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The Agriculture 4.0, also called Smart Agriculture or Smart Farming, is at the origin of the production of a
huge amount of data that must be collected, stored, and processed in a very short time. Processing this
massive quantity of data needs to use specific infrastructure that use adapted IoT architectures. Our
review offers a comparative panorama of Central Cloud, Distributed Cloud Architectures, Collaborative
Computing Strategies, and new trends used in the context of Agriculture 4.0. In this review, we try to
answer 4 research questions: (1) Which storage and processing architectures are best suited to
Agriculture 4.0 applications and respond to its peculiarities? (2) Can generic architectures meet the needs
of Agriculture 4.0 application cases? (3) What are the horizontal development possibilities that allow the
transition from research to industrialization? (4) What are the vertical valuations possibilities to move
from algorithms trained in the cloud to embedded or stand-alone products? For this, we compare archi-
tectures with 8 criteria (User Proximity, Latency & Jitter, Network stability, high throughput, Reliability,
Scalability, Cost Effectiveness, Maintainability), and analyze the advantages and disadvantages of each of
them.
� 2021 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Nowadays, the Internet of Things (IoT), also formerly named
pervasive Internet, is present in all domains of our daily life and
follows exponential growth. The number of connected devices is
estimated at the horizon of 2022 at 42.5 billion and at the horizon
of 2025 at 75.5 billion1. The global IP traffic is estimated to 333 ZB
per month in 20222 with the need to store and treat this data
(Carnevale et al., 2019). The European Commission has predicted
that 18 billion of 29 billion connected devices will be related to
the IoT in 2022 (Agency, 2020). Cisco in a white paper has
announced that connected devices to the Internet will generate
850 ZB/year by 2021 (Cisco, 2018). It is difficult to precisely deter-
mine the number of connected devices on a world scale, but their
number is about several billion. In addition, McKinsey Global Insti-
tute predicts a total economic impact of IoT and Edge Computing
devices that will reach 11 trillion USD by 2025 (Manyika and Chui,
2015). In the sector of the agriculture, nearly 12 million agricultural
sensors installed globally by 2023 with an increase of 20% annually,
which is predicted by the Business Insider Intelligence Service
(Meola, 2021). Moreover, the smart agriculture business was esti-
mated at USD 13.8 billion in 2020 and is projected to reach USD
22 billion by 2025 at a Compound Annual Growth Rate (CAGR) of
9.8% (Meola, 2021).

Within the IoT era, the type of clients is becoming increasingly
lightweight. IoT devices and the network environment is gradually
changing from high-speed wired networks to unstable wireless
communication. Meanwhile, users’ demand IoT applications is also
shifting to real-time and context-aware service provisioning, mak-
ing the focus moving progressively from the cloud to the edge (Ren
et al., 2017).

The cloud is located within the Internet and is geographically
centralized, is constituted of a few resourceful server nodes, and
is inserted in multi hops in terms of distance among the clients
(Munir et al., 2017). Cloud Computing (CC) is a paradigm widely
available that offers benefits like minimal management effort, con-
venience, rapid elasticity, pay per use, ubiquity (Ai et al., 2018),
easy maintenance, centralized management, and high server uti-
lization (Shi et al., 2016). Furthermore, resources centralization
implies an increase of average network latency, heavy bandwidth
utilization, and high processing delay. Indeed, the tremendous
amount of data handled in a unique server point can create conges-
tion in the cloud servers and backhaul links (El-Sayed et al., 2017).

Nevertheless, the rapid parallel development of the pervasive
intelligent device, ubiquitous network, growth in popularity of vir-
tual and augmented reality, self-driving vehicles, UAVs, social net-
works, networks applications, and services are not without
consequences. As a matter of fact, the network bandwidth and
ps://www.statista.com/statistics/471264/iot-number-of-connected-devices-
ide/
ps://www.statista.com/statistics/499431/global-ip-data-traffic-forecast/
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speed limit performance and effectiveness of cloud computing
especially for real-time and mission-critical applications cannot
be guaranteed. Moreover, cloud computing can be hardly adapted
or applied to various types of technologies and applications scenar-
ios (Zhou et al., 2017). To address these issues, various extensions
of central cloud computing have been proposed by industrial and
academics to move computing and storage at the edge of the net-
work close to users. Fog computing uses network elements
between the central cloud and the edge of network and absolute
edge elements such as microcontrollers close to sensors to process
and store data with a distributed manner close to nodes.

Whereas, with the developments of mobile devices, some new
paradigms close to mobiles users have been proposed. For exam-
ple, cloudlets or micro data centers are geographically implanted
and accessible by means of Wi-Fi protocols; but, this approach
does not always guarantee enough network quality. Manufacturers
of cellular network equipment have proposed the Mobile Edge
Computing (MEC) paradigm that associates fog servers with base
stations to provide services to mobile devices. MEC associated with
5G allows to combine an ultra-low latency network with high
available bandwidth, and processing resources accessible in the
vicinity. The MEC original concept has been extended then to wire-
less networks and consequently renamed in ‘‘Multi-access Edge
Computing” (Wang et al., 2020).

Agriculture has previously undergone two waves of revolution.
The first one was mechanization and the second was called the
green revolution with genetic modifications (Saiz-Rubio and
Rovira-Más, 2020). Since the late 1990s, the digital transformation
of the agriculture in Agriculture 3.0 also called Precision Agricul-
ture has begun with the integration of Geographical Information
System (GIS), Global Positioning Systems (GPS), and the usage of
sensors have invaded agriculture. They allowed the emergency of
image processing, techniques using deep learning, and machine
learning in the field of computer vision. This latter is implemented
to discriminate weed, identify crops, detect diseases,. . .etc. The
production of a large amount of data by agriculture 3.0 has
required the development of big data technologies to process
them, reflecting important changes in various fields of research.
Collected data must be recorded in a specific format in order to dis-
cover patterns, curate errors, eliminate duplicated or inconsistent
data, or solve noise problems (Triantafyllou et al., 2019).

Smart Farming also called Smart Agriculture or Agriculture 4.0
is a domain of IoT in full growth which bring innovative paths to
improve the adaptability, the efficiency, and the resilience of the
agriculture of production systems (Iaksch et al., 2021) boost com-
petitiveness and profit (Triantafyllou et al., 2019), allocate
resources reasonably, and avoid food waste (Zhai et al., 2020;
Wolfert et al., 2017) thanks to the contribution of autonomous con-
text awareness provided by sensors and the capability to execute
autonomous or remote actions (Wolfert et al., 2017). Smart Farm-
ing displaces the strict application from the farm location to affect
related fields such as decision making by farmers, biodiversity,
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supply chains management, food availability and quality, insur-
ance, and research in environment and earth sciences,. . .

Smart Farming is distinct from other domains of the Internet of
Things (IoT) by the observation and action of biological objects (an-
imals or plants). It differs from medical IoT by the fact that there
are no issues related to privacy; but, the confidentiality of data is
related to production processes. Like most areas of the IoT, Wire-
less Sensing and Actuating Network (WSAN) use Low-power and
Lossy Network organized in hierarchical routing to collect data
and actuate devices. Multi-path routing protocols can also be
implemented to balance the data transfer load and conserve the
energy of limited battery life, basic computational skills, unique
communication identifier, and resources-constrained nodes. Due
to the limited battery life, it is difficult and sometimes impossible
to recharge or replace (Debauche et al., 2021). Moreover, energy-
saving and ambient energy techniques must be applied to deal
with the active and inactive operational time and schedule infor-
mation transmission (Triantafyllou et al., 2019). To which objects
can be added like connected agricultural vehicles, milking robots,
Unmanned Aerial Vehicle (UAV) commonly known as drones,
Unmanned Ground Vehicle (UGV) also called robots, mobile
devices such as tablets used to encode punctual observations
(Debauche et al., 2021), and external sources such as public geo-
services (Triantafyllou et al., 2019).

The use of IoT in agriculture 4.0 ranges from family farming as
for example in India on a very small scale with a few low-cost sen-
sors and actuators to very large scales with thousands of expensive
commercial sensors and many connected agricultural pieces of
machineries as in the American mid-west. Smart Farming is char-
acterized as aforementioned by a wide variety of objects that can
produce the highly contrasted amounts of data from few bytes/s
to Gb/s. In addition, the availability of network protocols in rural
areas to transmit this data impact also the type of architecture to
implement. Applications need treatments in real-time and/or at a
different time. The ”real-time” requirements are also very variable
depending on the use case. For instance, remote control of drones
requires reaction times of at most a few milliseconds while the
Variable Rate Fertilizer (VRF) or Variable Spraying (VS) application
aim to optimize nutrients and herbicides application respectively
need reaction time in a range of few milliseconds to few seconds.
The real-time processing for monitoring a herd of cattle is of the
order of a few minutes to a few hours. The data retention time is
very variable and is highly dependent on each use case. For exam-
ple, UAVs produce tremendous quantities of images to transfer to
the cloud in real-time where they must be quickly processed and
stored. They can also be post-processed to extract additional data
in batch processing. While UGVs images lose their value after pro-
cessing and eventually actuating. However, if data is of a special,
new or exceptional nature, it can be stored with a view, for exam-
ple, to improving artificial intelligence algorithms. Other sensors
transmit data only when anomalies are detected while others
transmit at regular intervals a tiny amount of data.

However, the adoption of Smart Farming is hampered by the
lack of models to guide stakeholders on how to implement and
to deploy dense and heterogeneous IoT-based monitoring systems
and manage their interoperability (Triantafyllou et al., 2019). Com-
mercial sensors are very expensive making it impossible for small
farms to implement them (Garcia et al., 2020). In addition, two
trends are currently opposed. That coming from the manufacturers
of agricultural machinery who have developed their ecosystems
and who want to extend the services offered to farmers by attract-
ing them into the captive ecosystems in which they are locked.
Furthermore, another trend is the development of open ecosys-
tems in which farmers can preserve the ownership of their data
and keep control of the processing carried out on this data and of
their use. On one hand, farmers are therefore faced with a dilemma
3

where they are in any case forced to use agricultural equipment
that collects their data against their will; on the other hand, they
want to keep control of their data collected through IoT sensors.
Currently, it is difficult to predict which of these two trends will
take precedence over the other or whether one of the two will
coexist (Wolfert et al., 2017). In this context, both private and pub-
lic researchers can either use generic commercial platforms offered
by cloud players on which they have limited possibilities of adap-
tation or develop their own architecture on the basis of commercial
or free bricks, but with much greater possibilities of adaptation. In
this case, the choice is also delicate, and a bad evaluation of the
constraints can jeopardize the research project.

