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Abstract: In this paper, we study the controllability of an Expressive TTS system trained on a
dataset for a continuous control. The dataset is the Blizzard 2013 dataset based on audiobooks read
by a female speaker containing a great variability in styles and expressiveness. Controllability is
evaluated with both an objective and a subjective experiment. The objective assessment is based on a
measure of correlation between acoustic features and the dimensions of the latent space representing
expressiveness. The subjective assessment is based on a perceptual experiment in which users are
shown an interface for Controllable Expressive TTS and asked to retrieve a synthetic utterance whose
expressiveness subjectively corresponds to that a reference utterance.

Keywords: deep learning; speech synthesis; style interpolation; perception; artificial intelligence:
affective computing; emotion

1. Introduction

Text-To-Speech (TTS) frameworks, which generate speech from textual information,
have been around for a few decades and have improved lately with the coming of new AI
methods, e.g., Deep Neural Networks (DNN). Commercial products provide user-friendly
DNN-based speech synthesis systems. Such recent systems offer an excellent quality of
speech obtained by analyzing tens of hours of neutral speech, which often fail to convey
any emotional contents. The task being examined by scientists today has evolved towards
the field of expressive speech synthesis [1,2].

The aim of this task is to create not an average voice, but specific voices, with particular
grain and extraordinary potential with regards to expressiveness. This will make it possible
to make virtual agents behave in a characteristic way and hence to improve the nature of
the interaction with a machine, by getting closer to human–human interaction. It remains
to find good ways to control such expressiveness characteristics.

The paper is organized as follows:

• Related work is presented in Section 2;
• Section 3.2 describes the proposed system for controllable expressive speech synthesis;

Section 4 presents the methodology that allows for discovering the trends of audio
features in the latent space;

• Section 5 presents objective results using this methodology and results regarding the
acoustic quality with measures of errors between generated acoustic features and
ground truth;

• The procedure and results of the perceptual experiment is described in Section 6;
• Finally, we conclude and detail our plans for future work in Section 7.

To obtain the results of the experiments of this paper, the software presented in [3]
was used. It is available online (https://github.com/noetits/ICE-Talk, accessed on 29
August 2021) A code capsule (https://doi.org/10.24433/CO.1645822.v1, accessed on
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29 August 2021) provides an example of use of the software with LJ-speech dataset [4]
which in the public domain.

2. Related Work and Challenges

The voice quality and the number of control parameters depend on the synthesis tech-
nique used [1,5]. These parameters allow variations to be created in the voice. The number
of parameters is subsequently important for the generation of expressive speech.

Historically, there have been different approaches to expressive speech synthesis.
Formant synthesis can control numerous parameters; however, the generated voice is un-
natural. Synthesizers using the concatenation of voice segments reach a higher naturalness;
however, this technique provides few control possibilities.

The first statistical approaches using Hidden Markov Models (HMMs) [6] allows one
to achieve both a fair naturalness and a control of numerous parameters [7]. The latest sta-
tistical approaches use DNN [8] and was the premise of new speech synthesis frameworks,
for example, WaveNet [9] and Tacotron [10], referred to as Deep Learning-based TTS.

Regarding the controllable part of TTS frameworks, a significant issue is the labeling
of speech information with style or emotion data. Late investigations have been directed
into unsupervised strategies for how to accomplish expressive speech synthesis without
the need for annotations.

A task related to controllable expressive speech synthesis is the prosody transfer task
for which the goal is to synthesize speech from text with a prosody similar to another
audio reference. A common characteristic of both tasks is the need for a representation
of expressiveness. However, for controllable speech synthesis, this representation should
be a good summary of expressiveness information; i.e., it should be interpretable. A low
dimension would help the interpretability. For prosody transfer, the representation should
be as accurate and precise as possible.

