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Abstract

Introducing sparsity in a neural network has been an efficient way to reduce its
complexity while keeping its performance almost intact. Most of the time, sparsity
is introduced using a three-stage pipeline: 1) train the model to convergence, 2)
prune the model according to some criterion, 3) fine-tune the pruned model to
recover performance. The last two steps are often performed iteratively, leading to
reasonable results but also to a time-consuming and complex process. In our work,
we propose to get rid of the first step of the pipeline and to combine the two other
steps in a single pruning-training cycle, allowing the model to jointly learn for the
optimal weights while being pruned. We do this by introducing a novel pruning
schedule, named One-Cycle Pruning, which starts pruning from the beginning of
the training, and until its very end. Adopting such a schedule not only leads to
better performing pruned models but also drastically reduces the training budget
required to prune a model. Experiments are conducted on a variety of architectures
(VGG-16 and ResNet-18) and datasets (CIFAR-10, CIFAR-100 and Caltech-101),
and for relatively high sparsity values (80%, 90%, 95% of weights removed). Our
results show that One-Cycle Pruning consistently outperforms commonly used
pruning schedules such as One-Shot Pruning, Iterative Pruning and Automated
Gradual Pruning, on a fixed training budget.

1 Introduction

Deep neural networks are able to achieve state-of-the-art results in a wide variety of domains, includ-
ing computer vision, natural language processing and speech recognition. But such achievements
imply important increase in budget required both at training and inference time. More specifically,
model size, run time memory and a number of computing operations are all constraints that make
modern neural networks challenging to deploy on resource-constrained environments such as mobile
phones or embedded devices.

For that reason, neural network compression and acceleration have become active fields of research.
Several researchers have been interested to create parameter-efficient architectures, by using low-rank
approximations, parameters quantization, and neural network pruning.

Recent studies have also exhibited a particular characteristic of neural networks, called the Lottery
Ticket Hypothesis (1), which suggests that, in regular neural network architectures, there exists a
sub-network that can be trained to at least the same level of performance as the original one, in a
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comparable training budget, as long as it starts from the same original conditions. Such a sub-network
has thus “won” at the initialization lottery and can be preserved, while other parameters of the original
network can be removed using pruning methods.

To prune a neural network, the most commonly used technique is the so-called Iterative Pruning (2),
requiring several cycles of pruning and fine-tuning which leads to a lengthy process. In this work,
we propose to adopt a novel pruning schedule applied directly from the start of the initial training
phase. This scheduling function gradually prunes the network during the training phase, thus making
training and pruning of a neural network a joint process. Contributions of our work are summarized
as following:

• We propose One-Cycle Pruning, a novel pruning schedule with stable, thus generic parame-
ters.

• The proposed pruning schedule is performed using a single training cycle, thus drastically
reducing the required training budget.

• Experiments conducted on two architectures and three datasets show that the proposed
schedule outperforms commonly used pruning schedules.

2 Related Work

Pruning techniques can differ in many aspects. The main points of differentiation are presented in
this section.

Granularity. The granularity used for the pruning is often categorized into two groups: unstructured,
or when the pruning focuses on removing individual weights in the network and that there is no intent
to keep any structure in the filters (3; 4). Such a pruning method leads to sparse weight matrices,
requiring dedicated hardware or software to take advantage of the speed and computation gains. To
overcome this limitation, structured pruning was introduced (5; 6; 7), which takes care of removing
complete blocks of weights such as vectors, kernels, or even convolution filters.

Criteria. Early work makes use of second-order approximation of the loss surface to remove
parameters (3; 4). Other work has also explored the use of l0 regularization (8) during the training or
even the use of variational dropout (9). In addition to being more complex, those criteria often show
to be less consistent across datasets and to lead to comparable or worse results than simple magnitude
pruning, based on l1-norm (10).

Scheduling. While early pruning methods cared about removing redundant weights in a single step,
called one-shot pruning (5), the most adopted technique nowadays is to perform pruning iteratively
(11; 12), starting from a pretrained network and performing several steps of pruning followed by
fine-tuning. While having undeniably shown good results, such a pruning schedule is usually time
consuming to obtain the final, pruned network (5). For this reason, some research has proposed
alternatives to perform pruning during the training or even before it even started (13; 14).

Recently, some work has shown that the most critical phase in the training of a neural network happens
during the very first iterations (15; 16) and that applying regularization after that initial transient
phase has little effect on the final performance of the network (17). One thus should apply pruning
early in the training to take advantage of its regularization effects but must do so very carefully to not
irremediably damage the network during this brittle period (18; 19).