Due to the recent advances in big data, we present a survey that
provides an overview of the state of the art regarding Smart Farm-
ing. It aims at summarizing parameters that condition the choice of
architecture to collect, process, and store agricultural data. Since
there is a wide variety of use cases, it is important to make an
informed choice when it comes to architecture. In this way, we
address the current gap in the literature with a review of cloud
architecture used in Agriculture 4.0 to collect, process, and store
data to enlighten the reader about the possible choices and the
new trends that emerge. The rest of this paper is structured as fol-
lows: The second section is composed of two parts. In the first part,
we summarize related previous review in the domain and their
contributions, in order to contextualize our contribution to the lit-
erature. In the second part, we identify architectures implemented
in Agriculture 4.0 use cases. In the third section, we describe the
methodology used to identify papers, the conceptual framework
used to analyze the literature, and the criteria used to compare
the selected architectures. In the fourth section, we present archi-
tectures used to collect, process, and store data. We describe suc-
cessively the cloud-centric architectures, the extension of cloud
paradigm, the distributed architecture. In the fifth section, new
trends and futures directions are presented. In the sixth section,
we discuss the future evolution of Agriculture 4.0 to Agriculture
5.0. Finally, the last section concludes this paper with recommen-
dations and perspectives.
2. Related works

We begin our review by identifying the previous review real-
ized in the field of Internet of Things applied to Smart Agriculture
to take stock of the state of art and highlighting aspects that have
not been explored at the present time. In this section, we focus to
achieve two objectives. The first aims to position our work in rela-
tion to the existing literature. The second aims to identify architec-
tures commonly used in the case of applications in Agriculture 4.0.
2.1. Previous reviews

Reviewed papers presented in Table 1 were selected in the
timeframe from January 2017 to July 2021. The major contribution
of each paper was extracted and highlighted to show our contribu-
tion to the literature.

In the following paragraphs, we will draw a panoramic sum-
mary of the existing reviews during the past four years (2017–
2021). In 2017, Ray (Ray, 2017) reviewed throughout his paper
IoT applications and the challenges that have been faced while
IoT deployment to improve farming. Talavera. et al. (Talavera
et al., 2017) reviewed agro-industrial and environmental applica-
tions that are using the Internet of Things (IoT) for monitoring,
control, logistics, and prediction. Tzounis et al. conducted a survey
of IoT technologies in agriculture and the challenges that farmers
face going forward (Tzounis et al., 2017). Elijah et al. identified
the most encountered challenges in the field of IoT applications



Table 1
Summary of previous review achieved on big data management in a context of Smart
Farming.

Major Contribution Reference

Survey of agro-industrial and environmental
solutions for monitoring, control, logistics, and
prediction.

(Talavera et al., 2017)

Diagnosis and analysis of existing IoT deployments
in regards to communication protocols.

(Ray, 2017)

Survey of IoT technologies in agriculture and
highlighted the challenges going forward.

(Tzounis et al., 2017)

Identification of IoT challenges, its application in
smart agriculture, and presentation of trends and
technological innovation

(Elijah et al., 2018)

Review of IoT applications in Precision Agriculture,
evaluation of previous contributions by
researchers, and pathways to future innovation

(Khanna and Kaur,
2019)

Review of IoT deployment in protected agriculture,
identification of its challenges, and prospection
of the new research domain.

(Shi et al., 2019)

Review of existing IoT-based precision agriculture
solutions for further achievement.

(Ruan et al., 2019)

Review, comparison, prospection, and challenges of
wireless communication technologies
applications in the field of Precision Agriculture.

(Feng et al., 2019)

Review, case study, and challenges of WSN in
environmental behavior.

(Shafi et al., 2019)

Review, identification, challenges of current and
future trends of IoT agriculture.

(Ayaz et al., 2019)

Survey of IoTbased agriculture, presentation of
connection between IoT, big data, and cloud
computing, regulation and policies of IoT, and its
application in the field of agriculture.

(Farooq et al., 2019)

Survey of the use of UAVs, an overview of PA, and
investigation of 20 UAV applications.

(Radoglou-
Grammatikis et al.,
2020)

Challenges of IoT-based agriculture architecture, a
summary of existing surveys of smart
agriculture. and classification of threats models,
study, analysis of challenges and future works of
security and privacy of green IoT-based
agriculture.

(Ferrag et al., 2020)

Discuss the role of IoT and big data analysis in
agriculture with an emphasis on the commercial
status of applications and translational research
outcomes.

(Misra et al., 2020)

resent different solutions to address IoT in arable
farming challenges.

(Villa-Henriksen et al.,
2020)

Systematic review presenting how IoT is used with
smart farming

(Navarro et al., 2020)

Methodological review and analysis of IoT
components and their applications in smart
farming.

(Debauche et al., 2021)

Review of emerging technologies towards
agriculture 4.0 and new pathways to agricultural
practitioners.

(Liu et al., 2020)

Review, classification, presentation, comparison,
and challenges of emerging technologies for IoT-
based agriculture.

(Friha et al., 2021)
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in smart agriculture and presented common trends for innovative
ideas (Elijah et al., 2018). In 2019, Ayaz et al. provided a state-of-
art about IoT-based architectures applied in agriculture and identi-
fied present and future trends in the same field of study (Ayaz
et al., 2019). Farooq et al. presented the ingredients of IoT-based
smart farming with used technologies that apply the utilization
of network architecture and protocols; in addition to that, they
provided an overview of the regulations and policies of the use
of IoT in farming regarding security and privacy. They concluded
their study by summarizing the main challenges encountered in
this discipline (Farooq et al., 2019). Feng et al. provided an over-
view of the wireless communication technologies in the precision
agriculture domain. They benchmarked the prospection and chal-
lenges of existing technologies with the regular communication
4

time used (Feng et al., 2019). Shafi et al. conducted a literature
review about IoT-based automation of agriculture along with
Wireless Sensor Network (WSN). These authors presented a case
study based upon two models: 1- a WSN to monitor real-time crop
of health conditions, 2- system-base remote sensing imagery to
classification between healthy and unhealthy yield (Shafi et al.,
2019). In terms of agriculture protection, Shi et al. drew a panora-
mic review during the last decade to address the challenge and
future works to further the research in the field of protected agri-
culture (Shi et al., 2019). Khanna et Kaur called into an evolution-
ary scenario to highlight the most significant impact of IoT in
Precision Agriculture (PA). They evaluated the contribution of their
predecessors and enhanced the challenges to open up a new direc-
tion of inspiration and innovation in IoT applied to PA (Khanna and
Kaur, 2019). Ruan et al. reviewed literature works from 2009 to
2018 to suggest new ideas for folks interested to conduct research
in the field of agriculture IoT, infrastructures, data security, and
data sharing (Ruan et al., 2019). In 2020, two studies have been
carried out about 20 UAV applications that are devoted to either
aerial crop monitoring processes or spraying tasks (Radoglou-
Grammatikis et al., 2020) and about the dilemmas that researchers
must overcome while deploying IoT in the green agriculture
domain (Ferrag et al., 2020). Villa-Henriksen et al. identified differ-
ent challenges encountered during the implementation of IoT in
various applications and proposed different solutions to address
them (Villa-Henriksen et al., 2020). Misra et al. discuss the role
of IoT and big data analysis in Smart Farming (Misra et al., 2020).
In 2021, a recent study conducted by Friha et al. hypothesize the
use, application, classification, and comparison of the most
developed emerging technologies such as Internet of Things (IoT),
Unmanned Aerial Vehicles (UAV), Wireless Technologies, open-
source IoT platforms, Software Defined Networking (SDN),
Network Function Virtualization (NFV) technologies, cloud/fog
computing, and middleware platforms (Friha et al., 2021). In the
same year, Debauche et al. conducted a literature review to
describe the main components of IoT and its applications in the
field of Smart Farming (Debauche et al., 2021).

2.2. Platforms implemented in use cases

We grouped applications into 4 categories: (1) Water Manage-
ment in which we have aggregate all types of water use such as
irrigation and watering animals. (2) Plant Disease and Pest groups
all use cases in plant’s pathologies detection and treatment of plant
pathologies (spraying of fungicides, pesticides, etc). (3) Crop Man-
agement brings together all the use cases relating to cropping
operations: soil management (plowing, fertilizer application), sow-
ing, weeding, and harvesting. (4) Livestock includes everything
related to the breeding of farm animals (nutrition, behavior, dis-
eases, treatments). Table 2 summarizes platform used to imple-
ment use cases in Smart Farming classified following our four
categories.

Garcia et al. give an overview on trends in Smart Irrigation in
which they showed that data is stored in the database or in the
cloud. On 151 reviewed papers, one uses Raspberry Pi, 18 data-
bases, 53 clouds, and 79 are self-developed or not mentioned
(Garcia et al., 2020). Navarro et al. identified 21 Platforms used
in 50 various use cases classified into 5 categories: Artificial Intel-
ligence, Big Data, Machine Learning, Computer Vision, and Other/
Not Identified (Navarro et al., 2020). Jayaraman et al. present
SmartFarmNet, an IoT platform offering effortless integration of
sensors, supporting scalable data analytics, and proposing do-it-
yourself tools to analyze and visualize data (Jayaraman et al.,
2016). Codeluppi et al. describe LoRaFarM a general architecture
modulated depending on the farm’s characteristics and require-
ments (Codeluppi et al., 2020).



Table 2
Summary of cloud platforms, databases mentioned in Smart Farming reviews.

Water Management Plant Diseases & Pest Crop Management Livestock Reference

IoT platform

Thingspeak x (Maureira et al., 2011)
FIWARE x (Rodriguez et al., 2018)
NETPIE x x (NECTEC, 2020)
Ubidots x (Ubidots, 2021)

SmartFarmNET x x (Jayaraman et al., 2016)
Thinger.io x x (Luis Bustamante et al., 2019)

Kaa IoT Platform x x (KaaIoT, 2021)
IBM Watson IoT Platform x x x x (IBM, 2015)

Microsoft Azure IoT Platform x x x (Microsoft, 2021b)
AT&T M2X Cloud x (AT&T, 2021)

Blynk x (Blynk, 2021)
MACQU x (Sigrimis et al., 2002)
ERMES x (Granell et al., 2017)

Agrocloud x x x (Kodati and Jeeva, 2019)
CropInfra x (Pesonen et al., 2014)

SensorCloud x (Corp, 2020)
LoRaFarM x x x (Codeluppi et al., 2020)

Cloud platform
Amazon Web Service x x x x (Amazon, 2021b)

IBM Cloud x x x x (IBM, 2021)
Microsoft Azure x x x x (Microsoft, 2021a)

Integra x x (Souces and I., 2021)

Cloud Database
DynamoDB x x x (Amazon, 2021)

MongoDB Atlas x x x (Mongo, 2021)
Firebase x x x (Google, 2021)

InfluxDB Cloud x x x (Influxdata, 2021)

Local Database
MySQL x (Oracle, 2021)
SQLite x (SQLite, 2021)

PostgreSQL/PostGIS x x (The PostgreSQL Global Development Group, 2021)
Apache Cassandara x (Apache Software Foundation, 2021a)

Apache Druid x x (Apache Software Foundation, 2021b)
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The monitoring of crops particularly more sensitive to them as
saffron is crucial. The DIAS Architecture (Triantafyllou et al., 2019)
uses different ground and leaf sensors to monitor the real-time
24/24 h cultivation process of saffron. This data is transmitted by
LoRaWAN with IPv6 protocol and MQTT-SN protocol to FIWARE’s
context broker. The broker manages all networking devices by
means of sixteen types of messages exchanged following
publish-subscribe model. The FIWARE NGSI API of oversees the
consumption, subscription, and processing of all the information
collected and its publication. Afterward, the data is stored and ana-
lyzed with a random forest algorithm which allows extracting
information about the crop growth and health. Vegetation indexes:
Normalized Difference Index (NDI), Excess Greenness Index (ExG)
are calculated with PiX4D3 image processing tools. Object-based
image analysis (OBIA) is used to recognize weeds or discriminate
species. Finally, collected data are categorized and evaluated accord-
ingly with vegetation index values, moisture level, and plant devel-
oping state by means of the Apache Spark framework for the Big
Data analysis and Waikato Environment (WEKA) a framework spe-
cialized in data mining to produce reports and predictions.