In [11], the authors present a prosody transfer system extending the Tacotron speech
synthesis architecture. This extension learns a latent embedding space by encoding audio
into a vector that conditions Tacotron along with the text representation. These latent
embeddings model the remaining variation in speech signals after accounting for variation
due to phonetics, speaker identity, and channel effects.

The authors of [12] propose a supervised approach that use a time-dependent prosody
representation based on F0 and the first mel-generalized ceptral coefficient (representing
energy). A dedicated attention module and a VAE are leveraged to enable the concatenation
of information to linguistic encodings. This allows for a fine-grained prosody transfer
instead of a sentence-level prosody information.

CopyCat [13] addresses the problem of speaker leakage in many-to-many prosody
transfer. This problem occurs when the voice of the reference sample can be heard in the
resulting synthesized speech, and it should only transfer prosody and not speaker identity.
They are able to reduce the phenomenon with a novel reference encoder architecture that
captures temporal prosodic representations robust to speaker leakage.

Concerning controllable speech synthesis, Ref. [14] proposed using a VAE and de-
ploying a speech synthesis system that combines VAE with VoiceLoop [15]. Some other
researches have used the concept of VAE [16,17] for controllable speech synthesis. In [16],
the authors combine VAE and GMM and call it GMVAE. For more details concerning the
different variants of such methods, an in-depth study of methods for unsupervised learning
of control in speech synthesis is given in [17]. These works show that it is possible to build a
latent space leading to variables that can be used to control the style of synthesized speech.

In [18], the authors show an example of spectrograms corresponding to a text synthe-
sized with different rhythms, speaking rates, and F0. However, these works do not provide
insights about the relationships between the computed latent spaces and the controllable
audio characteristics.

Different supervised approaches were also proposed to control specific characteristics
of expressiveness [19–21]. In these approaches, it is necessary to make a choice of control
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parameters a priori, such as pitch, pitch range, phone duration, energy, and spectral tilt.
This reduces the possibilities of the controllability of the speech synthesis system.

A shortcoming of these investigations is that they do not give insights about the extent
to which the system is controllable from objective and subjective points of view. We intend
to fill this gap.

3. System
3.1. DCTTS

As our system relies on DCTTS [22], the details of the different blocks are given in
Figure 1. We use the notations introduced in [22] in which the reader can find more details
if needed.

(K, V) = TextEnc(L) := (HC2d←2d
1?1 )2 / (HC2d←2d

3?1 )2 / (HC2d←2d
3?27 / HC2d←2d

3?9 / HC2d←2d
3?3 / HC2d←2d

3?1 )2 / C2d←2d
1?1 /

ReLU / C2d←e
1?1 / CharEmbede-dim(L).

Q = MelEnc(S) := (HCd←d
3?3 )2 / (HCd←d

3?27 /HC
d←d
3?9 /HCd←d

3?3 /HCd←d
3?1 )2 / Cd←d

1?1 / ReLU / Cd←d
1?1 / ReLU / Cd←F

1?1 (S).

A = softmaxn-axis(KTQ/
√

d) R = Att(Q, K, V) := VA R′ = [R, Q]

Y = MelDec(R′) := σ / CF←d
1?1 / (ReLU / Cd←d

1?1 )3 / (HCd←d
3?1 )2 / (HCd←d

3?27 /HC
d←d
3?9 /HCd←d

3?3 /HCd←d
3?1 ) / Cd←2d

1?1 (R′).

SSRN(Y) := σ /CF′←F′
1?1 / (ReLU /CF′←F′

1?1 )2 /CF′←2c
1?1 / (HC2c←2c

3?1 )2 /C2c←c
1?1 / (HCc←c

3?3 /HCc←c
3?1 /Dc←c

2?1 )2 / (HCc←c
3?3 /

HCc←c
3?1 ) / Cc←F

1?1 (Y).

Figure 1. Details of DCTTS architecture [22].

3.2. Controllable Expressive TTS

The system is a Deep Learning-based TTS system that was modified to enable a control
of acoustic features through a latent representation. It is based on the Deep Convolutional
TTS (DCTTS) system [22].

