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ABSTRACT
The use of electroencephalography (EEG) continuously expanded
during the last century leading this recording technique to be the
standard in various domains. Considering its poor spatial resolution,
many researchers have developed methods to reconstruct cortical
source activations from scalp signals, but the lack of ground truth
brain activity makes the reconstruction algorithms difficult to val-
idate. To deal with this issue, simulated EEG data can be used to
evaluate the reliability of the reconstructed sources. In the literature,
benchmark frameworks are proposed to evaluate the reconstruction
on fixed pseudo-EEG and other tools allow the user to generate
custom data. However, to the best of our knowledge, none of the
available pipelines proposes a uniform way to validate a reconstruc-
tion method from custom pseudo-data. We therefore present our
versatile validation framework for EEG-based source localization.
This new tool is an all-in-one validation pipeline aiming to evaluate
source localization from pseudo-EEG data as close as possible to the
experimental environment of the researcher. This paper presents
the 5-step framework from the configuration to the evaluation and
template data that can be used for benchmarking purposes. By
using our uniform region-based evaluation method, researchers
will be able to compare their reconstruction method on different
configurations that fit their own experimental data. All the codes,
template data and configuration description have been made avail-
able through https://github.com/numediart/ValidEEG.git.
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1 INTRODUCTION
Nowadays, electroencephalography (EEG) is one of the most used
recording techniques in human brain research due to its easiness,
non-invasive nature, high temporal resolution and relatively low
cost compared to other imaging techniques such as magnetic reso-
nance imaging. However, EEG presents low spatial resolution as
each electrode senses the activity of millions of neurons through
their average electrical field considering the relatively high distance
between the EEG cap and the actual cortical sources. Moreover, the
problem of volume conduction i.e., the spreading of a single source’s
electrical field to multiple electrodes, makes the brain source ac-
tivity even more difficult to be localized. Multiple methods have
been developed to face the problem of source reconstruction such
as common spatial pattern [1] or independent component analysis
[2]. Nevertheless, the reliability of those algorithms is difficult to
evaluate as there is no available ground truth describing the source
activity of a specific EEG recording.

The need of a reliable way to evaluate source reconstruction
methods is the reason why we propose a novel tool to validate the
accuracy of source localization from EEG signals for Event-Related
Potential (ERP) and oscillatory source activity. As the source sig-
nals highly vary from an experiment to another, we pay particular
attention to the adaptable aspect of the proposed framework.

In order to make our tool as accessible as possible, we based our
code on one of the most used toolboxes for EEG analysis: FieldTrip
[3]. This choice results of a trade-off between ease-of-use and ease
of modification.

2 RELATEDWORK
The question of source reconstruction method evaluation has been
addressed since the late 90’s with Phantoms studies controlling
inverse method accuracy with highly detailed volume conduction
models [4], [5]. Then, EEG simulation took a growing importance
for the validation of source reconstruction in the literature [6], [7].
Most of the evaluation methods are custom-made and relies on dif-
ferent hypotheses (linear model, spatial dependencies, etc.) or have
been designed for some specific cases such as the Source Information
Flow Toolbox (SIFT) [8] for connectivity and blind source separa-
tion evaluation or simBCI for studying Brain Computer Interface
(BCI) methods [9]. Haufe and Ewald [10] proposed a more general
benchmark framework for EEG-based source localization and con-
nectivity, but they restricted their analysis to only two activated
sources and only eight brain regions (octants). This evaluation is
therefore not sufficient to ensure the reliability on a specific source
reconstruction pipeline. Moreover, they do not give the opportunity
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to the users to customize the generated pseudo-EEG signal, limiting
the analysis to oscillatory signals in the alpha band.

To fulfill the lack of custom EEG data simulation tools in the
literature, Krol et al. [11] proposed the Simulating Event-Related
EEG Activity (SEREEGA) toolbox whose purpose is to generate
custom pseudo-event related EEG data. This tool allows the users
to generate EEG signals with known ground truth according to
their own signal patterns, head model, source localizations and
event timestamps.

