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ABSTRACT

Recent advances in video manipulation techniques have made synthetic media creation more accessible than ever
before. Nowadays, video edition is so realistic that we cannot rely exclusively on our senses to assess the veracity
of media content. With the amount of manipulated videos doubling every six months, we need sophisticated
tools to process the huge amount of media shared all over the internet, to remove the related videos as fast as
possible, thus reducing potential harm such as fueling disinformation or reducing trust in mainstream media.
In this paper, we tackle the problem of face manipulation detection in video sequences targeting modern facial
manipulation techniques. Our method involves two networks: (1) a face identification network, extracting the
faces contained in a video, and (2) a manipulation recognition network, considering the face as well as its
neighbouring context to find potential artifacts, indicating that the face was manipulated. More particularly,
we propose to make use of neural network compression techniques such as pruning and knowledge distillation
to create a lightweight solution, able to rapidly process streams of videos. Our approach is validated on the
DeepFake Detection Dataset, consisting of videos coming from 5 different manipulation techniques, reflecting the
organic content found on the internet, and compared to state-of-the-art deepfake detection approaches.
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1. INTRODUCTION

In 2017, the term Deepfakes was coined to refer to a deep learning based technique able to swap the face of a
person with the face of another. It was later expanded to any deep learning based method able to manipulate
image, video and/or audio content and whose objective is to deceive people for a harmful usage. The definition
“Believable media generated by a deep neural network” has been recently proposed,1 to include methods such as
reenactment, replacement, editing and synthesis of media content. While such manipulation techniques can be
prolific for certain usages such as special effects or movie dubbing, they can also be harmful when used in other
contexts, to create hoax and propaganda.

For a long time, video editing and manipulation was in the hands of a few people, requiring lots of expertise and
high-end programs and resources. But over the last few years, generation neural methods such as Autoencoders
(AE) or Generative Adversarial Networks (GAN) have made so much progress, both in terms of quality and in
terms of required resources, that nowadays many DeepFakes generation techniques have become widely accessible
on many phone applications and social media, or even on marketplace services, allowing anyone to create fake
videos without any preliminary experience in the field. For that reason, the amount of detected deepfakes
on the internet has been increasing exponentially, at a rate which is roughly doubling every 6 months. As
a result, Deepfakes could flood social media very quickly if one does not pay attention. Moreover, access to
even better computation resources allow deepfakes to perform real-time impersonation, which can be used for
social engineering and fraud. Eventually, without any method able to discern the true from the fake, this would
irrevocably damage our trust in any video or image we see on conventional media.

Nowadays, a wide field of research is now dedicating growing efforts for detecting facial manipulation in
image and video. However, the lack of data makes the task of deepfake detection in the real-world setting
pretty challenging. For that reason, the research community has released many deepfakes datasets2,3 to promote
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and help researchers in the field. More importantly, the Deepfake Detection Challenge was recently organized,
gathering the experts in the field, competing to release the best deepfake detection models. This lead in more
than 2,000 teams submitting their solution. However, participants were judged on the final performance of their
model, so few of them considered the size and speed of their model being a limitation and generally proposed
solution involving ensembles of models of millions of parameters, which is unsuitable for such systems to be
able to cope with the potential amount of videos to analyse on a daily basis on social networks or for real-time
applications.

In this paper, we tackle the problem of deepfake detection by proposing a lightweight model, able to quickly
analyze a video. Our contributions can be summarized as follows:

• We propose a single lightweight solution for DeepFake Detection, able to detect manipulation on still
images, as well as videos.

• Empirically show that the proposed method is able to reach competitive performance when compared to
state-of-the-art classifiers, while showing less parameters and operations.

• We propose a small web-based application for deepfake detection. This application, as well as the code
to reproduce our results, can be found at the following link: https://github.com/nathanhubens/deepfake-
buster.

The remainder of the article is organized as follows. Section 2 provides a general description of DeepFake
detection methods, as well as model compression techniques. We then describe in Section 3 the proposed
method, including the architecture, the data used for training and the methods applied to obtain a lightweight
architecture. We then provide our results in Section 4, as well as an ablation study of the techniques that we
used, and also an interpretation of the decision of our solution by presenting the attention maps given by our
model. Lastly, we provide in Section 5 our concluding remarks and open issues.

2. RELATED WORK

2.1 DeepFakes Detection

DeepFakes creation often generates artifacts that are usually exploited by recent methods. Those artifacts can
generally be separated into two groups: spatial and temporal.