Figure 2 shows a diagram of the whole system. The basis DCTTS system constitutes
the InEnc, the attention-based decoder comprising MelEnc and MelDec.

Figure 2. Block diagram of the system: During training, the mel-spectrogram is encoded by StyleEnc into a vector
representing style. This vector is broadcast-concatenated to the character embeddings. The result is encoded by the InEnc
network. Then an Attention-based decoder is used to generate the output mel-spectrogram.
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For the latent space design, the StyleEnc network was added. It consists of a stack
of 1D convolutional layers similar to the MelEnc, followed by an average pooling. This
operation enforces encoding time independent information. It can thus contain information
about statistics of prosody such as pitch average and average speaking rate but not a pitch
evolution. The latent vector at the output is the representation of expressiveness. This
vector is then broadcast-concatenated to the character embedding matrix, i.e., repeated N
times to fit embedding matrix length and then concatenated to it.

This system was compared to another in [23]. This comparison was done by training
the system with a single speaker dataset with several speaking styles given by an actor and
recorded in studio.

In this paper, we study the control of this system trained on the dataset with which
we hope will enable a continuous control of expressiveness. The dataset is the Bliz-
zard2013 dataset (https://www.cstr.ed.ac.uk/projects/blizzard/2013/lessac_blizzard201
3/, accessed on 29 August 2021) by Catherine Byers based on an audio book with a great
variability in vocal expressions and therefore in acoustic features.

The latent space is designed to represent this acoustic variability and as a control to
the output. It allows this without any annotation regarding the expressiveness, emotion,
and style because the representation is learned during the training of the architecture.

4. Post-Analysis for Interpretation of Latent Spaces

In this section, we explain the method presented in [23]. The methodology allows the
trends to be discovered in the latent space. It can be done in the original latent space or in a
reduced version of it.

The goal is to map mel-spectrograms into a space which is hopefully organized to
represent the acoustic variability of the speech dataset.

To analyze the trends of acoustic features in latent spaces, we compute the direction
of greatest variation in the space. For each feature of a set, we perform a linear regression
using the point in the latent space and the feature computed from the corresponding file in
the dataset.

The steps are the following:

• The mel-spectrogram is encoded to a vector of length 8 that contains expressiveness
information. This vector is computed for each utterance of the dataset.

• Dimensonality reduction is used to have an ensemble of 2D vectors instead. Figure 3
shows a scatter plot of these 2D points.

• Then a trend is extracted for each audio feature. For, e.g., F0mean, its value is computed
for each utterance of the dataset. We therefore obtain an F0mean corresponding to each
2D-point (x, y) of the scatter plot.

• We approximate the plane

F0 = f (x, y) = ax + by + c

• To assess that this plane f (x, y) is a good approximation of F0mean, implying a linear
relation between a direction of the space and F0mean, we compute the correlation
between the approximations f (x, y) with the ground truth values of F0mean.

• If we compute the gradient of the plane (which is in fact (a, b)), we have the direction
of the greatest slope, which is plotted in blue.

This representation is useful for a perspective of interface for controllable speech
synthesis system on which are represented the trends of audio features in the space.

https://www.cstr.ed.ac.uk/projects/blizzard/2013/lessac_blizzard2013/,
https://www.cstr.ed.ac.uk/projects/blizzard/2013/lessac_blizzard2013/,
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Figure 3. Gradient of the hyperplane corresponding to the greatest slope.

5. Objective Experiments

First we follow the methodology presented in the previous section to extract the
directions in the latent space corresponding to acoustic features of eGeMAPS feature
set [24] and quantify to which extent they are related by computing an Absolute Pearson
Correlation Coefficient (APCC).

This feature set is based on low-level descriptors (F0, formants, mfcc, etc.) to which
statistics for the utterance (mean, normalized standard deviation, percentiles) are applied.
All functionals are applied to voiced regions only (non-zero F0). For MFCCs, there is also a
version applied to all regions (voiced and unvoiced).

