

L&LRS: Logic meets Learning

Thesis topic presentation

Charly Delfosse

Director : M. Randour (UMONS)
Co-Director : X. Siebert (UMONS)
ARIAC project
Mons University

September 30, 2021

Context

More and more reactive systems (e.g., self-driving cars...).

- Their correctness is often critical.
- ↪ Need for **safe controllers**.

How to obtain safe and optimal controllers?

Formal methods

Rigorous techniques based on mathematical tools.

- **Reactive synthesis**: from a specification, design a controller.

Machine learning

Powerful approach based on statistical reasoning.

- **Reinforcement learning**: train an agent based on a reward system.

Motivations

Formal methods

- Exact
- Hard guarantees
- Poor scalability

Machine learning

- Good performances
- Little guarantees
- Limited understandability

→ Idea: combine formal methods and machine learning.

Current frameworks usually only permit to consider a single quantitative (or qualitative) aspect at a time.

→ Need to model interplay between several aspects = **multi-objective**.
→ E.g., for an application, response time and energy consumption.

Objectives

Thesis goal

Combine the formal reasoning from **logic** and the power of **learning**, focusing on multi-objective models.

Three main dimensions:

- 1 Learning for multi-objective and/or exact models.
- 2 Safety and robustness.
- 3 Exploring understandable controllers.

→ Software tool supporting our fundamental advances.

Thank you for your attention !