Decision-making is a very important task in the farmers’ activ-
ities but with the amount of data always increasing, they encoun-
ter difficulties on one hand to make proper decision about
agricultural management and on the other hand translate this data
into practical knowledge (Zhai et al., 2020). On the other hand,
there is a need for platforms of the Agricultural Decision Support
System (ADSS) to assist farmers to make precise decisions
evidence-based. For example,Watson Decision Platform for Agri-
3 https://www.pix4d.com/
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culture combines IBM Watson with IoT and Cloud Computing to
detect crop disease from UAV images. It is also possible to optimize
time for crop operations to obtain a better price on trading market.
The second example is Digital Farming System4 takes advantage of
computer vision, cloud computing, and AI to propose a better timing
for corp operations, notify when a crop is infected by any disease.
Smart Irrigation Decision Support System (SIDSS) is composed
on one hand of a set of sensors and a weather station and on the
other hand a DSS based on two machine learning algorithms. Partial
Least Squares Regression (PLSR) to deduct unnecessary variables and
Adaptive Neuro -Fuzzy Inference Systems (ANFIS) used to minimize
estimated errors under a target threshold (Navarro-Hellin et al.,
2016). SIDSS generates planning of water amount and time for irri-
gation. Multi-robot sense-act system (Conesa-Munoz et al., 2016)
is a planner of aerial and ground vehicles which assign tasks to the
most appropriate work units. A Harmony Search Algorithm is used
to optimize plans for UAVs while meta heuristic is running for
ground vehicles.
2.3. Analysis of previous literature

The analysis of existing reviews about smart farming shows
that applications use whether open source or commercial cloud
architecture whether developing specific architecture responding
to their aims or do not describe their storage and processing sys-
tem. The latter represents more than half of the papers and means
that some of the processing architectures remain unknown
because they have never been specifically described and studied.
4 http://prospera.ag/
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Moreover, the fact that further development is being made in
architecture may be the fact that commercial platforms do not
fully address the needs of Agriculture 4.0. This brings us to our
research questions and their respective motivation:

1. Which storage and processing architectures are best suited to
Agriculture 4.0 applications and address its particularities? Moti-
vation: On one hand generic architectures dedicated or not to
IoT are able to address a large number of use cases but not
specifically the needs of Agriculture 4.0 exist. On the other
hand, researchers develop architectures to address specific
issues or requirements of use cases. The selection of an adapted
architecture is crucial for the correct implementation of identi-
fied use cases.
2. Can generic architectures meet the needs of Agriculture 4.0
application cases? Motivation: Agriculture 4.0 has specific
requirements described in the introduction section which can-
not all be addressed by a single classical generic architecture.
A comparison between the pros and the cons of major generic
architecture in the context of agriculture 4.0 is important to
highlight the choice during the conceptualization step.
3. What are the horizontal valuation possibilities that allow the
transition from research to industrialization? Motivation: The
use of architectural solutions which can be for example free
of fees during the research phase but needs a reimplementation
caused by license limitations, the cost of the license in the use
cases budget, etc. The use of products in closed or semi-closed
ecosystems is a barrier to the research valuation.
4. What are the vertical valuation possibilities to move from algo-
rithms trained in the cloud to embedded or autonomous products?
Motivation: The massive collection of data in the cloud allows
to development of complex algorithms that need a large
amount of computing resources to be elaborated. Afterward,
they can be compressed, reduced, optimized in order to be
deployed in embedded devices or divided and establish a col-
laboration between devices and computing resources such as
cloud, fog, etc.

In order to answer these questions, a review of the literature
will make it possible to synthesize the different approaches cur-
rently used, to identify new trends and to consider new lines of
research to be explored.
3. Methodology

In order to address, our first and second research questions, we
achieve a systematic review to identify generic architectures and
combination of architectural elements used by researchers to
implement concrete use cases. Moreover, we attempt also identify
commercial products and existing services/ platforms used to
implement projects in agriculture.
3.1. Systematic review methodology

The research questions outlined at the end of the related work
section has been addressed by combining keywords of the first
group that refers to architectures (i.e. cloud architecture, dis-
tributed architecture, big data, Internet of Things, IoT) and of the
second group contained keywords related to agriculture (i.e. agri-
culture, smart farming, food, agri-food, precision agriculture).

Our methodology is based on 3 consecutive steps: literature
identification, reading literature, and information extraction.

During the first step, we have read and have collected individual
papers based on the achieved of previous papers. We have
reviewed and completed by a systematic survey of white literature
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(full articles and conference papers) from January 2016 to Decem-
ber 2020. In addition, we targeted solely and exclusively papers
written in English and focusing on architecture design have been
considered. Our bibliographic reviewwas limited to the last 5 years
because the rapid development of IoT. The systematic review was
retrieved from the following major bibliographic databases: Sco-
pus (Elsevier), IEEE Xplore Digital Library, Wiley Online Library,
ACM Digital Library, and Springer. These bibliographic databases
have been chosen widely covering relevant bibliography and rele-
vant advanced bibliometric features especially number of citation
and relevant literature suggestion. From these databases 1058
peer-reviewed articles were retrieved. After their screening 55
papers were classified relevant while remaining articles were con-
siderate not relevant and therefore excluded from further reading
and analysis. The high number of excluded papers is due to numer-
ous papers describe i.e. conceptual or theoretic architectures which
were never implemented, experimental architectures that have
been the subject of a single article or that have never been proven
by other research teams. We discard also papers that were not a
directly related Big data and the agricultural sector. Table 3.

In a second step, we included English grey literature (reports,
blogs, magazines, and web-items) into our review using Web of
Science and Google Scholar. Table 4. We discarded papers that
were written in other languages than English, Master and doctoral
dissertation, and duplicated articles gathered from Google Scholar.
Afterward, we have selected literature that has carefully been read
in detail to extract relevant information of research questions. The
extracted information was analyzed and summarized in a concep-
tual framework illustrated in the Fig. 1.

Three ways of treatment of data are possible. The first process
data in real-time (left branch identified by (1) on Fig. 1), this one
is generally not stored except eventually particular or exceptional
data in order to enrich the training database of artificial intelli-
gence algorithms. This way of data treatment is used for example
by robots that inspect a crop, discover a pest, and then eliminate
it. After intervention the value data is near null. The second way
is a mixed way in which data must be processed as quickly as pos-
sible. This one addresses use cases where latency required must be
comprised between few milliseconds to few seconds with data,
which conserves a value during a certain period of time. This latter
justifies its storage according to the use case data management
plan that predicts the time after which the data will be aggregated
and then deleted. This way in identified by (2) on Fig. 1. It
addresses use cases where all data must be processed and then
stored for eventual post-processing for example to estimate trends
of parameters such as the milk quality, volume of palatable species
available in a pasture. The third way is stored data theirs native
format without transformation (Identified by (3) on Fig. 1). This
way is implemented on use cases that do not require real time pro-
cessing or use cases where the amount data is so important, which
makes treatment impossible. In this latter case, data are consumed
by micro services that sample data to exact knowledge. This way is
also employed for data which have a low value or lose their value
so quickly that there is no point in transforming them for long-
term storage. For instance, a UGV identifies and eliminates a pest.
The image of the insect is no longer relevant after its elimination.

3.2. Architecture comparison criteria

In order to compare selected architectures, we chose to select 8
criteria:

(1) User Proximity expresses the necessity to be close to the
user. This criterion is important for applications where privacy
and response time to query are critical. Attribute a value of one
* when privacy is not crucial; ** when the proximity with user is



Table 3
Keywords used for achieved the systematic review.

Area Keywords Related concepts

Agriculture Agriculture, Agricultural e-Agriculture
Agri-Food Agribusiness

Smart Farming Farming
Precision Agriculture,
Precision Farming

Internet of
things

IoT, Internet of Things,
internet-of-things

Big data Big Data Big Data
Data Management Data Management

Architecture Cloud Architecture,
Distributed Architecture

Table 4
Sources of collected literature.

Data source URL

IEEE Xplore Digital Library https://ieeexplore.ieee.org
Scopus https://www.scopus.com
Springer https://link.springer.com/search

Wiley Online Library https://onlinelibrary.wiley.com
Google Scholar https://scholar.google.com
Web of Science https://publons.com/publon

ACM Digital Library https://dl.acm.org

Fig. 1. Conceptual framework of data processing.
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desirable but not crucial for the development of the use case;
*** when the user proximity is the corner stone of the
application.
(2) Latency & Jitter criterion describes the importance for the
architecture to have a minimal latency and jitter. This criterion
is particularly important for use cases where response time to
query in quasi (real time) is required and/or time between data
production and ingestion by the processing and storage archi-
tecture is essential.
(3) Network stability criterion translate the necessity to have a
stable network or if is interruption can be tolerated. Use a value
of * if the use case implemented can tolerate the absence of net-
work during few hours; ** if fewminutes of interruption are tol-
erable; *** is stability of the network is an essential element of
the use case.
7

(4) The high throughput criterion expresses the capability of
the architecture to process quickly a wide amount of data arriv-
ing at high frequency; Use a value of * if the data arrive mostly
at regular intervals; a value of ** if the data arrive in bursts, and
*** if the data arrive continuously at high frequency (>10 Hz).
(5) Reliability is a criterion that expresses if the infrastructure
is critical in other terms whether an interruption in infrastruc-
ture could cause loss of life or not. Attribute a weight of * if the
data is not critical and potential damages caused by an inter-
ruption of the architecture are minors or null; ** if potential
damageable but tolerable if they occur more than once a year;
*** if the application cannot tolerate any interruption which
would cause irreversible damage or loss of human life.
(6) Scalability is a criterion that expresses the regularity of the
evolution in terms of processing and storage during a period of
one year. If the scalability must be achieved at most once a year
use a weight of *; if the scalability is achieved at most twice a
year use **; if the scalability must be achieved more than two
times by year use a weight of ***.
(7) Cost-Effectiveness criterion reflects the need to control
infrastructure costs. This criterion is more important as the
infrastructure is brought to evolve both in terms of scale and
complexity. Use the weight of * if the project will remain in a
relatively constant size and do not need to be scaled or dramat-
ically modified; Use **, if the project evolves reasonably, i.e.
should not undergo significant modification more than once a
year. Use a weight of *** if the size of the project and/ or its
complexity need a fine study of cost.
(8) Maintainability criterion is directly linked to the sustain-
ability of the project. If the sustainability of the project will
not exceed two years to allocate a point of *; if the life of the
project is between 2 and 5 years, assign a score of ** beyond
5 years, assign ***.

