+ u(x, xk)

}
,36

where Lk is chosen via backtracking such that Lk ≥ Lk−1 and37

Df (xk+1, x̄k) ≤ LkDϕ(xk+1, x̄k).38
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Figure SM3. Evolution of scaled objective function values with respect to time on document data sets.

We now conduct an additional experiment on the following matrix completion problem39

(MCP) to demonstrate the advantages of using proper convex surrogate functions:40

(SM3.1) min
U∈Rm×r,V ∈Rr×n

{
1

2
‖P(A− UV )‖2F + g(U, V )

}
,41

where A ∈ Rm×n is a given data matrix, P(Z)ij is equal to Zij if Aij is observed and is42

equal to 0 otherwise, and g is a regularization term. Here, we are interested in an exponential43
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Figure SM4. Evolution of scaled objective function values with respect to time on document data sets.

This manuscript is for review purposes only.



SUPPLEMENTARY MATERIALS: BLOCK ALTERNATING BREGMAN MAJORIZATION MINIMIZATION
WITH EXTRAPOLATION SM5

regularization g defined by44

g(U, V ) = λ
(∑

ij

(
1− exp(−θ|Uij |)

)
+
∑
ij

(
1− exp(−θ|Uij |)

))
,45

where λ and θ are tuning parameters. We consider the problem (SM3.1) as the form of (1.1)46

with m = 1, X1 = X = Rm×r × Rr×n, f(U, V ) = 1
2‖P(A − UV )‖2F , and g1(U, V ) = g(U, V ).47

We now investigate BMME for solving the problem (SM3.1) by choosing a kernel generating48

distance ϕ given by49

ϕ(U, V ) = c1

(
‖U‖2F + ‖V ‖2F

2

)2

+ c2
‖U‖2F + ‖V ‖2F

2
,50

where c1 = 3 and c2 = ‖P(A)‖F . In [SM3], the authors showed that f is (L, l)-relative smooth51

to ϕ for all L, l ≥ 1. BMME iteratively chooses a convex surrogate function u of g as follows:52

u(U, V, Uk, V k) = g(Uk, V k) + 〈WUk
, |U |〉+ 〈W V k

, |V |〉,53

where WUk

ij = λθ exp(−θ|Ukij |). BMME with backtracking updates (Uk+1, V k+1) by solving54

the following convex nonsmooth sub-problem55

(SM3.2) min
U,V

{
u(U, V, Uk, V k) + 〈P k, U〉+ 〈Qk, V 〉+ Lkϕ(U, V )

}
,56

where P k = ∇Uf(Ūk, V̄ k)− Lk∇Uϕ(Ūk, V̄ k), Qk = ∇V f(Ūk, V̄ k)− Lk∇V ϕ(Ūk, V̄ k), and Lk57

is chosen via a backtracking line search. The solution to the problem (SM3.2) is defined by58

Uk+1 = −τ∗S(P k,WUk
)/Lk and V k+1 = −τ∗S(Qk,W V k

)/Lk, where S(A,B)ij = [|Aij | −59

Bij ]+sign(Aij), and τ∗ is the unique positive real root of60

c1

(
‖S(P k,WUk

)/Lk‖2F + ‖S(Qk,W V k
)/Lk‖2F

)
τ3 + c2τ − 1 = 0.61

Since CoCaIn [SM4] does not use the MM step and requires the weakly convexity of g, it62

is different from BMME for updating (Uk+1, V k+1) and initializing L0. In particular, CoCaIn63

iteratively solves the following nonconvex sub-problem64

min
U,V

{
g(U, V ) + 〈P k, U〉+ 〈Qk, V 〉+ Lkϕ(U, V )

}
,65

which does not have closed-form solutions. We therefore employ an MM scheme to solve66

this sub-problem. For initializing the step-size, CoCaIn requires L0 > λθ2

(1−δ−ε)c2 that might be67

quite large, where ε ∈ (0, 1) such that δ+ε < 1. Unlike CoCaIn, our BMME with backtracking68

can use any L0. The flexibility of the initialization L0 may lead to a faster convergence.69

In the experiment, we set λ = 0.1, θ = 5, δ = 0.99, and l0 = 0.001. We initialize70