However, there is still a gap between signal generation and vali-
dation. We therefore aim to fill this gap with our versatile validation
framework. On top of SEREEGA, we provide additional features to
propose a complete validation framework:

• Artifacts generation
• Evaluation method for source localization
• Versatile region-based ground truth

Those features offer the opportunity to the users to evaluate
their source reconstruction pipelines on realistic signals with the
desired precision according to the chosen atlas.

To ensure standardization, this framework is developed on Mat-
lab as most of the major toolboxes for EEG data analysis are based
on this platform. As we want our framework to be accessible to
the largest audience possible, we provide an easy configuration
through a json file as well as our open-source FieldTrip-based codes
for more specific analyses.

3 PROPOSED METHOD
The goal of our work is to provide an easy-to-configure validation
framework for brain source localization. The versatile aspect allows
the users to validate their pipelines on pseudo-data closer to their
own use case. The framework is divided into 5 steps:

• Parameters selection: the custom parameters are defined
in a configuration (.json) file allowing the user to design the
framework with specific considerations such as the number
of pseudo-sources (n_dipoles) or the number of trials within
one session (n_trials).

• Source selection: n_dipoles are selected from the predefined
atlas so that the region corresponding to each dipole is not
a neighbor of the other selected dipole’s regions.

• Pseudo-source signal generation: a signal containing
n_trials occurrences of the desired pattern (ERP or oscil-
latory) is generated for each of the selected sources.

• Pseudo-EEG data generation: the final pseudo-EEG data
are first generated through FieldTrip functions and some
artifacts are further added as well as noise.

• Performance evaluation: the n_dipoles non-neighboring
reconstructed regions with highest power are considered
as the source regions and the score for each dipole of each
session is given as follow:

• 1 if reconstructed source region = pseudo-source region.
• 0.5 if reconstructed source region is the neighbor of a pseudo-
source region.

• 0 if reconstructed source region is the second neighbor
(neighbor of neighbor) of a pseudo-source region.

• -1 otherwise.

The final score is the mean of each individual score through all
sessions.

3.1 Parameters Selection
The parameters have been chosen as a trade-off between controlla-
bility (enough parameters to fit a specific analysis) and simplicity
(limited number of parameters allowing an easy handling). Those
parameters can be classified in 4 types

• General pipeline: definition of the number of ses-
sions/dipoles/trials over which we want to generate the
pseudo-source signal. The session and trial lengths are also
defined there as well as the number of artifacts we want to
introduce in the final EEG pseudo-data. An event file can
also be defined there to control the appearance time of each
trial.

• Pseudo-source definition: selection of the source type
(ERP or oscillatory) and their main features (e.g., specific
peaks for ERP and frequency bands for oscillatory signals).
The desired atlas is also defined there. A dipole file can be
specified to control the dipole locations for each session.

• Pseudo-EEG definition: selection of the head model and
the electrodes with respect to FieldTrip requirements.

• Artifacts and noise: Template artifacts and signal-to-noise
ratio (SNR), for source and EEG signals, are defined in this
section.

3.2 Source Selection
Each source is defined as a 3-dimensional dipole with specific posi-
tion and orientation. The dipole position is the position of a ran-
domly chosen dipole among those of a predefined atlas. The atlas,
given as a parameter, is a FieldTrip mesh structure where each
dipole’s region is defined. Importantly, the atlas mesh must be
aligned to the head model and the electrodes. Templates of the re-
quired data are provided (template atlas is the Automated Anatomi-
cal Labeling (AAL) MNI atlas [12]), but custom atlas can be obtained
through the function prepare_atlas. The orientation of each dipole
is defined as a random unitary vector.

To ensure the selected dipoles are not part of the same region or
neighboring ones, we designed a neighboring matrix of the atlas
regions (cf. Figure 1). This matrix fulfills 2 conditions:

• A region from one hemisphere cannot be a neighbor of one
of the other hemisphere.