4. Architectures

The numerous publications dealing with cloud architectures
relating to Agriculture 4.0, summarized in Table 2, show that a
great deal of effort has been devoted to solving a whole range of
problems related to many use cases. Indeed, a universal and a
unique architecture do not exist for IoT applications in Smart Agri-
culture which ensure all needs of all use cases. This is the reason
why several researchers have proposed various architectures
which address specific issues of generic architectures.

The Fig. 2 gives a global overview on Agriculture 4.0
organization.
4.1. Central Cloud Architectures

Central Cloud Architectures are based on two basic architec-
tures that are associated or combined in order to form modern
architectures. These two architectures are:

Batch Architecture aims to process an entire dataset in an off-
line mode. For this type of architectures, as long as the processing
of the dataset is not finished, it continues and produces results only
when it has reached its end. Generally, the data is selected and dis-
tributed to different nodes in order to be processed more quickly.
When all the treatments are achieved on all nodes, the results
are sorted and aggregated to obtain a global output. This architec-
ture is easily implemented, and the aggregation is done by a frame-
work, but processing times can be long, and data extracted during
the treatment cannot be processed before the end of the treatment
in progress. Furthermore, it is possible to increment results of



Fig. 2. Global structure of IoT in Agriculture 4.0.

Table 5
Pros and Cons of Batch Architecture.

Pros Cons

- Easy to implement and maintain. - Process only data previously stored in
another form (file, database, etc).

- Able to achieve long term
treatments (several hours or

days).

- Processing cannot be modified before
the end of the treatment.

- Reprocessing of old data that are
easy to achieve.

- Results available only at the end of the
treatment.

Table 6
Pros and Cons of Real-time Architecture.

Pros Cons

- Allow a rapid treatment of newly
arrived data.

- Not able to achieve processing on
large size of the batch.

- Batch processing can be emulated
using micro batches but not all
algorithms can be implemented.

- Reprocessing of old data difficult to
implement.

- Easy to implement and maintain. - The need for real-time processing
involves the use of an estimator

rather than the precise values that
would take too long to be calculated.
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previous batch and produce a result that integrates treated data in
progress.

Sallah et al. used a batch architecture to update data within the
AquaCrop model (FAO) embedded in R-environment in order to
facilitate model calibration and validation, run and evaluate all
fields in a single run (Sallah et al., 2019). Nolack Fote et al. pre-
sented an architecture to extract knowledge on the long term from
data in Precision Livestock Farming (PLF) (Fote et al., 2020).
Table 5.

Real-time Architecture also named Streaming Architecture
processes data as it arrives, and results are progressively available
by opposition to the batch architecture where it is not necessary to
wait for the end of ingestion of all input data to obtain a result. The
notion of real-time is strongly dependent on the analysis context
with a processing time from a few milliseconds to a few minutes.
Real-time architecture can be implemented in two different ways.
On one hand with micro-batch in which a tiny amount of data is
processed each n seconds and a result is obtained at the end of
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the treatment or on the other hand with a streaming approach in
which each new data is immediately processed and output is
quickly produced. This architecture is limited to data flow process-
ing (Miloslavskaya and Tolstoy, 2016). Table 6.

Various data are produced by different fields or animals sensors,
vehicles, and robots of the Agriculture 4.0. Afterward, this data
must be on one hand stored in a raw state and processed in an off-
line way where long and complex treatments can be achieved. On
the other hand, data can be processed before its storing with offline
processing, streaming processing, or a combination of these ones.
The storage time is extremely variable following the nature of
the data and their loss of value over time. Offline processing is
classically used to process images from UAVs, UGVs, or satellites,
for example, to determine photosynthesis activity, evaluate the
canopy development or stocks of palatable species available in a
pasture, etc. While Streaming processing allows detecting anoma-
lies in animals’ behaviors in real-time, or during agricultural oper-
ations such as the harvesting, disease and pest detection, weeds
elimination. In these last cases, data is not stored because it quickly
loses all value after its ingestion. Finally, a combination of the two
previous ways i.e. Offline and Streaming processing is used to
estimate real-time metrics and achieve complex treatments in an
offline way at the same time. This approach is used by milking
robots which detect anomalies in the production in real-time while
the offline processing estimates the future production of each cow
based on previous milking (Debauche et al., 2021).

Lambda architectures are used in systems that need to process
and expose quickly massive amounts of streaming data. This cloud
architecture was proposed by Nathan Marz and James Warren
(Marz and Warren, 2013) to handle tremendous quantities of data
and resolve complex problems combining processing large vol-
umes of data (Batch) while incorporating the most recent data pro-
cessed in real-time processes (Singh et al., 2019). This architecture
is generic, scalable, and fault-tolerant against hardware failures
and human mistakes. The architecture is composed of three layers:
(1) batch layer process very large quantities of data by batch; (2)
speed layer which processes data in real-time and provides views
based on the most recent data and (3) serving layer responding
to queries. Data comes from either a data source or a message
queue.

This paradigm allows executing arbitrary queries over any real-
time data and is particularly adapted for critical infrastructure and



Fig. 3. Lambda Architecture General Scheme.

Table 7
Pros and Cons of Lambda Architecture.

Pros Cons

- Process data in real-time or in
batch processing in separate

ways.

The reliability of two ways of treatment
is most costly than other architectures if
the two execute the same treatment.

Table 8
Pros and Cons of Kappa Architecture.

Pros Cons

- Very efficient for real-time
processing thanks to in-memory

processing.

- Batch processing emulates thanks to
micro-batch treated via the real-time

way.
- Optimized cost because allows
real-time and batch processing.

- Not able to process large batch size.

- Must be finely tuned from data to
obtain the best performances (Nkamla

Penka et al., 2021).
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health systems (Diaz et al., 2016). Several implementations of
Lambda Architecture in smart Environment management, big data
storage and analytics can be found in (Villari et al., 2014). Among
the criticisms that have been made against lambda architecture
is the need to make twice the developments for the real-time
branch and the batch branch. It is possible to perform a batch pro-
cessing and in real time with flow processing is what the Kappa
architecture described below does (Kreps, 2014). Fig. 3 Table 7.

Among use cases in agriculture 4.0 using a lambda, we would
like to highlight: Roukh et al. proposedWALLeSMART, a cloud plat-
form based on lambda and specifically developed for Smart Farm-
ing. This platform implements Apache Kafka to store temporary
data before their treatment. Apache Hadoop and the programming
model Mapreduce is used for the batch processing while Apache
Storm process data in realtime. The originality of this architecture
is the coupling of a NoSQL database Apache Casandra and a SQL
database, PostgreSQL where data is stored in the function of its
nature. The GraphQL query language allows to querying databases.
(Roukh et al., 2020; Roukh et al., 2020). Debauche et al. describe a
lambda architecture for digital phenotyping (Debauche et al.,
2020) and farm animals’ behaviors coupled with an Application
Hosting Architecture based on Apache Mesos and Docker con-
tainerization to facilitate the deployment of various applications.
An API interconnects and controls accesses between the Lambda
Architecture and the Hosting Application Architecture. The Lambda
Fig. 4. Kappa Architectu
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architecture is based on Apache Beam to easily change the runner
in the function of the technology evolution and improve its sus-
tainability. Apache Druid is used to store time series data
(Debauche et al., 2019) and metadata of data stored in the Datalake
based on Apache Hadoop (Debauche et al., 2018).

A variant of this architecture, named Unified Lambda architec-
ture combines batch and stream pipelines which runs concur-
rently, and then the results are merged automatically (Siciliani,
2015). AllJoyn Lambda integrates AllJoyn a framework that offers:
(1) proximal devices and applications discovering; (2) specific
devices framework adapting; (3) transmission between devices
with Bluetooth, Wi-Fi, etc.; (4) interoperability between operating
systems; (5) efficient and secure data exchange through D-BUS
(Villari et al., 2014).

The Kappa architecture, proposed by Jay Kreps from LinkedIn
(Kreps, 2014), simplifies the Lambda architecture by combining
real-time and batch layers. This cloud architecture differs from
the Lambda architecture by using a non-permanent storage system
of data in an unchangeable log file such as system as Apache Spark
or Apache Kafka, and consequently allow only storage for a limited
time in order to allow an eventual reprocessing of these data. Batch
and Speed Layers are also replaced by a stream processing engine.
So, the Kappa Architecture is composed of two layers: streaming
and serving layers and can be implemented with a publish-
subscribe messaging like Apache Kafka, which facilitates data
ingestion. Fig. 4.

The main advantage of this architecture is its simplicity. It
avoids having to maintain two separate code bases for the batch
and speed layers. When processing on real-time and historical data
are the same, a Kappa Architecture must be used. Fast Data Archi-
tecture is a variant of Kappa Architecture in which the data are no
longer read from files but from an additional mechanism like Kafka
that captures multiple streams combines them before being pro-
cessed by the speed layer (Lakhe, 2016). Persico et al. achieved a
benchmark of Lambda and Kappa architectures and show that
Lambda outperforms Kappa for social networks data (YFCC100M)
processing (Persico et al., 2018). Table 8.
re General Scheme.



Table 9
Qualitative evaluation of cloud-centric architecture.

Criterion Batch Stream Lambda Kappa

User Proximity * * * *
Latency & Jitter * * * *
Network Stability * * * *
High throughput *** *** *** ***

Reliability *** *** *** ***
Scalability *** *** *** ***

Cost Effectiveness *** *** * **
Maintainability *** ** * **
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Other Architectures derived or inspired of the previous archi-
tectures have been developed to address specific problems such
as (1) SMACK (Estrada and Ruiz, 2016) which attempts to propose
an optimal architecture with fixed components; (2) Liquid
(Fernandez et al., 2015) is an architecture which provide low
latency, incremental processing, high available with isolated
resource, and able to store high throughput data at low operational
cost architecture; (3) Butterfly (Lakhe, 2016) proposes to unify
batch, speed and serving layers in a unique platform in which data
are organized as a collection of three types of abstractions; (4) Zeta
(Scott, 2015) which integrates a lambda architecture with business
aspect of the enterprise; (5) BRAID (Giebler et al., 2018) is a hybrid
processing architecture where all coming data and configuration
file of processing, and eventually processing results written back
are stored in a shared storage; (6) IoT-a (Hausenblas, 2014) is com-
posed of three blocks: Ad-hoc queries, a Database, and a Distribu-
ted File System; (7) Polystore (Meehan et al., 2016) implements a
multiple database system PostgreSQL, SciDB and Accumulo
because a database alone cannot store all types of data efficiently.
Table 9.