L0 = 1.0001 λθ2

(1−δ−ε)c2 with ε = 0.009 for CoCaIn while we choose L0 = 0.01 for BMME with71

backtracking. We carry out the experiment on MovieLens 1M that contains 999, 714 ratings72
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of 6, 040 different users. We choose r = 5 and randomly use 70% of the observed ratings73

for training and the rest for testing. The process is repeated twenty times. We run each74

algorithm 20 seconds. We are interested in the root mean squared error on the test set:75

RMSE =
√
‖PT (A− UV )‖2/NT , where PT (Z)ij = Zij if Aij belongs to the test set and 076

otherwise, NT is the number of ratings in the test set. We plotted the curves of the average77

value of RMSE and the objective function value versus training time in Figure SM5.78

0 5 10 15
Time

2

2.5

3

3.5

O
bj

ec
tiv

e 
va

lu
e

105 movielens1m

CoCaIn
BMME-backtracking
BMME

0 5 10 15
Time

0.75

0.8

0.85

0.9

0.95

1

R
M

S
E

movielens1m

CoCaIn
BMME-backtracking
BMME

Figure SM5. BMME and CoCaIn applied on the MCP (SM3.1). Evolution of the average value of the
RMSE on the test set and the objective function value with respect to time.

We observe that BMME with backtracking converges much faster than CoCaIn and BMME79

without backtracking (BMME). This illustrates the usefulness of properly choosing the convex80

surrogate function and the backtracking line search for the relative smooth constants.81

SM4. Pseudo codes of A-BPALM and BIBPA. We provide the pseudo code of A-82

BPALM (that is, [SM2, Algorithm 2]) in Algorithm SM4.1 and the pseudo code of BIBPA83

(that is, [SM1, Algorithm 1]) in Algorithm SM4.2. Note that the kernel function h in Al-84

gorithm SM4.1 satisfies [SM2, Definition 3.4] and the kernel functions h1, . . . , hm in Algo-85

rithm SM4.2 satisfy [SM1, Definition 2.2].86
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Algorithm SM4.1 A-BPALM

1: Require: x0 ∈ intdomh, ν > 1, L
0
i > 0 for i = 1, . . . ,m, In = (U1, . . . , Um) ∈ Rn×n with

Ui ∈ Rn×ni and the identity matrix In.

2: Let k = 0, p = 0, γ0i ∈
(

0, 1

L
0
i

)
for i = 1, . . . ,m.

3: while some stopping criterion is not met do
4: xk,0 = xk;
5: for i = 1, . . . ,m do
6: repeat

7: set L
k+1
i = νpL

k
i , γk+1

i =
γki
νp , p = p+ 1 and compute

xk,ii ∈ argmin
zi∈Rni

f(xk,i−1) +
〈
∇f(xk,i−1), Ui(zi − xi)

〉
+

1

γk+1
i

Dh

(
xk,i−1 + Ui(zi − xki ), xk,i−1

)
+ gi(zi)

xk,i = xk,i−1 + Ui(x
k,i
i − x

k,i−1
i );

8: until f(xk,i) ≤ f(xk,i−1) +
〈
∇ifxk,i−1), xk,ii − x

k,i−1
i

〉
+ L

k+1
i Dh(xk,i, xk,i−1)

9: pki = p− 1; p = 0;
10: end for
11: xk+1 = xk,m, k = k + 1;
12: end while
13: Ensure: a vector xk.

Algorithm SM4.2 BIBPA

1: Require: x0 ∈ intdomh1, In = (U1, . . . , Um) ∈ Rn×n with Ui ∈ Rn×ni and the identity
matrix In, k = 0.

2: while some stopping criterion is not met do
3: xk,0 = xk;
4: for i = 1, . . . ,m do
5: choose γki and αki satisfying [SM1, Proposition 3.5] and compute

xk,ii ∈ argmin
zi∈Rni

〈
∇if(xk,i−1)− αk

i

γki
(xki − xk−1i ), zi − xki

〉
+

1

γki
D(xk,i−1 + Ui(zi − xki ), xk,i−1) + gi(zi);

xk,i = xk,i−1 + Ui(x
k,i
i − x

k,i−1
i );

6: end for
7: xk+1 = xk,m, k = k + 1;
8: end while
9: Ensure: a vector xk.

[4] M. C. Mukkamala, P. Ochs, T. Pock, and S. Sabach, Convex-concave backtracking for inertial99
Bregman proximal gradient algorithms in nonconvex optimization, SIAM Journal on Mathematics of100
Data Science, 2 (2020), pp. 658–682, https://doi.org/10.1137/19M1298007.101
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