• If 2 regions are neighbors in one hemisphere, their corre-
sponding regions in the other hemisphere must be neighbors
too.

3.3 Pseudo-Source Signal Generation
The pseudo-source signal is generated as a series of base signal
trials around a baseline (cf. Figure 2). This base signal is either
an event-related potential (ERP) or an oscillatory signal (OSCIL)
depending on the type parameter. The trial samples are defined
through the event parameter. We used the SEREEGA toolbox [11]
to generate the base signals as follow:

• ERP
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Figure 1: source neighboring matrix. For each region in row, neighbors are defined with a white square.

An ERP trial is a series of positive and/or negative peaks defined
as normal probability density function around the specified latency
(e.g., P300 is a positive peak appearing 300ms after the beginning
of a trial) with the corresponding width covering 6 standard devia-
tions and the maximum amplitude being the corresponding ampli
parameter. To introduce variability between trials, we defined a
latency deviation varying between +/-50ms, a width deviation of
half the desired width and an amplitude deviation of a fifth of the
corresponding amplitude. An additional parameter introduces the
habituation to the stimulus along the session through a decaying
slope in amplitude. This slope leads the last trial amplitude to be
a fourth of the initial amplitude. To consider the polarity inver-
sion between anterior and posterior brain regions [13], signals on
anterior source are reverted. The last step is the addition of pink
noise. This colored noise, inversely proportional to the frequency,
is generated following Zhivomirov method [14] with respect to the
snr_source parameter. An example of a 3-dipoles pseudo-ERP source
signal is given in Figure 2A.

• OSCIL

An oscillatory trial is defined as an event-related spectral pertur-
bation (ERSP) [15]. This signal is obtained by band-pass filtering a
uniform white noise in a predefined frequency band (freq param-
eter) using a Kaiser window-based finite impulse response filter
[16] with a specific amplitude (ampli parameter) and a random
phase. Finally, pink noise is added to the signal with respect to the
snr source parameter. An example of a 3-dipoles pseudo-oscillatory
signal is shown in Figure 2B.

3.4 Pseudo-EEG Signal Generation
The pseudo-EEG signal generation consists of 2 steps: the first one
creates the EEG signal on each channel as a FieldTrip raw structure
through the ft_dipolesimulation function, the second step introduces
artifacts within the data.

3.4.1 From source to EEG.. FieldTrip offers the opportunity to sim-
ulate channel-level time-series data from one or multiple dipole
signals considering a specific volume conduction model, that geo-
metrically defines the head model and carry information about the
different tissues through which the electrical signal will spread (i.e.,
white/grey matter matters, cerebro-spinal fluid, skull, and scalp) as
given by ft_prepare_headmodel function, and a particular electrode
montage as defined by ft_read_sens. White noise with a relative
level to data signal corresponding to snr_eeg parameter is also added
to the generated pseudo-signal. The resulting EEG data are then
normalized. An example of FieldTrip-generated EEG data is shown
in Figure 3A. To give a better idea of what does the signal look
like, we performed a timelock analysis of these FieldTrip-generated
signals (cf. Figure 3B).

3.4.2 Artifacts generation. On top of the FieldTrip-generated EEG
signal, we introduce artifactual signals. Those artifacts have been
chosen within the annotated corpus of Hamid et al. [17]. This
dataset consists of 310 EEG recordings in which every artifact has
been annotated as one of the five following types: electrode, eye
movement, muscle, chewing or shiver artifacts. We decided to only
use the first three types in our pseudo-data as chewing and shiver
artifacts are so rare that their effect on the result of timelock-based
source reconstruction algorithms is negligible. We have extracted
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Figure 2: Example of 3-dipoles pseudo-source signals with the 2 first dipoles being on anterior regions and the 3rd once on the
posterior region. A: pseudo-ERP defined as a series of P100, N200, P300 and N400. B: pseudo-oscillatory signal with frequency
band of each dipole defined as: 8-12Hz (blue), 16-24Hz (orange), 9-13Hz (yellow).

all the artifactual segments from recordings of the patient number
100 to represent our template artifacts.