The analysis of the literature achieved shows that two major
generic architectures: Kappa and Lambda allows to address of var-
ious use cases and are widely implemented and proven in other
domains of the Internet of Things. The Lambda is more expensive
to implement than the Kappa because of the need to maintain
two separate parallel processing branches for stream processing
and batch processing. It is interesting if different processing are
carried out on the two processing branches. Otherwise, a Kappa
architecture with a single processing branch that processes both
the streams and the data in batches is more appropriate in most
cases because it is cheaper and easier to maintain because a single
code performs both types of processing (stream and batch). Look-
ing at our first two research questions, we observe that Lambda
and Kappa cloud architectures are efficient but these architectures
alone operating in central cloud cannot address, for example, use
cases where very low latencies are required. They will have to be
hybridized and completed to address these particular cases. Two
possibilities are available to us. The first way consists in associating
several specialized cloud platforms to make it possible to obtain
greater genericity or at least to better cover a domain. The second
consists of supplementing the cloud-centric architectures that we
have just mentioned with other architectural elements in order
to better address the specific needs of Agriculture 4.0.

4.2. Extension of the cloud paradigm

With the increase of the amount of data produced by the myr-
iad of connected things, the amount of data to process, to transfer
by network, and to treat in the cloud computing have called into
question the architecture of storage and data processing. To solve
the problem, two ways have been proposed, the first is Multi-
Cloud Computing, the objective of which is to ensure redundancy
in order to improve latency. The second is the Federated Cloud
with the aim of pooling resources for better use.
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Multi-Cloud Computing (MCC) (Manyika and Chui, 2015) is an
extension of Cloud Computing paradigm where services are dis-
tributed on multi-clouds. In this architecture the workflow is dis-
tributed entirely in the cloud, data redundancy is also verified.
One advantage of the MCC is the high recovery rate but it has
the same disadvantages as Cloud Computing, along with complex-
ity and portability issues.

Kazim et al. proposed a framework to deliver IoT services and
establish cooperation across multi-clouds. An authentication
allows communicating cloud to authenticate each other cloud
dynamically. While a service selects the best IoT service matching
with user requirements among multiple clouds and taking into
account the SLA parameters agreed between the user and the pro-
vider (Kazim et al., 2018).

Federated Cloud (FC) aggregates resources of multiple cloud
providers to improve users’ freedom and allows users to choose
where they want to deploy their applications. A Federated cloud
can be defined as a voluntary collaboration between heteroge-
neous cloud providers collaborating to share their own unused
resources. Using a cloud federation helps to ensure service perfor-
mance during load ups with resources borrowed from other clouds.
In addition, the geographical dispersion of the installations makes
it possible to migrate to another installation and to guarantee the
service in case of breakdown. A unified interface allows to use it an
easy consultation of the offered services. Finally, thanks to the
dynamic distribution of the load, it is possible to bring the treat-
ment closer to the user and consequently improve the Quality of
Service (Assis and Bittencourt, 2016). Cloud federations include
European Federated Cloud (Sipos et al., 2013), Massachusetts Open
Cloud, Mosaic (Petcu et al., 2013), IEEE P2302, and Open stack
Keystone.

Drakos et al. described agINFA, a common research data infras-
tructure for agriculture, food and the environment using EGI Feder-
ated Cloud. This infrastructure allows to partner to share research
infrastructure components, APIs, a registry of web-based informa-
tion service and dataset for agriculture (Drakos et al., 2015).

4.3. Distributed architectures

The post-cloud approaches allow to improve latency and jitter
for immobile entities but do not provide an answer adapted for
mobile devices and local awareness. The large amount of data gen-
erated at the edge has increased the speed of data transportation
that is becoming the bottleneck for the cloud-based computing
paradigms (Shi et al., 2016). Moreover, the treatment of data in
the cloud does not offer any guarantees about privacy, on the
response time and real-time actuation because the huge number
of devices increases the latency and jitter. Moreover, the mobility
of devices and power constraints makes the communicaion diffi-
cult with the cloud all the time (Botta et al., 2016; Zhou et al.,
2017). The aim has been to bring data storage and processes data,
filtering, and data analysis closer to data-producing objects to limit
bandwidth consumption and relieve the cloud. Three major para-
digms have been proposed to address these issues and bring cloud



Table 10
Pros and Cons of Fog Computing.

Pros Cons

- Fast response time in avoiding
transmission of data to the cloud

(Sharofidinov et al., 2020).

- Failure or outage of the gateway
can defeat thousands of devices.

- The local storage and processing
capabilities prevent data loss and

outages when the Internet
connectivity is limited

(Sharofidinov et al., 2020).

- The limited processing and
memory capacities do not allow the
deployment of algorithms requiring
significant resources or the carrying

out of long-term processing.
- Sensitive data can be filtered locally.

In this case, only the data model is
moved in the cloud (Sharofidinov
et al., 2020), and data validation,
compression, and encryption.

- Gateway at fog level ensure the
compatibility between old and
modern devices (Sharofidinov

et al., 2020) and various protocols
for communication.

- Improve the resilience thanks to the
decentralization of the treatment
on network devices (Sharofidinov

et al., 2020).
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computing-like capabilities to the edge of the network. All these
infrastructures manage mechanisms of Virtual Machine (VM) or
containers migration and adjust if needed, the provisioning of
capabilities where users are located. Moreover, the three para-
digms allow the creation of federated infrastructures in which
can coexist multiple edge infrastructures which can exchange
information and services (Roman et al., 2018).
4.4. Elements of distributed architectures

In order to always bring closer, the processing capacities of
intermediate processing have been set up between connected
objects and the cloud at the network level (Fog Computing) and
at the level of telephony providers (Mobile Edge Computing).

Fog Computing is a concept created by Cisco Systems and is an
extension of the cloud computing paradigm (Munir et al., 2017) in
which computation, storage and network services are provided
between end devices and cloud/ classify and analyze the raw IoT
data streams at near-edge and edge network level (Cisco, 2018).
Fog nodes are either physical components such as gateways,
switches, routers, servers etc. or virtual components such as virtu-
alized switches, virtual machines, cloudlets, etc.; deployed follow-
ing private, community, public or hybrid. Private nodes are
reserved for a single organization, community nodes are used by
a community, public nodes are dedicated to the general public,
and hybrid mix the third previous modalities (Uehara, 2017). This
paradigm allows to limit data transfer on cloud, reduce latency
(Sethi and Sarangi, 2017), and jitter thanks to a three-tier architec-
ture (Roman et al., 2018). In this hierarchical architecture, the anal-
ysis of local information is achieved at the low level and the
coordination and global analysis are performed at the top level.
The Fog Computing supports mobile devices (Sethi and Sarangi,
2017), response time in real-time or predictable latency (Lopez
et al., 2015), bandwidth saving, an improving of security and resi-
lience, scalability, multi-tenancy, advanced analytics, and automa-
tion (Byers, 2017), cost-effective services (Yang, 2017). Fog
Computing allows also the federation of fog infrastructures in
order to allow cooperation between multiple organizations
(Roman et al., 2018). Furthermore, the architecture is optimized
for a use case and applications which must run on them (Byers,
2017). Fog Computing differentiates from cloud computing mainly
by the proximity with end-users at the edge of networks localized
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or distributed geographically consisting in many relatively less
resourceful (Munir et al., 2017). In addition to network equipment,
fog computing can also be carried out in cloudlets and micro data
centers. Cloudlets were proposed to address the end-to-end
responsiveness between mobile devices and associated clouds.
Cloudlets (Mach and Becvar, 2017) are micro data center geograph-
ically deployed in vicinity of End Users. This mobility-enhanced
small-scale cloud data center is composed of computers with high
computation power which provide both computation resources
and storage. Cloudlet is much more agile (highly dynamic provi-
sioning) than cloud due to user mobility churning. The mobility
of users implies the use of a virtual machine to rapidly instantiate
compute-intensive and latency-intensive applications and migrate
the offloaded services between different cloudlet in the function of
the user mobility. Cloudlets must be firstly discovered, selected
among several candidates before starting provisioning. At the end
of the session, the instance is destroyed (Ai et al., 2018). Cloudlets
are accessed by mobile user equipment via Wi-Fi imply a high
latency caused by the network and switch between mobile net-
work and Wi-Fi and by consequence Quality of Service (QoS) and
Quality of Experience (QoE) are hard to fulfill (Mach and Becvar,
2017; Manyika and Chui, 2015). Moreover, Cloudlets cover usually
a small region and do not offer any guarantee on ubiquitous
computing and scalability in service (Manyika and Chui, 2015).
MicroData Centers (MDCs) were proposed by Microsoft Research.
It is designed to extend cloud data centers as cloudlets. MDCs are
enclosures contemning all types of equipments (computing, stor-
age, network) needed to provide a secure computing environment
in order to run customs applications requiring low latency. MDCs
are also well adapted to provide processing resources to end
devices on battery or with limited computing capabilities. MDCs
can be adapted in function network bandwidth and user needs
thanks to certain flexibility in terms of latency and scalability of
the capacity (Wang et al., 2020).

Guardo et al. proposed a framework composed of two fog layers
respectively filtering and aggregating data, and clustering analysis,
actuation management, and alert. The framework aims to improve
computational load balancing between fog and cloud in order to
reduce the amount of data to transmit to the cloud, reduce the
waiting time for the user (Guardo et al., 2018). Taneja et al. pro-
posed a SmartHerd an IoT platform dedicated to smart dairy farm-
ing based on microservices and Fog-assisted. The IoT gateway
received data from transceivers, archived data aggregation, prepro-
cessing, classification, feature selection, send critical alerts to farm-
ers, and transmit data to IBM Watson IoT platform via MQTT
protocol. In the IBM Watson IoT platform, a broker picks up data
and store them in a Cloudant NoSQL JSON Database. Python Virtual
Machine and Java Virtual Machine were used as containers equiv-
alent for microservices deployment at fog level (Taneja et al.,
2019). Sharofidinov et al. described a 4 layers architecture (Sensors
Layers, Fog Layer, Network/Cloud Layer, and Application Layer)
based on LoRa to monitor and predict the state of a greenhouse
from a random forest algorithm. In the Sensor Layer, sensors
acquire temperature, soil and air humidity, CO2 rate, and illumina-
tion connected to TTGO LoRa32 (ESP32 with LoRa Sx1276 chip)
which are transmitted to the gateway by LoRa. At Fog Layer, pre-
liminary analysis with Machine Learning algorithm, diagnosis of
sensor status, and data compression are achieved. In the Net-
work/Cloud Layer, compressed data are transmitted in order to
be deeply analyzed and stored. Finally, in the Application Layer,
analyzed data are converted in readable form to allows the moni-
toring and the control of the greenhouse (Sharofidinov et al., 2020).
Table 10.

Mobile Edge Computing (MEC) was proposed by ETSI and is
deployed by telecommunication companies on the edge of the
network, which is characterized by ultra-low latency and high



Table 12
Evaluation of distributed architecture with our criteria.

Criterion Fog MEC

User Proximity **(*) ***
Latency & Jitter * *
Network Stability *** **
High throughput ** **(*)

Reliability *** **
Scalability * *

Cost Effectiveness ** **
Maintainability ** **

Fig. 5. Mobile Edge Computing General Scheme.

