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Abstract

Purpose – Artificial intelligence (AI) has started to receive attention in the field of digital entrepreneurship.
However, few studies proposeAI-basedmodels aimed at assisting entrepreneurs in their day-to-day operations.
In addition, extant models from the product design literature, while technically promising, fail to propose
methods suitable for opportunity development with high level of uncertainty. This study develops and tests a
predictive model that provides entrepreneurs with a digital infrastructure for automated testing. Such an
approach aims at harnessing AI-based predictive technologies while keeping the ability to respond to the
unexpected.
Design/methodology/approach –Based on effectuation theory, this study identifies anAI-based, predictive
phase in the “build-measure-learn” loop of Lean startup. The predictive component, based on recommendation
algorithm techniques, is integrated into a framework that considers both prediction (causal) and controlled
(effectual) logics of action. The performance of the so-called active learning build-measure-predict-learn
algorithm is evaluated on a data set collected from a case study.
Findings – The results show that the algorithm can predict the desirability level of newly implemented
product design decisions (PDDs) in the context of a digital product. The main advantages, in addition to
the prediction performance, are the ability to detect cases where predictions are likely to be less precise
and an easy-to-assess indicator for product design desirability. The model is found to deal with
uncertainty in a threefold way: epistemological expansion through accelerated data gathering,
ontological reduction of uncertainty by revealing prior “unknown unknowns” and methodological
scaffolding, as the framework accommodates both predictive (causal) and controlled (effectual)
practices.
Originality/value –Research about using AI in entrepreneurship is still in a nascent stage. This paper
can serve as a starting point for new research on predictive techniques and AI-based infrastructures
aiming to support digital entrepreneurs in their day-to-day operations. This work can also encourage
theoretical developments, building on effectuation and causation, to better understand Lean startup
practices, especially when supported by digital infrastructures accelerating the entrepreneurial
process.

KeywordsDigital entrepreneurship, Lean startup, Artificial intelligence, Effectuation, Causation, Uncertainty

Paper type Research paper

Predictions
through Lean

startup?

© Santo Raneri, Fabian Lecron, Julie Hermans and François Fouss. Published by Emerald Publishing
Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone
may reproduce, distribute, translate and create derivative works of this article (for both commercial and
non-commercial purposes), subject to full attribution to the original publication and authors. The full
terms of this licence may be seen at http://creativecommons.org/licences/by/4.0/legalcode

The authors would like to especially express our gratitude to Natalie Dickson for her attentive
proofreading.

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/1355-2554.htm

Received 14 July 2021
Revised 19 December 2021
Accepted 13 January 2022

International Journal of
Entrepreneurial Behavior &

Research
Emerald Publishing Limited

1355-2554
DOI 10.1108/IJEBR-07-2021-0566

http://creativecommons.org/licences/by/4.0/legalcode
https://doi.org/10.1108/IJEBR-07-2021-0566


Introduction
The rapid growth of digital technologies has completely transformed the way entrepreneurs
build their products, conceive their businessmodels, test their ideas and dealwith uncertainty
(Ghezzi and Cavallo, 2020; Nambisan, 2017). While still relatively sparse (Kraus et al., 2018),
the study of digital entrepreneurship has gained momentum. The first developments were
mainly theoretical, with papers laying the framework for future research (Nambisan, 2017;
Sahut et al., 2019; Sussan and Acs, 2017). For example, Nambisan (2017) proposed a research
agenda calling for an explicit theorization of concepts related to digital technologies in order
to enrich theories of entrepreneurship. Sussan and Acs (2017) and Sahut et al. (2019) followed
this trend by proposing a conceptual framework for the study of the digital entrepreneurship
ecosystem and by identifyingmajor research streams respectively. Special issues allowed the
emergence of empirical papers (Kaminski and Hopp, 2019; Pr€ufer and Pr€ufer, 2020; von Bloh
et al., 2020). As exposed in the next paragraph, these papers started to recover the lost ground
of research in entrepreneurship on the question of big data and artificial intelligence (AI)
(Obschonka and Audretsch, 2020). Indeed, compared to other fields, including management
research (Sheng et al., 2017), entrepreneurship researchers have devoted little attention to this
emerging trend.