The artifact trials, being recorded with a sampling rate of 256 Hz
on a 19-channel set-up, are first linearly interpolated to the pseudo-
EEG sampling rate. Then, a second interpolation is conducted to
generate artifact signals on channels of the pseudo-EEG set-up
that are not present in the template artifact dataset. This latter
interpolation is based on a neighboring matrix computed from the
pseudo-EEG channel positions similarly to Figure 1. Every missing
channel signal is computed as the mean of the neighbor’s signals.
Finally, the artifact trials are normalized in order to keep comparable
scales between pseudo-EEG and artifact signals.

Following the chosen configuration, n_artifacts are randomly se-
lected from the adapted trials and added to the pseudo-EEG signals
at random timestamps. An example of the final pseudo-EEG data is
shown in Figure 3C.

3.5 Performance Evaluation
We propose a qualitative evaluation of the performance of a
timelock-based source reconstruction algorithm applied to the
pseudo-EEG signals of each session. This evaluation is based on
the closeness of reconstructed regions with highest root mean
square values to the ground truth regions (i.e., regions to which

the pseudo-source belongs). To avoid a dipole to be considered
twice, we ensure the selected regions not to be neighbors using the
previously computed source neighboring matrix. For each session,
once the n_dipoles highest power regions selected, we compare
each ground truth region with the selected regions and a qualita-
tive score is assigned as follow: if one of the reconstructed region
is the same as the ground truth, the score is 1; if one region is a
neighbor of the ground truth, the score is 0.5; the score is 0 if one
of the selected regions is a neighbor of the ground truth’s neigh-
bors; otherwise, the score is -1. This simple qualitative assignment
gives the opportunity to be less penalized if the ground truth dipole
is at the limit of several regions while greatly penalizing totally
wrong reconstruction. The score is therefore represented by an
n_session*n_dipoles matrix with the global mean being the final
score. Figure 4A shows how the evaluation is represented in our
framework through an example.

As the ground truth dipole positions and regions are automat-
ically saved during generation, the users can visualize the recon-
structed vs. ground truth sources on their atlas source model as
shown on Figure 4B.



A Versatile Validation Framework for ERP and Oscillatory Brain Source Localization Using FieldTrip ICBEA ’21, May 25–27, 2021, Taiyuan, China

Figure 3: Example of a 3-dipoles pseudo-EEG signal. A: 64-channels EEG generated throughft_dipolesimulation function from
a 3-dipoles pseudo-ERP signal. B: timelock analysis of signals in A. C: final pseudo-EEG signals after having added muscle
artifact to the signal in A.

4 BENCHMARK
As we provide template data and configuration, the proposed valida-
tion framework can be used as a benchmark generator. The chosen
template configuration is a 10-sessions 3-dipoles pseudo-source
signals carrying, within each session of 15 minutes, 200 one-second
trials and 400 artifacts, lasting less than 10 seconds, with a sampling
rate of 2048 Hz. The artifact trials were randomly chosen among
a set of 184 artifact segments composed of 13 electrode artifacts,
54 eye movement artifacts and 117 muscle artifacts. The template
electrode is the 10/20 standard set-up from FieldTrip template over
which we only kept 64 electrodes with respect to the 10/20 standard.
The template volume conduction model (i.e., head model) were built
following FieldTrip pipeline from their standard MRI template head
model that we have segmented using five tissue types (gray matter,
white matter, cerebro-spinal fluid, skull, and scalp) using the SimBio
finite element method to build the forward model. The template
atlas is the AAL MNI atlas provided by FieldTrip from which we
kept only the 90 first regions as the cerebellum and the vermis are
not part of our head model. We then realigned the electrodes, head
model and atlas together with respect to the CTF coordinate system.
The pseudo-ERP template is a 4 peaks ERP composed of P100, N200,
P300 and N400 with corresponding amplitudes of 0.2, 0.4, 1 and
0.8 microvolt and widths of 300, 300, 200 and 200 milliseconds, re-
spectively. The pseudo-oscillatory template is defined by a specific
frequency band for each dipole: 8-12 Hz (dipole 1), 16-24 Hz (dipole
2) and 9-13 Hz (dipole 3) with a maximum amplitude of 1 microvolt
for all of them. The source SNR is set to 1, while the EEG SNR is
set to 2.