For those reasons, we propose a pruning schedule that is applied gradually during the training, and
designed to be gentle during the very first iterations. This pruning schedule can be used for any
granularity and any selection criteria, but in this work, we are focusing on unstructured pruning, i.e.
removing individual weights, and we prune the weights having the lowest l1-norms.

3 Proposed Method

The proposed method for pruning consists of starting from a dense network and inducing sparsity
during the whole training phase. The idea is thus to make the network jointly optimize for a given
task, taking the pruning constraints into account.
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More precisely, we propose to induce sparsity in the network according to the following schedule:

st = si + (sf − si) ·
1 + e−α+β

1 + e−αt+β
(1)

with st, the level of sparsity at training step t, si and sf respectively the initial and final level of
sparsity, and α, β being two tuning parameters, modifying either the steepness of the scheduling
(Figure 1a), or its horizontal offset (Figure 1b), to better suit the problem or architecture that is used.
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Figure 1: Visualization of the variation of the scheduling for different α and β values.

We empirically found that α = 14 and β = 5 provide good default values for all the tested
architectures and datasets and that final performance was very stable when varying the parameters
around those default values (Appendix A). Those are the values we use for all of our experiments.

4 Experimental Setup

Pruning Methods. We compare our pruning technique to several state-of-the-art pruning schedules:
One-Shot Pruning, Iterative Pruning and Automated Gradual Pruning (AGP), under a fixed training
budget. The optimal training iteration at which the pruning process starts for those schedules, i.e. the
pretraining phase, is determined with a grid search. More precisely, it corresponds to the pruning
process starting at 40%, 20% and 20% of the training budget, for the One-Shot Pruning, Iterative
Pruning and AGP, respectively, as shown in Figure 2.
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Figure 2: The Studied Pruning Schedules.

Datasets and Architectures. For our experiments, the datasets have been chosen to be various in
terms of image resolution and number of classes. In particular, we evaluate our methods on the three
following datasets: CIFAR-10 (20), CIFAR-100 (20) and Caltech-101 (21).

Moreover, those datasets are tested on two types of popular convolutional network architectures:
VGG-16 (22) and ResNet-18 (23).

Training Procedure. The networks we use for our experiments are trained from a random initializa-
tion. The images are first resized to 224× 224 and are augmented by using horizontal flips, rotations,
image warping and random cropping. We train each model using the 1cycle learning rate method (24),
where the training starts with a learning rate warmup until a nominal value of 0.001, then gradually
decay until the end of the training.
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5 Results

5.1 ResNet-18

We compare the results on the three studied datasets and for high sparsity levels. The results are
reported in Table 1.

One-Shot Iterative AGP One-Cycle

CIFAR-10

Sp
ar

si
ty 80% 93.10 ± 0.03 93.13 ± 0.03 93.22 ± 0.22 93.49 ± 0.14

90% 92.42 ± 0.21 91.72 ± 0.08 92.85 ± 0.09 93.31 ± 0.20
95% 91.58 ± 0.04 87.54 ± 0.39 92.04 ± 0.07 92.76 ± 0.16

CIFAR-100

Sp
ar

si
ty 80% 74.21 ± 0.09 74.18 ± 0.29 74.78 ± 0.09 74.81 ± 0.16

90% 73.34 ± 0.23 71.80 ± 0.05 73.83 ± 0.41 74.50 ± 0.24
95% 71.68 ± 0.16 62.88 ± 0.27 71.92 ± 0.30 73.34 ± 0.21

Caltech-101

Sp
ar

si
ty 80% 80.31 ± 0.89 79.78 ± 0.56 81.93 ± 0.85 82.31 ± 0.88

90% 79.87 ± 0.54 77.84 ± 0.31 80.89 ± 0.90 81.84 ± 0.16
95% 78.57 ± 1.02 73.83 ± 1.28 78.76 ± 1.27 79.81 ± 0.92

Table 1: Comparison of results of 3 runs on ResNet-18.

We observe that One-Cycle Pruning consistently outperforms other pruning schedules. Interestingly,
One-Shot pruning outperforms iterative pruning for most datasets and sparsity levels, which can be
explained by the restricted training budget. Longer retraining are required for iterative pruning, which
was also reported by (5). Results for VGG16 are reported in Appendix B.