Table 11
Pros and Cons of MEC.

Pros Cons

- Reduces needs in connection, response time
delay, the congestion of other parts of the

network (Valecce et al., 2019).

- Usable only for devices
connected in Wi-Fi or 3GPP.

- Use low level message from Wi-Fi to
determine the location of each device
(Location awareness) (Valecce et al.,

2019).
- MEC Server can be used as power open to

applications and services (Valecce et al.,
2019).
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bandwidth. (Roman et al., 2018; Zhou et al., 2017). At the very
beginning, Mobile Edge Computing (MEC) aims to bring real-
time, high-bandwidth, and low-latency access to dependent appli-
cations known as cloud computing capabilities; in addition to,
information technology (IT) features of cloud computing. MEC is
distributed at the edge of the network. In fact, a new class of
cloud-native applications are easily accessible, because of the close
position of Edge Computing to the end user and apps. Also, it
allows network operators to open their environment to a new
ecosystem. As a result of this significant change, MEC application
can be used in LTE macro base stations (eNBs), 3G radio network
controllers (RNCs), Wi-Fi access points, edge network routers,
and enterprise edge servers. MEC platform contains twomain host-
ing infrastructures. The first is formed by hardware resources and a
high-resolution screen. The second is composed of manageable
applications with numerous capabilities such as the application
of virtualization manager and platform services (Zhou et al.,
2017). An important challenge for the MEC is the VM migration
that must optimize the tradeoff between migration gain and
migration cost and select optimal location (Ai et al., 2018).

Tran et al. investigated the collaborative Mobile Edge Comput-
ing in 5G Networks. MEC extends processing and storage resources
at the edge of the Radio Access Network (RAN) while C-RAM is
based on centralization of the base Station by means of the virtu-
alization. Authors argue that both technologies are complementary
in the 5G ecosystem (Tran et al., 2017). Fig. 5 Table 11.

Fan et al. combined MEC with data link management, combin-
ing with the industrial CAN bus characteristics to monitor water.
Field Programmable Gate Arrays (FPGA) Altera implementing the
AVALON bus was used to implement the system. Moreover, they
12
propose a protocol to model random network disturbances and
an online task offloading algorithm based on the monitoring of task
execution (Fan and Gao, 2018). Valecce et al. proposed a 5G-
robotics reference architecture for smart agriculture composed of
UAV-Based Monitoring and connectivity, Machinery automation,
and MEC Applications Server. UAVs/satellites capture high-
resolution images during patrolling, which coupled with sensors
data trigger a precise crop management. UAVs can also collect data
or serve as a 5G mobile station. In field, image processing coupled
with sensors data can be used for decision making. MEC allows to
process gigabyte/s of data produced by autonomous vehicles and
robots (Valecce et al., 2019). Table 12.

The development of fog computing and its counterpart for MEC
wireless networks allow processing capabilities closer to users to
improve response time but with lower computational capacities
compared to the cloud. There are inherently two questions: Which
association strategies to use between the cloud and the other levels
of processing in the network? How to distribute the load between
these different levels: local (Edge), network (Fog), and Cloud
processing.
4.5. Collaborative computing strategies

In order to address, our fourth research question, we try to iden-
tify different possibilities to compose architectural elements.
Indeed, different collaboration strategies between the different
levels of data processing (cloud, fog, edge) can be considered
depending on the particularities of the use cases. In the next para-
graphs, we describe possibilities of collaboration between different
treatment entries, and we illustrate each one with few examples.

Edge-Cloud aims to connect devices directly with the cloud
that performs data processing. This strategy is often used by UAVs
and UGVs which preprocess data before its transfer to the cloud
because image treatment needs processing power and storage
capabilities. The default of this approach is that the delay of the
whole process from data transfer via high throughput wireless or
cellular protocol to the transmission of processing results cannot
be guaranteed because of the fluctuation of data rates linked to
wireless networks (Wang et al., 2020). The processing of data can
be achieved in an online mode with a real-time data transmission
and processing by a stream, Lambda, Kappa or derived architecture
of these one. An offline strategy with a data transfer by means of a
computer and Internet connection on the cloud after the UAV fly
and processing with a Batch, a Lambda, or a Kappa architecture
or a derived architecture of these one is also possible. This latter
costly avoid data transmission and is suitable for monitoring crops
or livestock that do not require direct action.

Agriculture 4.0 uses in particular Unmanned Aerial Vehicles
(UAVs) equipped with various sensors in order to improve the time
of data collection, in reducing the cost of acquisition compared to
traditional field phenotyping technologies. According to Tang
et al., edge-cloud is majorly used in smart robots to reduce com-
plexity (Tang et al., 2021). Indeed, the images of drones to be used
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must be orthorectified and assembled. These operations require
significant resources in terms of computing power, and memory.
All these collected data must be rapidly processed, analyzed, and
visualized. Agroview (Ampatzidis et al., 2020) is a platform that
developed a cloud and AI-based application to survey and assess
the agriculture field, deployed on Amazon Web Services (AWS). A
website allows the upload of images or existing orthomosaic, the
consultation for each tree field e.g., number of trees, tree gaps
count, area of the field, the average height of trees, canopy area,
etc. The website also allows the stitching of an orthomosaic and
the generation of a Digital Surface Model (DSM). A tree detection
algorithm developed in C allows the detection of individual tree
and tree gap, and estimate tree parameters such as height, canopy
area, health/stress estimation. The pipeline of treatment uses a Fas-
ter R-CNN to detect the region of interest (ROI) and the ResNet101
network allows to detect trees and row orientation. Afterward, the
Yolo classifier using Darknet19 was applied along each row of trees
to obtain a more precise detection. Debauche et al. presented an
Edge-Cloud architecture for the analysis of cattle behavior from
9-DOF IMU data sampled at 100 Hz and GPS location sampled at
0.5 Hz that is then processed with an algorithm proposed by
(Andriamandroso et al., 2017) in batch processing (Debauche
et al., 2019; Debauche et al., 2020). Popescu et al. proposed an inte-
grated system UAV-WSN-IoT where WSN data is collected by UAVs
before their transmission to the ground control station and after-
ward to the cloud (Popescu et al., 2020). Debauche et al. proposed
an architecture for scientific research dedicated to honeybee Col-
ony Collapse Disorder. In this architecture, data is compressed on
LoPy at the edge level before its collection by the LoRaWan gate-
way and its transmission to the Lambda architecture in the cloud
where it is processed (Debauche et al., 2018).

Edge-Fog aims to connect devices directly with network com-
ponents such as gateways, routers that perform data processing.
The major benefits of this approach are an optimization of the
bandwidth, a reduction of traffic and latency, a better privacy,
and an improved security level (Badidi, 2020). Fog nodes collect,
aggregate, filter, encrypt, compress, and process IoT data (Gupta
et al., 2020). This way is used for example by milking robots where
data are processed by a computer close the robot and can be
viewed remotely by the farmer. 5G also promotes mobile edge
computing (MEC).

Debauche et al. presented an AI-IoT architecture for the deploy-
ment of Artificial intelligence algorithms and Internet of things ser-
vices at fog level using docker containerization and Kubernetes
orchestration. This architecture has been developed to automati-
cally deploy AI algorithms after retraining when performances (ac-
curacy, recall, precision) are improved (Debauche et al., 2020).
Debauche et al. proposed a Multi-Agent System (MAS) deployed
at edge level allowing to control abnormal data present in sensed
data and eventually cure this data when it is possible. The MAS
simultaneously manages pivot irrigation, plant diseases and pests’
detection, and their curation. The data is partially transmitted to
the cloud to improve the detection of diseases and pests and
retrain AI algorithms before their redeployment at the edge level
(Debauche et al., 2020). Debauche et al. described a fog architec-
ture in which a Gated Recursive Unit (GRU) algorithm is deployed
on NVIDIA Jetson Nano for real-time poultry monitoring. GRU is
simpler than LSTM algorithm. GRU is built to avoid varnish gradi-
ent problems. Periodically data is transmitted to the user interface
implemented in NodeJS in the cloud (Debauche et al., 2020).

Edge-Fog-Cloud is a paradigm in which data are partially pro-
cessed in the fog and more complex treatments are achieved in the
cloud. This way is used by wireless Sensor and Actuator Network
(WSAN), which passes through a gateway that provides intercon-
nection between the devices and the backhaul which transit then
data to the cloud. However, the right balance between cloud and
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edge/fog computing is required (Badidi, 2020) based on available
resources and whether or not the task is sensitive.

Taneja et al. used a strategy Edge-Fog-Cloud to develop a detec-
tion system of lameness for cattle. The data from the pedometer is
transmitted to the Fog node by means of a Long-Range proprietary
protocol at 433 MHz on a distance of 2 km. Fog node stores in local
database, preprocess and aggregates them. Fog node communi-
cates with IBM Watson IoT Platform with MQTT protocol. Arriving
data are picked up and stored in Cloudant NoSQL JSON database in
IBM cloud. A mobile application synchronizes data with PouchDB,
its local database via the REST API of Cloudant database when an
Internet connection is available (Taneja et al., 2020). Alonso et al.
presented Global Edge Computing Architecture (GECA), a modular
tiered architecture (IoT Layer, Edge Layer, Business Solution Layer)
to monitor dairy and feed grain state in real-time. In this architec-
ture, a Distributed Ledger Technologies provides security from IoT
Layer to Business Solution Layer. In the IoT layer, a set of agents call
oracles to verify incoming data and afterward calculate hash of
data with SHA-256 which is stored in the blockchain to verify
the non-alteration of data. In parallel data is encrypted with the
RSA algorithm and then sent to the Edge layer. The Edge Layer is
responsible of the preprocessing of data and filters out data trans-
mitted to the cloud. It enables also various data analyses. In the
business Solution Layer, final storage, authentication, analysis for
decision making is achieved. It provides also a knowledge base
and APIs (Alonso et al., 2020).

Edge-Edge is a paradigm in which devices interact to collabo-
rate, exchange, and process data. The deployment of the 5G net-
work allows the interconnection between UAVs and UGVs/
agricultural machinery (Tang et al., 2021). This high throughput
network will allow to developping new collaboration between
UAVs/ UGVs and agricultural machinery, for example, a drone will
provide information to a harvester to avoid a non-desirable area of
the field or avoid obstacles. A fleet of drones can also collaborate to
coordinate their operations on the field between them of course
subject to availability in rural areas, a transmission network with
sufficient bandwidth and short-latency or capabilities to commu-
nicate between them in direct connection or in a mesh network.
(Tang et al., 2021).

Four cooperation strategies have been identified, two of which
use the cloud, namely Fog-Cloud and Edge-Cloud. The other two
remaing, do not involve the cloud; namely, Fog-Edge, and Edge-
Edge cloud. The first two strategies complement the cloud to help
us to address issues relating to production data and trade secrets,
network congestion, and response times. The other two strategies
do without the cloud and therefore assume that the devices/ vehi-
cles have sufficient capacity to perform the processing. Despite
these cooperation strategies between different levels of processing,
some questions remain unanswered: How to store all the raw data
when the data is so important that it would take colossal means to
process it? What about security? How to organize the distribution
of tasks between the edge, the fog, and the cloud? How to ensure
operation and/ or treatment when network connections are inter-
mittent or faulty? How to improve the maintainability of these
architectures? These are the questions that the new trends that
we describe in the next paragraph attempt to answer.