Spatial Artifacts Detection. Artifacts generally appear when the generated content is encrusted into the
original frame. Treating the problem as image classification allows CNN models to detect the artifacts present in
the frames,4 thus classifying each frame individually. Those artifacts can come in many forms and dimensions,
requiring different techniques to be detected. For example, mesoscopic information can be analyzed to detect the
forgery.5 Because the generated and original contents usually do not come from the same source, some warping
artifacts may appear during the blending phase, which can also be detected.6

Temporal Artifacts Detection. Because a majority of DeepFake generation techniques are used frame-
by-frame on videos, this can leave temporal inconsistencies or artifacts such as flickering or jitter that can be
detected.7,8 For example, irregular eye blinking patterns can be exploited to detected manipulated faces.9 Recent
method even study the visual heartbeat rhythm to assess the veracity of a video.10

Hybrid Techniques. Because both spatial and temporal artifacts usually appear in DeepFakes videos,
they can both be exploited in order to detect forged videos. Combining those techniques usually require more
data intensive models such as 3D CNNs.11



2.2 Network Compression

There exist many techniques that can be applied in order to obtain a lightweight architecture. The next subsection
will outline the main ones.

Efficient Architectures: To obtain a lightweight architecture, it is most important to design it using
parameters efficient building blocks. For example, convolutions have been shown to be more efficient than fully-
connected layers when the task involves natural signals data. Also, early CNN architectures used to possess a
MLP in the top layers,12,13 which have been replaced by a pooling layer, followed by a single linear layer, drasti-
cally reducing the number of parameters without impacting the performance. More recently, several conducted
researches have been interested in creating even more efficient building blocks. Those blocks involve Depthwise
Separable Convolutions,14,15 but also bottlenecks to further improve the computation efficiency. Some architec-
tures have even been discovered by performing Neural Architecture Search, designed to be as efficient as possible,
notably in terms of computations.16,17

Pruning. Neural networks have been known to be widely overparametrized, even for already parameter
efficient ones. An efficient way to reduce the size of trained neural network is to remove redundant weights,
i.e. prune them. Pruning can be applied at different granularities, i.e. structured when the goal is to remove
blocks of weights, e.g. kernels or filters, or unstructured when the weights are removed individually. There exist
many criteria of selection used to decide which parameters to remove, but the most widely used is Magnitude
Pruning, i.e. remove parameters that have the smallest l1-norm, which as been shown to better generalize across
architectures and datasets.18

Quantization. Representing the weights of a neural network using a smaller arithmetic precision makes
it lighter to store but also faster during inference. A limitation of using smaller precision arithmetic is that it
hinders the SGD updates when computing the backward pass, usually involving small changes in the weights, as
the small precision may cause number rounding errors. To solve that problem, it is possible to store the model
using a smaller precision but to make the updates using high precision.19 By doing so, the model still benefits
from the low precision for each forward passes, making both the training and inference faster and the updates
of SGD are done using high-precision, avoiding any rounding problems.

Knowledge Distillation. It is possible to distill the knowledge of a big model into a smaller one by
training the later to copy the output of the big one. This technique is called Knowledge Distillation20 and is
known to expose the Dark Knowledge present in the big model, helping the smaller one to understand more
about the data distribution and to reach a better performance.

Inspired by the state of the art, we propose a CNN-based technique, able to detect manipulation on both still
images or videos, thus exploiting spatial artifacts, and which is lightweight, thanks to the use of compression
techniques, to be able to process a large flow of information rapidly.

3. METHODOLOGY

3.1 The Dataset

The dataset used for our research is the DFDC dataset.21 This dataset belongs to the so-called third generation
of Deepfakes datasets,2 and is the largest currently available dataset consisting of 124k videos, distributed in
three subsets.

Training Set. The training set provided in DFDC is comprised of 119,154 video clips, of 486 unique
subjects. A total of 100,000 videos contain Deepfakes, created with DFAE, MM/NN face swap,22 NTH23 and
FS-GAN.24 Each video is 10 seconds long, representing 300 frames.

Validation Set. The validation set consists of 4,000 video clips, which are also 10 seconds long, in which
2,000 clips contain Deepfakes. This set was created using 214 unique subjects, none of which were present in the
training set. The same Deepfake generation techniques were used, with the addition of a new one, StyleGAN.25

Authors also include augmentations and distractions to 80% of the videos. Augmentations perform modifications
such as noise, frame rate change, JPEG artifacts, blur, while distractions are composed of logo or face overlay.



Test Set. The test set is comprised of 5,000 video clips of 260 unique subjects that have not been seen
before. Again, augmentations and distractions were added to 80% of the set, including new distractions such as
dog masks or flower crown filters.

3.2 The Architecture

In this paper, we propose a lightweight solution, for DeepFakes detection, whose general framework is presented
in Figure 1. This solution is composed of two networks: (1) a face identification network, extracting the faces
contained in an image or video, and (2) a manipulation recognition network, classifying the extracted faces as
real or fake.