These features are defined in [24] as follows:

• F0: logarithmic F0 on a semitone frequency scale, starting at 27.5 Hz (semitone 0)
• F1–3: Formants one to three center frequencies
• Alpha Ratio: ratio of the summed energy from 50 to 1000 Hz and 1–5 kHz
• Hammarberg Index: ratio of the strongest energy peak in the 0–2 kHz region to the

strongest peak in the 2–5 kHz region.
• Spectral Slope 0–500 Hz and 500–1500 Hz: linear regression slope of the logarithmic

power spectrum within the two given bands.
• mfcc1–4: Mel-Frequency Cepstral Coefficients 1 to 4
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To objectively measure the ability of the system to control voice characteristics, we do
a sampling in the latent spaces and verify that the directions control what we want them
to control.

Then we assess the quality of the synthesis using some objective measures.

5.1. Quantitative Analysis
5.1.1. Correlation Analysis

To visualize acoustic trends, it would be useful to have a small number of features
that gives a good overview. To extract a subset of the list, we apply a feature selection with
a filtering method based on Pearson’s correlation coefficient. The idea is to investigate
correlations between audio features themselves to exclude redundant features and select
a subset.

The steps are the following:

• Features are sorted by APCC in decreasing order;
• For each feature, APCC with previous features are computed;
• If the maximum of these inter− f eatures− APCCs > 0.8, the feature is eliminated;
• Finally, only features that have a prediction− APCC > 0.3 are kept.

These limits are arbitrary and can be changed to filter more or fewer features from
the list.

In Table 1, we show the results of the APCC for Blizzard dataset. It can be noted
that F0 median is the most predictable feature from the latent space. The feature selection
method highlight a set of 17 diverse features that have an APCC > 0.3.

Table 1. APCC values between the best possible hyperplane of the latent space and audio features of
the eGeMAPS feature set.

APCC

F0 percentile50.0 0.723824
mfcc1V mean 0.619622
mfcc1 mean 0.554794

logRelF0-H1-A3 mean 0.493066
mfcc4V mean 0.492359

HNRdBACF mean 0.482579
F1amplitudeLogRelF0 mean 0.473154

slopeV0-500 mean 0.420381
StddevVoicedSegmentLengthSec 0.388952

F3amplitudeLogRelF0 stddevNorm 0.360528
mfcc2V mean 0.360144

hammarbergIndexV mean 0.356113
mfcc1V stddevNorm 0.350918

loudness meanFallingSlope 0.350369
loudness percentile20.0 0.340973

loudness meanRisingSlope 0.323489
F1frequency mean 0.318096

5.1.2. Distortion Analysis: A Comparison with Typical Seq2seq

To compare the synthesis performance of the proposed method with a typical seq2seq
method, we compare objective measures used in expressive speech synthesis. These
measures compute an error between acoustic features of a reference and a prediction of
the model. There exist different types of objective measures that intend to quantify the
distortion induced by a system of audio quality or prosody. In this work, we use the
following objective measures:
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• MCD [25] measuring speech quality:

MCDK = 1
T ∑T−1

t=0

√
∑K

k=1

(
ct,k − c′t,k

)2

• VDE [26]: VDE =
∑T−1

t=0 1[vt 6=v′t ]
T

• F0 MSE measuring a distance between F0 contours of prediction and ground truth:
F0_MSE = 1

T ∑T−1
t=0 (F0t − F′0t)

2

• lF0 MSE, similar to previous one in logarithmic scale:
lF0_MSE = 1

T ∑T−1
t=0 (log F0t − log F′0t)

2

Some works use DTW to align acoustic features before computing a distance. The prob-
lem with this method is that it modifies the rhythm and speed of the sentence. However,
computing a distance on acoustic features that are shifted completely distorts the results;
therefore, it is needed to apply a translation on acoustic features and take the smallest
possible distance. We thus report measures with DTW and with only shift in Table 2 for the
original DCTTS and Table 3 for the proposed unsupervised version of DCTTS.