5. New trends

In this section, we present two emerging architectures not
based on the batch or/and real-time architectures or their deriva-
tives. Afterward, we describe Osmotic and Dew computing as
two new paradigms, which allow us to respectively choose where
the processing must be achieved and improve the user experience.
New trends are additional elements that allow enriching the anal-
ysis of Section 4 in order to address the third research question.



Fig. 6. Microservices Architecture General Scheme.

Table 13
Pros and Cons of Microservices Architecture.

Pros Cons

- Fractionating of monoliths facilitates the
maintainability and scalability of low

coupled microservices.

- Need to find microservice
adapted with needs.

- The discovery of micro-services allows the
development new applications more easily

than with monoliths.

Fraction complex monolith
is not easy.

- More resilient, when a microservice is down,
all others continue to function.

Fig. 7. Data lake and Lakehouse General Scheme.
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TheMicroservices Architecture (MA) is a new system software
design pattern that divides complex monolithic application in
micro services dedicated for a single function. Microservice
addresses defects of monolithic applications in which improving
of service performance needs multiple deployment; a change in a
function can affect all the monolith due to high dependencies
between components; all the monolith uses a sole technology
stack and development standards which limits possibilities to
solve problems of physical heterogeneity.

The advantages of this architecture are using a lightweight
communication mechanism to interact between services with a
minimal overload (Sun et al., 2017). The design proposed by (Sun
et al., 2017) is composed of 8 microservices (Geo, Security, Tenant,
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Devices, Big Data, Automation, AI, and Application) and a core ser-
vice coordinating. These services provide respectively: (1) Geo, a
GIS layer to render data; (2) Security, user/group/role manage-
ment, access control, administration, and authentication mecha-
nism; (3) support for multiple IoT applications with a single
core; (4) device plugins and communication protocols for sensing
and actuating; (5) scalable persistence to store data; (6) process,
analyze events and notify appropriate participant; (7) Artificial
intelligence tools for IoT big data; (8) components to interact with
client interfaces; (9) support for data exchanging by message with
the devices. Authors argue that their approach is more flexible,
scalable and platform-independent. Fig. 6 Table 13.

Bixio et al. proposed a stream processing architecture event-
driven based on proxy, adapter, and data processing microservices.
This architecture extends the IoT platform Senseioty and using the
Java OSGi framework (Bixio et al., 2020).

The Data Lake Architecture (DLA) (Fang, 2015; Miloslavskaya
and Tolstoy, 2016) enables the storage of large volumes of data
of all types: raw data in its native format, structured, semi-
structured, in a cost-effective manner. In this architecture, data is
stored in its native format until it needs to process them by engines
(Miloslavskaya and Tolstoy, 2016), which allows a fast transforma-
tion and refinement of stored data regardless of the amount of data
stored. The architecture makes it possible to consume all types of
data (logs, web services, database, files, etc.); different ingestion
systems consume the data and then stored it in data repository.
Once the data is stored, query systems can query the data lake. This
architecture is considered in the corporate world as an evolution of
existing architectures. The advantage of the Data Lake architecture
is that it can easily and inexpensively store large amounts of data.
It is particularly well suited to storing data in a typical format. In
Enterprise Data Lakes are used; in addition to, data warehouses.
Data lakes are, however, unsuitable for assessing data quality, data
can be placed in data lakes without content control, and perfor-
mance is also poorer than on specially designed and optimized
infrastructures. The Lakehouse is a variant of the Data Lake where
storages of data are generally achieved with Hadoop in the data
lake is replaced by a distributed storage such as Amazon S3, Azure
Blob Storage, Google Cloud Storage, and analysis are directly
achieved by infrastructure managed by Cloud Service Providers
such as Amazon Athena, EMR, or Databricks, Google Data proc,
Azure HDInsight. The Fig. 7 provides a comparison between data
lake and gatehouse structure.

It crucial in agriculture to explore datasets from different
sources. The data lake is indicated to manage the complexity of
agricultural ecosystems and centralized all data sources to find
new correlations. (Madera et al., 2017). A data lake provides views
based on metadata. It is nevertheless necessary to have advanced
analysis tools for predictive modeling and statistical analysis.
López et al. used a data lake to achieve the fusion of data from dif-
ferent domains in smart the agriculture context (López et al.,
2020). Gallinucci et al. (Gallinucci et al., 2019; Gallinucci et al.,
2020) present an innovative architecture 3 tiers architecture, called
Mo.Re.Farming (MOnitoring and REmote system for a more sus-
tainable FARMING) based on a data lake using Apache Hadoop
and storing structured, semi-structured, and unstructured raw
data, and in which subsequent processing and enrichment activi-
ties are separated. An Operational Data Store (ODS) using Post-
greSQL with PostGIS to stores structured and detailed data and
address limitations of big data solutions in properly handling con-
tinuous field geographic data. Finally, a spatial cube enables Spatial
OnLine Analytical Processing (SOLAP). Neves et al. described an
architecture in which raw data is stored in a datalake. Then, ETLs
transforms data to be storable in a database. The data is enriched
thanks to a knowledge base and its exploration by data mining
algorithms (machine learning). The result of processing is filtered



Table 14
Pros and Cons of Datalake/DataHouse.

Pros Cons

- Store the data in its raw form
without transforming them

immediately.

- Availability of results depend of the
ingesting speed by processing

services.
- Allow store massive low-value data

without investing energy to
transform and store them in a

database.

- Data analysis by sampling does not
give exact results but is estimated.

- Provides a solution to situations
where the volume of data is so
large that it can no longer be

processed immediately

- Data House may be limited by the
services offered by cloud providers

for data analysis.

Table 15
Pros and Cons of Osmotic Computing.

Pros Cons

- Micro Element (microservice + micro
dataset) easy to migrate between fog and

cloud.

- All datasets are not
decomposable in micro

dataset.

Fig. 8. Micro Element Structure.

Fig. 9. Osmotic Computing General Scheme.
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to improve the quality of structured data (Neves and Cruvinel,
2020). Table 14.

Osmotic Computing (OC) (Villari et al., 2016) is a new para-
digm inspired by the chemical osmosis process that corresponds
to a dynamic and bidirectional flow of microservices between
cloud and edge. OC exploits container-based solution to allows
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an automatic deployment of portable, mobile, and cross-platform
microservices between Edge and cloud levels (Villari et al., 2016).
Osmotic computing introduces the concept of Micro Elements
(MELS) which decouples user data and applications in Micro Ser-
vices (MS) i.e. a docker container and Micro Data (MD) i.e. an entity
self-explicative in JSON. MS associates one operating system
(Micro Operation Service) with an application (Micro User Service)
while MD associates a microservice configuration (Micro Opera-
tional Data) and User data (Micro User Data). These MELS can be
deployed on Microcontrollers (MCU) or Multiprocessor (MPU)
(Villari et al., 2017). Table 15.

The bidirectional migration of microservices between Edge and
Cloud must, on one hand, avoid application breakdown and QoS
degradation and on the other hand manage them dynamically, in
high heterogeneously physical resources context, in the function
of infrastructure and applications requirements (Villari et al.,
2016). Carnevale et al. have applied osmotic computing to the
Internet of Things by means of a distributed multi-agent system.
Each agent is self-orchestrated, works independently, and manages
the workflow as a composition of MELs. It monitors the overload-
ing state of microservices by means of response time metric and
decides to relocate them to another agent based on a Deep Rein-
forcement Learning algorithm or Time Series Analysis (Carnevale
et al., 2019). Figs. 8 9.

In an IoT context, OC allows to deploy lightweight micro ser-
vices at edge level while complex micro services are deployed at
fog/cloud level, and balance load between edge, fog, and cloud.
(Maksimović, 2018). Morshed et al. proposed to use OC to dis-
tribute Deep Learning across edge, cloud, and mobile edge in a
holistic way (Morshed et al., 2017). However, Kaur et al. in their
Osmotic Computing applications survey have identified the need
of standardization in terms of infrastructure deployment and
micro-services distribution. The orchestration is crucial to manage
efficient services. Security remains an important challenge because
the service migration is supported by different layers (Kaur et al.,
2020).

Dew Computing (DC) (Skala et al., 2015) allows to further
improve response times by pushing from Central cloud to end-
users, computing applications, data, and low-level services. Client
microcomputers are used to store a part of the data locally in the
background and to limit access to the cloud, reduce network
dependency and drastically reduce processing cost (Skala et al.,
2015). Dew computing is the additional piece of cloud computing.
It is mainly composed of a wide range of heterogeneous devices
and varied equipment ranging from smartphones to smart sen-
sors (Wang, 2016). DC is highly and effectively capable in terms
of scalability and ability to perform sophisticated operations
and to process numerous applications and tools. Additionally,
the equipment of DC is ad hoc programmable and self-adaptive.
They have the qualifications to running the process within
another process in a distributed way without a focal communica-
tion network (Skala et al., 2015). Applications running in the on-
premises computers provide services to users and/or devices
independently of the cloud but collaborating with cloud services
(Wang, 2016). DC can provide access web fraction without Inter-
net connection (WiD), Storage in dew has a cloud copy (STiD),
Local database has a cloud backup (DBiD), Software ownership
and settings have a cloud copy (SiD), SDK and projects have a
cloud copy (PiD), On-premises computer settings and data have
a cloud copy (IaD), Other services (DiD) (Wang, 2016). The
Fig. 10 presents the dew computing in the general scheme
Cloud-Fog-Edge Computing. Table 16.

Rajakaruna et al. presented a dew architecture based on a drone
to retrieve and process data, manageWSN, and play the role of dew
server. The drone communicates with sensors, and actuators with
BLE protocol, collect, store data, and then when the drone is at the



Table 17
Pros and Cons of Blockchain.

Pros Cons

- Data distributed (Alonso et al.,
2020).

- Energy consumption for the
complex signature verification

process can be important.
- Immutable, durable, verifiable,
secure, and transparent (Alonso

et al., 2020).

- Not adapted to store images, video.

- Transactions P2P at low cost.

Fig. 11. Blockchain General Scheme.

Table 16
Pros and Cons of Dew Computing.

Pros Cons

- Allows access to a local copy of data when
the connection is unavailable.

- Replication of data is
bandwidth-consuming.

- Improve the reliability and the false
tolerance.

- Difficult to exploit if
bandwidth is insufficient.

Fig. 10. Dew Computing General Scheme.
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docking station it sends data to the cloud (Rajakaruna et al., 2018).
Grovers et al. described a reliable and fault-tolerant architecture at
4 levels (edge, dew, fog, and cloud) in which sensed data is repli-
cated at edge, fog and cloud level in order to take over the applica-
tion’s control when a server is failed. In their architecture, dew
servers are closed and linked with sensors producing data. The
fault tolerance is ensured by mobile agents working as a resource
exchanging the application and link-state information between
us, and the network monitoring agent (Grover and Garimella,
2018).