5.2 Speed of Convergence

Previous experiments where conducted with a fixed training budget. To better emphasize the impact
of the pruning schedule on the training dynamics, we now propose to let the training budget change
according to the needs of the pruning method until reaching a desired performance. The pretraining
phase is kept unchanged, with only the fine-tuning budget being extended accordingly.

We report in Table 2 the training budget required to reach 90%, 70% and 80% accuracy on CIFAR-10,
CIFAR-100, Caltech-101 dataset respectively, using ResNet-18 pruned to a sparsity of 95%.

One-Shot Iterative AGP One-Cycle
CIFAR-10 2.5× 4× 1× 1×
CIFAR-100 2.5× 5× 1.25× 1×
Caltech-101 2× 3.2× 1.4× 1×

Table 2: Training budget required to prune ResNet-18 to 95% to a fixed performance. The budget is
expressed relatively to One-Cycle Pruning

Overall, the technique that requires the most important training budget is iterative pruning, followed
by one-shot pruning. This trend has also been reported a retraining time required by (5; 11). The
training budget of AGP is equal or higher to our method for all the tested cases.

6 Conclusion & Perspectives

In this work, we have proposed One-Cycle Pruning, a novel pruning schedule that allows a network
to be pruned during the training phase, removing the needs of an initial pretraining phase but also of
a complex and time-consuming fine-tuning phase. When compared to common pruning schedules,
One-Cycle Pruning provides comparable or better results with significantly less computation required.
Further work could include the study of the quality of lottery ticket found with such a pruning
schedule when compared to other schedules. Supplementary materials such as the code to reproduce
our results and a blog post describing the experiments are available in Appendix C.
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A Experiments on α and β

We performed a grid-search to find the best pair of α and β values and found it to be α = 14 and
β = 5. In Table 1, we report pairs close to the optimal one, to illustrate the stability of One-Cycle
Pruning.

β
3 4 5 6 7

α
13 93.10 ± 0.18 93.23 ± 0.12 93.30 ± 0.07 93.31 ± 0.05 92.97 ± 0.07
14 93.13 ± 0.06 93.16 ± 0.07 93.46 ± 0.13 93.09 ± 0.18 93.25 ± 0.12
15 93.10 ± 0.03 93.21 ± 0.14 93.19 ± 0.19 93.17 ± 0.08 93.28 ± 0.03

Table 3: Results of the pruning to 90% on Resnet-18 trained on CIFAR-10.

B VGG16

For our experiments, we use the VGG-16 network (22), as modified by (25). It consists of 13
convolutional layers and 2 fully-connected layers, with each convolutional layer being followed by a
batch normalization layer. We compare the results on the three studied datasets and for high sparsity
levels. The results are reported in Table 4.

One-Shot Iterative AGP One-Cycle

CIFAR-10

Sp
ar

si
ty 80% 90.25 ± 0.14 90.64 ± 0.19 90.87 ± 0.15 90.84 ± 0.09

90% 89.82 ± 0.19 89.76 ± 0.18 90.67 ± 0.25 90.72 ± 0.40
95% 89.73 ± 0.37 81.46 ± 2.87 90.56 ± 0.31 90.67 ± 0.11

CIFAR-100

Sp
ar

si
ty 80% 67.83 ± 0.19 67.80 ± 0.15 67.93 ± 0.06 68.34 ± 0.38

90% 67.33 ± 0.16 2.66 ± 1.31 67.88 ± 0.39 68.24 ± 0.45
95% 66.16 ± 0.49 1.95 ± 0.70 67.51 ± 0.19 67.51 ± 0.16

Caltech-101

Sp
ar

si
ty 80% 77.81 ± 0.96 78.23 ± 0.35 78.45 ± 0.85 78.90 ± 0.88

90% 78.77 ± 1.06 74.42 ± 2.79 78.57 ± 0.21 78.56 ± 0.31
95% 76.99 ± 0.78 42.61 ± 2.60 78.68 ± 0.53 78.99 ± 0.50

Table 4: Comparison of results of VGG-16. Accuracies are averaged over 3 iterations.
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As for ResNet-18, we observe that One-Cycle Pruning outperforms other pruning schedules in most
cases.

C Supplementary Material

The code to reproduce our results has been made available at https://github.com/
nathanhubens/One-Cycle-Pruning.

Also, a blog post describing some of our experiments is available at: https://nathanhubens.
github.io/posts/deep%20learning/2021/06/15/OneCycle.html
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