Table 2. Objective measures for the typical TTS system.

MCD VDE lF0_MSE F0_MSE

DTW 9.973914 0.015488 0.436348 1219.128507
shift 13.331841 0.236024 6.283607 9481.103150

Table 3. Objective measures for the proposed Unsupervised TTS system.

MCD VDE lF0_MSE F0_MSE

DTW 9.624296 0.009699 0.311803 957.290498
shift 12.675999 0.218258 5.838526 8931.599942

5.2. Qualitative Analysis

In Figure 4, we show a scatter plot of the reduced latent space with the feature gradi-
ents. Each point corresponds to one utterance encoding and reduced to two dimensions.
The color of these points is mapped to the values of an acoustic feature to be able to visual-
ize how the gradients are linked to the evolution of the acoustic features. Two examples are
shown for F0 median and standard deviation of voiced segment length, i.e., the duration of
voiced sounds, which is linked to the speaking rate.

We can observe that the direction of the gradients follows well the general trend of
the corresponding acoustic feature. As the correlation values indicate, F0 median has an
evolution closer to a linear evolution in the direction of the gradient rather than for voiced
segment lengths standard deviation.
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Figure 4. Reduced latent space with directions of gradients of features. The color of each point is the
value of F0 median (top) and voiced segment lengths standard deviation (bottom).

6. Subjective Experiment
6.1. Methodology

An experiment was designed to assess the extent to which participants would be able
to produce a desired expressiveness for a synthesized utterance, i.e., a methodology for
evaluating the controllability of the expressiveness.

For this purpose, participants were asked to use the 2D interface to produce the same
expressiveness as in a given reference. We assume that if participants are able to locate in
the space the expressiveness corresponding to the reference, it means they are able to use
this interface to find the expressiveness they have in mind.

The experiment contains two variants: in the first, the text of the reference and 2D
space sentences are the same, while in the second, they are different. In the first one, the
participant can rely on the intonation and specific details of a sentence, while in the second,
he has to use a more abstract notion of expressiveness of a sentence.

The experiment is designed to avoid choosing a set of different characteristics or
style categories and letting the participant of the experiment judge how close the vocal
characteristics of a synthesized sentence is to a reference.
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The procedure for preparing the experiment is as follows:

• The model trained with Blizzard2013 dataset is used to generate a latent space with
continuous variations of expressiveness as presented in Section 3.2.

• In the 2D interface, we sample a set of points inside the region of the space in which
the dataset points are located. The limits of the rectangle are defined by projecting
sentences of the whole dataset in the 2D space with PCA and selecting xmin, xmax,
ymin, and ymax of all points. In other words, we use the smallest rectangle containing
the dataset points. We use a resolution of 100 for x and y axes, making a total of
10,000 points in the space.

• This set of 2D points is projected to the 8D latent space of the trained unsupervised
model with inverse PCA. The 8D vectors are then fed to the model for synthesis.

• Five different texts are used to synthesize the experiment materials. This makes a total
of 50,000 expressive sentences synthesized with the model.

The listening test was implemented with the help of turkle (https://github.com/
hltcoe/turkle, accessed on 29 August 2021), which is an open-source web server equivalent
to Amazon’s Mechanical Turk that one can host on a server or run on a local computer.
We can ask questions with an HTML template that includes in this case an interface
implemented in HTML/javascript.

During the perceptual experiment, a reference sentence coming from the 50,000 sen-
tences is provided to the participants. We provide the interface allowing a participant to
click in the latent space and choose what the point is that is in their opinion the closest to
the reference in terms of expressiveness.

The instructions shown to participants are the following:

• First, before the experiment, to illustrate what kind of task it will contain and familiar-
ize you with it, here is a link to a demonstration interface: https://jsfiddle.net/g9aos1
dz/show, accessed on 29 August 2021.