The Blockchain is a distributed digital ledger of transaction dis-
tributed maintained by a network of multiple computing nodes.
This ledger can be deployed among the IoT nodes network
(Bermeo-Almeida et al., 2018). In the blockchain, transactions
namely blocks are managed by a specific software platform ensur-
ing the data transmission, processing and storage, and its represen-
tation in a human-readable form allowing a consistent view and a
consensus between the participants (Kamilaris et al., 2019). Differ-
ent mechanisms of consensus whose two main ones are the
‘‘Proof of Work (PoW)” and the Proof of Stake (PoS). The PoW
requires the solving of difficult computational tasks before validat-
ing transactions and the adding of the block in the blockchain. In
this approach ‘‘miners” are in competition to be the first and obtain
the rewards, which has an impact on the environment, need
expending large a amount of computer and energy, and involves
a risk of centralization. While the PoS approach, ‘‘validators” are
randomly selected with a probability which depends on the
amount of stake held. At the end of the validation process, it earns
a fee. Other less used consensus mechanisms exist such as (1)
Proof of Elapsed Time (PoET) in which each node generates a ran-
dom wait time and goes to sleep for that specified duration; (2)
Simplified Byzantine Fault Tolerance (SBFT), an improvement of
Practical Byzantine Fault Tolerance (PBFT) specifically designed
for blockchain in which each new block is maintained by a delega-
tion of nodes with increasing authority. Each one uses the internal
time to decide when actions must be done; (3) Proof of Authority
(PoA) in which approved accounts process to the automated vali-
dation of transaction and blocks. Table 17.
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The Fig. 11 shows the blockchain general scheme.
The block chain is mainly used in Agriculture to make the data

of the supply chain transparent and open (Bermeo-Almeida et al.,
2018) and ensure the complete traceability of the food chain from
the fork to the plate. The block chain allows to record information
about: (1) Transactions between provider and farmer as well as
information relating to the crops, material and chemical products;
(2) The farm, cultivation practices and management, animals feed-
ing, and complementary information such as weather conditions,
animals welfare, diseases, treatment, etc; (3) Information about
factory and its equipment, the processing method, batch numbers
but also financial transactions with producers and distributors; (4)
Warehousing, storage conditions (temperature, humidity), meth-
ods of transport, transit time, and all financial transactions
between the distributors and retailers; (5) food items information
such as quantity available, quality, expiration date, time spent on
the shelf or in the stock (Bermeo-Almeida et al., 2018; Kamilaris
et al., 2019). The Fig. 12 shows an example of blockchain applied
to an agri supply chain.

To a lesser extent, secured data storage, remote monitoring, and
automation. The blockchain address some challenges of IoT such as
decentralization, data anonymization, and security. Moreover, it
allows faster and efficient operations, to improve reliability and
scalability (Bermeo-Almeida et al., 2018).

The analysis of new trends shows that: (1) Micro service archi-
tecture allows decomposing monoliths in microservices lowly
coupled which makes it easier to maintain it while allowing other
services to continue operating. Furthermore, this type of architec-
ture is more resilient because if one of the services is down, the
other services due to the weak coupling can continue to operate
at least in a degraded mode. (2) Data Lake/DataHouse propose a



Fig. 12. Supply chain based on a blockchain.

Fig. 13. Integration of the Agriculture 5.0 in the context of the Society 5.0.
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new approach Load Transform Extract (LTE) where data are firstly
stored in their original format, which are then transformed in order
to extract information. This paradigm is particularly well adapted
when the amount of data is so important that process all data is
too costly. In this case, data can be sampled in order to obtain
information. This paradigm is also well adapted if we want to con-
serve also raw data or complete a generic architecture, for exam-
ple, to store data that will be processed in batch processing. (3)
Osmotic Computing attempts to propose a solution to the reparti-
tion of workload between fog and cloud in decomposing treat-
ments in microelements composed of a microservice associated
with a micro dataset. The osmotic computing could also be associ-
ated with the micro service architecture to allow the distribution
of instances of microservices at different levels of the network
according to their respective load. (4) Dew Computing aims to
replicate data near sensors or users to continue to store data or
allows to continue to consult data when connection is intermittent.
It allows improving the reliance of architectures on connection
interruptions. (5) Blockchain provides an answer to authentica-
tion and security problems by making it possible in particular to
verify that the data has not been altered or compromised. Never-
theless, it is not possible to store large amount of data such as high
definitions images, or videos in the blockchain but hashes of data-
sets allowing to verify their authenticity well.
6. Towards Agriculture 5.0

According Myklevy et al., the world must improve the amount
of food produced by 70% by 2050 to produce global food needs
for a population (Mykleby et al., 2016) of 9.7 billion according to
the Food and Agriculture Organization of the United Nations
(FAO) (Zhang, 2016). To overcome these problems and contribute
to achieve the second objective of 17 Sustainable Development
Goals (SDGs) of the United Nations (UN) with a timeframe in the
range 2015 to 2030, the concept of Agriculture 5.0 has been born
(Martos et al., 2021). Agriculture 5.0 aims to increase production
sustainably while consuming fewer resources and taking care of
the environment. This next wave of agricultural revolution will
imply the use of robots integrating machine learning to compen-
sate for the shortage of workers. Farm robots are drastically
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increasing productivity in improving the human labor workforce
and can also harvest a more important volume faster than a
human. Nevertheless, these early technologies are still too expen-
sive for most farmers especially small farms (Saiz-Rubio and
Rovira-Más, 2020). Fig. 13 show the coupling between Agriculture
4.0 and Agriculture 5.0 and their integration in the context of the
agri-food supply chain, the Society 5.0 and 17 Sustainable Develop-
ment Goals (SDGs) of United Nations (See Fig. 13).
7. Conclusion

Our review is boosted by four research questions dectitaed as
follow: (1) Which storage and processing architectures are best
suited to Agriculture 4.0 applications and address its particulari-
ties? (2) Can generic architectures meet the needs of Agriculture
4.0 application cases? (3) What are the horizontal valuation possi-
bilities that allow the transition from research to industrialization?
(4) What are the vertical valuation possibilities to move from algo-
rithms trained in the cloud to embedded or autonomous
products?.

The analysis of the literature shows that a multitude of architec-
ture coexists. Nevertheless, the Lambada and Kappa architectures
seem to emerge as generic architectures. These must generally be
accompanied by complementary architectural components to
address specific needs and be part of a storage and processing
strategy in which the cloud architecture is a component of the
chain or may also and more rarely be absent.

The traditional centralized cloud computing will continue to
remain an important part of computing systems (Ai et al., 2018),
for sciences even if other paradigms appear. Indeed, cloud, fog,
and edge computing complementary interact with each other to
form a mutually beneficial and interdependent service continuum.
Some functions are naturally more suitable or advantageous at a
level than another in function of requirements in response time,
computing, or latency tolerance. However, the cloud cannot be
completely replaced by fog and edge computing because some
computation-intensive tasks can only be processed at the cloud
level, which has the computing power and storage capacities
(Wang et al., 2020). In Agriculture 4.0, this is particularly the case
for the processing of satellite images, the training of artificial intel-
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ligence algorithms such as Deep Convolutional Neural Network
(DCNN).

New trends make it possible to address various problems: (1)
The Data lake/Data House offers a more economical alternative
to massive cloud storage in databases. In this paradigm, all data
are stored in a state and transform only when they are to be
exploited. This approach is particularly interesting on one hand
when all data are not exploited and on the other hand when a deci-
sion or an action is not expected immediately. Data lake also
allows the fusion of agriculture data from various origins in differ-
ent formats and granularity. (2) The blockchain provides solutions
in particular to the security problems, the possibility of distribut-
ing data storage and ensuring the traceability of transactions in
agrifood supply chains (3) As the literature has shown, Dew Com-
puting can be placed in two different places in the network either
as close as possible to the sensors to allow processing to continue
during transmission interruptions or as close as possible to users in
order to have a local copy of the data in order to be able to consult
them offline. It should be noted, however, that for the second
option, there are other means of local caching at the device level,
for amounts of data of a few mega as those offered by Progressive
Web Apps (PWA) by example. (4) Osmotic computing provides a
solution to the question of how to distribute the load between
the different processing levels (edge, fog, cloud). It uses the concept
of microelement associating a microservice and its micro dataset.
In addition, osmotic computing can also be associated with
micro-service architectures. (5) The microservice architecture
offers the possibility of decoupling the monolithic architectures
into weakly coupled microservices. These services can be more
easily associated, maintained, or evolved independently. The com-
bination of these microservices makes it easier to develop new ser-
vices for the end-user that are also easier and faster to evolve
according to technological developments and needs.

In addition, at the network level, the 5G network offers new
possibilities in terms of Wireless Sensors and Actuators Network
(WSAN), communication between machines, UAVs, and UGVs.
Moreover, the coupling with MEC opens the field of processing
close of end-users. The SDN/NFV Architecture allows to facilitate
the design, and to improve the flexibility of network. Software-
defined networking (SDN) allows decoupling transmission of data
and network control functionality while Network function virtual-
ization (NFV) abstracts transfer network and related network func-
tions (Friha et al., 2021).

Two trends in the use of processing architecture coexist, on the
one hand, users of a paid or open source IoT platform, and on the
other hand, users who develop specific architectures to implement
particular use cases. From the point of view of transferability, we
understand that it is easier for ready-made chargeable infrastruc-
tures and that it can be limited for turnkey open-source infrastruc-
tures where the type of license adopted may pose a problem.
However, the sustainability of paid infrastructure is conditional
on the development granted by the company that manages them
and on its financial health. The development of architecture based
on paid software bricks is facilitated but its durability is condi-
tioned by the availability and the maintenance of these software
bricks. As for transferability, it is linked to the acquisition of ad
hoc licenses. The development of architecture using open source
software bricks from foundations such as Apache Foundation
makes it possible not to be limited by licenses but is dependent
on developments and maintenance carried out by the community
of developers. These software bricks can be abandoned by the com-
munity, the company that sponsors them, or the foundation that
hosts them. The development of a sustainable architecture would
go through an emancipation of software bricks which would make
it possible to easily change them on the one hand when one of
them disappears or if a new more efficient software brick appears.
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The deployment of 5G and satellite Internet will bring in a new
player, which are the telecommunications companies that will be
able to provide processing capacities and services as close as pos-
sible to users at the level of 5G antennas, which will impact pro-
cessing architectures. The problem will then arise of
interoperability between the networks of sensors and actuators
with these new high-speed, low-latency networks. The new net-
works offered by the telecommunications companies will make it
possible to offer new services or even to decouple the software
from the hardware, which will make it possible to make the sen-
sors and actuators interchangeable. This should make it possible
to reduce the cost of the equipment and make it accessible to
developing countries or areas not covered by traditional LPWAN
and 3GPP networks. The impact of these new networks will have
to be reviewed in the future to identify the new trends offered
by 5G and satellite Internet.
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