We encourage the users to provide the final evaluation of their
source reconstruction pipeline applied to this template pseudo-ERP

or oscillatory EEG data to progressively build a robust benchmark
dataset.

5 DISCUSSION
From EEG simulation to localization evaluation, the proposed frame-
work offers the possibility to customize multiple features so that the
users can validate their method in a very specific way to fit their ex-
perimental data. The provided configuration file gives an easy way
to modulate the framework while the open-source FieldTrip-based
code allows more sophisticated analyses.

The addition of artifacts makes the generated signals closer to
real EEG data. We therefore offer a large set of artifactual segments
composed of electrode, eye movement and muscle artifacts, but
expert Matlab users will easily be able to select specific artifacts
from the dataset provided by Hamid et al. [17].

The evaluation process is based on neighboring matrices com-
puted on source and sensor domains. Those matrices can be adapted
to the desired accuracy through the available eeg_neighbmat and
source_neighbmat functions. The chosen atlas also influences the
way the validation is performed. Our template atlas is composed of
90 regions, but some users may want to work with different brain
regions. For this purpose, two different functions can be used: 1)
select_roi function allows one to combine and/or remove regions
from an existing atlas; 2) prepare_atlas function transforms an atlas
in NIfTI format to the required FieldTrip-like source model atlas
while realigning it to the selected volume conduction model and the
EEG-cap to CTF coordinates. Importantly, the final reconstructed
source activity must be given as one signal per region with regions
order corresponding to the chosen atlas.
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Figure 4: Example of the evaluation of a 10-sessions 3-
dipoles source reconstruction of pseudo-EEG signals. A:
distribution of the correctness of reconstructed regions
through their relative position to the initial pseudo-regions
(i.e., correct, neighbor, second neighbor or wrong position)
(left) and the corresponding score statistics (right). B: occip-
ital (left) and frontal (right) views of reconstructed regions
(yellow) from one session in comparison with the ground
truth pseudo-dipoles (red spheres) and their corresponding
region (light blue). The region in red is a properly recon-
structed source.

Although benchmarking is not the main purpose of our work, we
offer a template configuration set to pave the way for benchmark
building. So, we encourage users to run their analysis on template
ERP and/or oscillatory data and provide their final score on future
related publications.

The main limitation of the proposed framework is that it is
restricted to source localization. Neither connectivity nor causality
analyses can be evaluated here. Further implementations will be
developed in the future to add those missing components. To that
end, we will use the autoregressive signal generation proposed by
Haufe and Ewald [10] and reimplemented into SEREEGA [11] to
generate dependent source activities with specific directionality.

6 CONCLUSION
In this paper, we present an all-in-one framework as a tool to val-
idate a wide range of EEG-based source reconstruction pipelines
in a fashionable way. The proposed framework consists of 5 steps:
1) specific parameters are defined through a configuration file; 2)
the targeted source location and orientation are set; 3) the pseudo-
source signal is generated as ERP or oscillatory activations; 4) the
pseudo-EEG data are created with respect to the predefined vol-
ume conduction model, EEG cap, sources definition and specific

artifactual events; 5) the localization accuracy of the reconstructed
sources from the previously generated pseudo-EEG is evaluated
through a brain region-based score.

With this validation framework, we offer an accessible way to
validate specific methods of EEG-based source localization and pave
the way for the creation of a robust benchmark dataset.
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