• You can choose the sentence and you have a 2D space on which you can click. It will
play the sentence with a specific expressiveness depending on its location.

• Familiarize yourself with it and listen to different sentences with a different expres-
siveness.

• Then for the experiment, use headphones to hear well, and be in a quiet environment
where you will not be bothered.

• You will be asked to listen to a reference audio sample and find the red point in the
2D space that you feel to be the closest in expressiveness.

• Be aware that expressiveness varies continuously in the entire 2D space.
• You can click as much as you like on the 2D space and replay a sample. When you are

satisfied with your choice, click on submit.
• There are two different versions, in the first one, the sentence is the same in the

reference and in the 2D space. In the second, they are not. You just need to select the
red point that in your opinion has the closest expressiveness.

• It would be great if you could do this for a set of 15 samples in each level. You can see
your evolution on the page.

A total of 25 and 26 people participated in variants 1 and 2 of the experiment, respec-
tively. We collected a total of 488 and 326 answers, respectively.

6.2. Evaluation
6.2.1. Controllability Score

To quantify how well the participants were able to produce a desired expressiveness,
we computed an average euclidean distance between the selected point and its true location.

Inspired by the omnipresent 5-point scales in the field of perceptual assessment, such
as MOS tests, we choose to discretize the 2D space in a five-by-five grid, as shown in
Figure 5. Indeed, a continuous scale could be overwhelming for participants and leave

https://github.com/hltcoe/turkle,
https://github.com/hltcoe/turkle,
https://jsfiddle.net/g9aos1dz/show
https://jsfiddle.net/g9aos1dz/show
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them unsure about their decision. The unit of distance is that between a red point and its
neighbor along the horizontal axis.

Figure 5. 2D space fractioned in a 5 × 5 grid for the perceptual experiment. The red points are the
possible positions of the reference in the space, the red rectangle is the selected case.

We use a random baseline to assess the level of a non-controllability of the system
in terms of expressiveness. In other words, if a participant is not able to distinguish
the differences in expressiveness of different samples, we assume that he would not
be able to select the correct location of the expressiveness of the reference and would
answer randomly.

6.2.2. Results and Discussion

Figure 6 shows the distributions of the distances between participant answers and
true location of references in the 2D space. The two variants (with same text and different
text) are on the left and the random baseline is on the right. The average distances with 95%
confidence intervals of the three distributions are, respectively: 0.908± 0.083, 1.448± 0.103,
and 2.314± 0.007.

Figure 6. Boxplots of the distances between participant choices and true locations of the reference
(lower is better). From left to right: (1) results of the first variant of the experiment for which
the text synthesized is the same for the reference and the latent space, (2) results of the second
variant for which the text synthesized is different for the reference and the latent space, and (3) a
random baseline.
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The second version was considered much more difficult by participants. For the first
task, it is possible to listen to every detail of the intonation to detect if the sentence is the
same. That strategy is not possible for the second one in which only an abstract notion of
expressiveness has to be imagined.

Furthermore, the speech rate is more difficult to compare between two different
sentences than for the same sentence. Generally speaking, when there is not the same
number of syllables, it is more difficult to compare the melody and the rhythm of the
sentences (Figure 7).

Figure 7. Boxplots of the distances between participant choices and true location of the reference by
index until the 15th answer of participants for variant 1 (top) and 2 (bottom) of the experiment.

The cues mentioned by participants include intonation, tonic accent, speech rate,
and rhythm.

Figure 8 shows the distributions of the durations for participants to answer one
question by index until the participants’ 15th answer. We can see in this figure that,
over time, participants are progressively more constant in the duration and show a lower
median duration. Outliers were discarded for plotting because they were too far from the
distribution. The maximum is above 17,500 s. We believe these outliers are due to pauses
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taken by participants during the test. Furthermore, the means are influenced by these
outliers and are therefore not plot in the figure.