Face Detector Fake Classifier REAL
FAKE

Input Frames

Faces

Figure 1. The general framework of our solution. It takes a single frame (an image) or several frames (a video) as an
input, extracts the face(s) and performs classification.

The Face Detector that we use is RetinaNet,26 as we empirically find that it provides a good trade-off between
detection performance and speed of processing. Concerning the Fake Classifier, the architecture that we use is
inspired by the design of ResNets,27 but replacing the common convolution blocks by an inverted residual module,
as used in MobileNetV2.28 This inverted residual module is composed of a first pointwise convolution, allowing to
expand the amount of channels before performing the spatial feature extraction by a depthwise convolution. The
amount of channels is squeezed by another pointwise convolution. We also append a Squeeze-Excite module29

before adding back the residual, as it allows to increase the classification performance at the cost of a slight
increase in the total parameter amount.

Our building block is represented in Figure 2. Each Convolution is followed by a batch normalization layer
and a Rectified Linear Unit.

3 × 3 DW Conv1 × 1 Conv 1 × 1 Conv SE Module

Inverted Residual

Figure 2. The simplified building block of our model (non-linearities and normalization layers are omitted).

Our architecture, represented in Figure 3, is composed of a stem of 3 convolutional layers, then 4 double
blocks, each followed by a MaxPooling layer. After the first block, we insert a Self-Attention module, that not
only helps improving performance, but also helps to understand and interpret the decision of the network.

3.3 Data Augmentation and Progressive Learning

As we discussed in Section 1, organic content found on the internet is subject to come from many environment
and to undergo quality degradation. For those reasons, the data augmentation that we apply during training
should be thoughtfully chosen, in order to make our model as robust as possible. The augmentations that we
apply on our training data are represented in Figure 4. We also use Cutout30 to randomly discard some part



3×
3 C

on
v

3×
3 C

on
v

3×
3 C

on
v

D
F 

B
lo

ck

D
F 

B
lo

ck

D
F 

B
lo

ck

D
F 

B
lo

ck

Po
ol

 +
 F

C

12
8×

12
8×

32

12
8×

12
8×

32

12
8×

12
8×

64

32
×3

2×
12

8

16
×1

6×
25

6

8×
8×

51
2

256 × 256 × 3 SA
 M

od
ul

e

64
×6

4×
64

64
×6

4×
64

× 2 × 2 × 2 × 2

Stem

Figure 3. The Architecture of our Proposed model. It consists of a stem of 3 convolutional layers, then 4 double DF
Block, each followed by a pooling layer. A single Self-Attention module was included in the model.

of the image, forcing the network to focus on different attributes and also Mixup31 (not represented), blending
images together to improve generalization capacity of the network.

Original

Flip

Warp Contrast Rotation JPEG Artifacts Downscaling

Zoom Brightness Motion Blur Gaussian Noise Cutout

Figure 4. Illustration of the augmentations applied to training data. The transforms have been chosen to create a model
robust to organic videos that it might encounter in real-world settings.

To create a model even more robust and less prone to overfitting, we use a technique called Progressive
Learning,17 much inspired by Curriculum Learning. The idea is to gradually increase the effects of augmentations
along the training, making the training example more difficult as the model is learning to discriminate more
simpler examples.

3.4 Compression of the solution

After designing an efficient architecture, we still can reduce the number of parameter and speed of processing. In
this purpose, we consequently use pruning, quantization, knowledge distillation and batch normalization folding.
The results of the addition of each method is reported in Table 1.

Pruning. In order to reduce the amount of parameters, we apply pruning on our architecture. To remove
as much parameters as possible, we apply unstructured pruning, i.e. we remove individual weights. Doing so
enables to reach higher sparsity level without suffering from a performance degradation. Unlike most commonly
used pruning methods, which start pruning after the model has been trained, we perform pruning right from the
start of training, using the One-Cycle Pruning schedule.32 This not only allows to reach higher accuracy than
most pruning schedule, but allows to do it in a more constrained training budget. The weights that show the
smallest L1-norm are the ones that are removed. We decided to remove the same percentage of weight at each
layer, i.e. local pruning, and empirically found a sparsity amount of 50% being the upper bound above which
the performance of the model starts to decrease.



Quantization. The quantization that we apply in our work is using the Mixed-Precision Training19

technique. It allows us to obtain a model using FP16 precision, but performing all the training updates using
FP32. As the forwards pass is performed using FP16, Mixed-Precision thus allows us not only to have a model
that has a faster inference, but also a faster training.

Knowledge Distillation. Pruning and Quantization are usually not lossless, i.e. a trade-off must be found
between the reduction of the size of the network and the performance drop. In order to mitigate that drop, we
perform Knowledge Distillation20 where the student model is the pruned and quantized one and the teacher
model is the model before compression. By doing so, we encourage the compressed model to better recover its
lost performance.