Figure 8. Boxplots of the durations for participant to answer by index until the 15th answer of
participants for variant 1 (top) and 2 (bottom) of the experiment.

A least square linear regression on the medians shows that it decreases with a slope of
−0.767 s/task for the first variant and−2.086 s/task for the second. The two-sided p-values
for the hypothesis test whose null hypothesis is that the slope is zero are, respectively,
0.21 and 0.0004. We can therefore reject the null hypothesis in the second case but not in
the first.

Participants know more how to do it after several samples. They can guess where
they have to search. They can establish a strategy as they understand how the space is
structured. Therefore they feel like it is easier, and they can make a choice faster because
they hesitate less.

However, the evolution of average scores do not seem to improve or decline over
time. A least square linear regression on the average scores show slopes close to zero for
both variant 1 and 2 (respectively −0.005 and 0.0001 s/task). The two-sided p-value for a
hypothesis test whose null hypothesis is that the slope is zero are, respectively, 0.496 and
0.930. It indicates strong evidence that the slope is zero; i.e., the evolution of average scores
remains stable.
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7. Summary and Conclusions

This paper presented a methodology for automatically building latent spaces related
to expressiveness in speech data, for the purpose of controlling expressiveness in speech
synthesis without referring to expert-based models of expressiveness. We then studied the
relationships between such latent spaces and known audio features to obtain a sense of
the impact of such audio features on the styles expressed. This analysis consisted in an
approximation of audio features from embeddings by linear regression. The accuracy of
approximations was then evaluated in terms of correlations with ground truth.

The gradient of these linear approximations were computed to extract the information
from variations of audio features in speech. By visualizing these gradients along with the
embeddings, we observed the trends of audio features in latent spaces.

A perceptual experiment was designed to evaluate the controllability of an Expressive
TTS model based on these latent spaces. For that purpose, a set of reference utterances
were synthesized with expressive control taken from discrete points in the 2D-reduced
latent space. Test utterances were also synthesized with expressive control taken from a
5-by-5 grid on this 2D space. Participants were then asked to search this 2D grid for the
test utterance corresponding to the expressiveness of a reference utterance. An average
distance on the grid was computed and compared to a random baseline. Two variants of
the task were presented to participants: in the first one, the same sentence was used for the
reference and test utterances, while in the second they were different. Results show that
the average distance is lower for the first task than for the second, and that they are both
lower than the random baseline.

8. Perspectives

We presented a 2D interface in which we can explore a space of expressiveness. It could
be interesting to investigate ways to control more vocal characteristics and independently
when it is consistent and possible. Several types of controls could be investigated depending
on the nature of the variables. For some variables, the control could consist of a set of
choices, e.g., male/female or a list of speaker identities.

We also could imagine having two separate 2D spaces. One would be dedicated to a
speaker identity, i.e., a space organizing voice timbres. Furthermore, the second would,
e.g., have the 2D space of expressiveness presented in this paper. This kind of application
needs frameworks able to disentangle speech characteristics and factorize information
corresponding to different phenomena, such as phonetics, speaker characteristics, and
expressiveness in the generated speech.

In the context of having more and more general systems, the research results of this
paper that focus on English language could be adapted to obtain a system able to work
with several languages. This could be considered as one more aspect of speech that needs
to be factorized with others mentioned in the previous paragraph.

There are also possibilities of controlling the evolution of speech characteristics inside
a sentence, referred to as fine-grained control that could be interesting to investigate. Cur-
rently, this aspect is mostly present in prosody transfer tasks and is not subject to a control
involving a human choosing what intonation, tonic accent or voice quality he would like
to hear at different parts of a sentence. The difficulty would be to select the relevant charac-
teristics that a sound designer would want to control and design an intuitive interface to
control them.

The different possibilities in this area would be interesting for, e.g., video games
producer for the development of virtual characters with expressive voices, for animation
movies, synthetic audiobooks, or in the advertisement sector.
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