Batch Normalization Folding. After training, the parameters of the Batch Normalization layers in a
model are fixed. This means that we can blend the effect of normalization into the weights of the convolution
operation preceding it. In practice, we can remove the batch norm layers and replace the values of the weights
W and biases b of the convolutional layers preceding it by Wfold and bfold, expressed by the following equations:

wfold = γ · W√
σ2 + ε

bfold = γ · b− µ√
σ2 + ε

+ β

With γ and β being the learned parameters of the batch normalization, and σ, µ, being respectively the
standard deviation and mean values, stored by the batch normalization layer.

4. RESULTS

4.1 Ablation Study

We perform an ablation study to further highlight the impact of each technique used to create our final lightweight
model.

Accuracy Loss Model Size (Mb) ROC-AUC

Baseline 74.34 0.5563 46.22 0.893
+ Self-Attention 75.36 0.5511 46.35 0.903
+ Squeeze-Excite 75.54 0.5445 49.17 0.909
+ Mixup 78.24 0.5312 49.17 0.917
+ Progressive Learning 81.64 0.5098 49.17 0.935

+ Pruning (50%) 81.52 0.5109 24.74 0.930
+ Mixed-Precision 81.16 0.5122 12.45 0.927
+ KD 81.90 0.5109 12.45 0.939
+ BN Folding 81.90 0.5109 12.43 0.939

Table 1. Ablation Study of the proposed model.

The baseline model is built using only inverted block modules and trained using the data augmentations
showed in Figure 4. We then gradually add components to the architecture, i.e. Self-Attention and Squeeze-
Excite, showing that they help the model to reach higher performance at the price of a small increase in the
parameter amount. The data augmentation is then modified, by adding Mixup and Progressive Learning. Again,
those method help to obtain a better model and do not change the parameters count. Pruning and Mixed-
Precision training reduce slightly the performance of the model but allow to decrease the model size by a factor
of ∼ 4×. Knowledge Distillation allows to recover from the lost performance after Pruning and Quantization,
and Batch Normalization Folding finally reduces the parameter count a bit more while keeping performance
intact.



4.2 Comparison to other methods

We compare our DeepFake classifier to other state-of-the-art classifiers such as Mesonet,5 ResNet-18,27 EfficientNet-
B0,16 Xception,15 that were used for deepfake classification, but also to the two best solutions proposed at the
DeepFake Detection Challenge.

ROC-AUC Model Size (Mb) FLOPS (1e6) Inference Time (ms)

MesoNet 0.786 0.91 0.06 3.84 ± 0.22
Resnet18 0.886 357.53 1.81 4.35 ± 0.24
EfficientNet-B0 0.913 127.65 0.39 16.17 ± 0.13
Xception 0.929 665.08 38.92 13.52 ± 0.32
Selim Seferbekov33 0.984 6109.12 111.00 197.02 ± 21.76
WM34 0.985 1722.85 95.84 56.21 ± 8.63
Our Method 0.939 12.43 0.77 (fp16) 6.31 ± 0.23

Table 2. Comparison state-of-the-art DeepFake classification methods. Inference Time is computed on a Nvidia GTX
1080 and averaged over 10 iterations.

As can be seen in 2, our proposed model is able to outperform most of state-of-the-art classification models,
at the exception of the solution of Selim Seferbekov and WM, being the two top solutions of the DFDC. However,
those two solutions involve an ensemble of models, making both the storage and inference pass very costly. The
lightest and fastest solution is MesoNet, however, even though it was able to accurately classify on the Face2Face
dataset,35 the DFDC dataset is more challenging and requires more power than MesoNet is able to provide. We
thus find that our solution is able to provide a good trade-off between performance and computation costs.

4.3 Interpretation

As DeepFakes detection is becoming more and more difficult, especially for the human eye, it is important to be
able to understand the decisions of our model. For that reason, we can get a few indications by studying the
effect of the attention block that we introduced in the network. Not only does it helps our model getting better
results, but it also allow us to highlight the part in the images that are the most important for the decision of
our model. As shown in Figure 5, the highlighted parts generally concern high frequency information, i.e. eyes,
nose, mouth. It was also reported that the artifacts were usually localized around those facial features.4 This
shows that DeepFakes generation methods still create artifacts that can be detected by classification models.

RealFake Fake Fake Real Real

Figure 5. Extracted faces and their corresponding attention map.

5. DISCUSSION AND CONCLUSIONS

In this paper, we proposed a novel, lightweight solution for DeepFake detection. This solution has been created
by the use of efficient computation layers, and application of several compression techniques, namely pruning,
knowledge distillation, quantization, batch normalization folding. We have shown that our solution was able to
compete with state-of-the-art classifiers, while providing comparable performances to state-of-the-art deepfake
detection models. Further work could however include the use of temporal artifacts in our classification.
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