Machine learning techniques – a branch of AI where a model is trained on known data to
predict labels of unknown data – increase human cognition in an unprecedented way,
allowing the prediction of so far unpredictable events or outcomes. New questions can now be
tackled by applyingAI-based techniques (Pr€ufer and Pr€ufer, 2020). For example, in Kaminski
and Hopp (2019), the authors introduced an approach based on neural networks and natural
language processing to predict the returns of a crowdfunding campaign. Pr€ufer and Pr€ufer
(2020) offered an original analysis of the dynamics of demand for entrepreneurial skills in the
Netherlands. In von Bloh et al. (2020), big data techniques explore the possible link between
news coverage of entrepreneurship and regional entrepreneurial activity. Therefore, the
contribution of big data and AI techniques allows the field of predictability to be broadened
through the development ofmodels based on the history of known data (Amoroso et al., 2017).
Situations previously perceived as uncertain – where the probability distributions of the
possible cases are unknown (Liu, 2012) – can today be seen as risky – that is, where the
possible cases are known as well as the probability of occurrence of each of these cases
(Knight, 1921). This is especially important for entrepreneurial decision-making as
entrepreneurs often oscillate between situations of risk and uncertainty (Galkina et al.,
2021; Sarasvathy, 2001).

As such, decision-making in situations of risk and uncertainty is a key topic for
researchers on digital entrepreneurship. Especially, Nambisan (2017) calls for more research
about digital infrastructures, that is, the digital resources and tools, including prediction
algorithms and digital prototype builder, that help entrepreneurs develop their ventures. It is
in line with Obschonka and Audretsch (2020) who called for more research on the role of
predictive algorithm for entrepreneurship, taking risk and uncertainty in consideration. It is
about exploring the way digital infrastructures change the nature of uncertainty as well as
the way entrepreneurs deal with said uncertainty.

However, such predictive technologies strongly fit with a causal “predictive” view of the
entrepreneurial process, wherein markets can be measured and discovered (Mansoori and
Lackeus, 2020). For entrepreneurs engaging with predictive infrastructures, there is a risk of
being “stuck” in a quest for an optimal solution without being able to react to unexpected
contingencies. First, entrepreneurs deal with a large variety of domains. In some cases, a core
technological resource might be available and provide predicted data about desirability,
while other components of the business model (such as the choice of a logistic partner) might
require substantial development and adaptability (Sanz-Velasco, 2006). Second, there is a
challenge to combine cognitive logics based on a prediction (causal) versus controlled

IJEBR



(effectual) frameworks (Sarasvathy, 2001, 2021). Accordingly, an entrepreneur relying too
blindly on a prediction algorithmmight be unable to leverage unexpected changes, surprising
results and other unpredictable events like a pandemic. Authors such as Galkina and Jack
(2021) or Smolka et al. (2018) recommend the simultaneous and synergistic use of causal and
effectual logics when developing opportunities and creating ventures. However, they concede
that synergetic effects depend on specific circumstances and that little is known about how
entrepreneurs operationalize blended logics as hybrid practices.

Thus, there is a risk to consider AI techniques as the panacea that mitigates all
uncertainty. Prediction algorithms can lead to a paradoxical situationwhere some elements of
uncertainty can be reduced by being converted into a risk, but at the same time, relying on
prediction might reduce the capacity of entrepreneurs to deal with unexpected contingencies.
The aim of this paper is to develop a framework that accommodates both prediction and
effectual practices. The Lean startup approaches (LSAs) are proposed as a frame for hybrid
practices. This work elaborates on the role of prediction in LSAs and, thereby, helps
practitioners harnessing the power of predictive AI without forfeiting their capacity to deal
with unexpected contingencies.

The research question addressed in this article is thus:

RQ. How can entrepreneurs harness prediction technologies while keeping a control-
based, effectual approach for product development?

The paper elaborates on the articulation of causal and effectual logics as part of an extended
build-measure-predict-learn (BMPL) loop, where the build phase is effectual, the measure and
predict phases are by essence causal and the Learning phase is both causal and effectual.

To the best of our knowledge, the present paper is the first to theorize how effectuation and
causation can be combined through LSAs, exploiting the potential of both risk-taking
through predictive technologies and addressing uncertainty. By developing an AI-based
infrastructure as part of the LSA toolkit, this research aims at a twofold contribution. First, it
contributes to the conversation about hybrid practices and the key mechanisms that help
entrepreneurs blend causal and effectual logics (Galkina et al., 2021; Galkina and Jack, 2021).
Second, it contributes to the emerging conversation about digital entrepreneurship by
discussing the implication of machine learning on decision-making in situation of risk and
uncertainty (Nambisan, 2017). Especially, the build-measure-learn (BML) loop of the Lean
startup methodology is revised to add a predictive stage. The new BMPL loop is designed to
explicitly articulate causal and effectual logics.

The theoretical background is exposed in the next section, starting with entrepreneurial
logics of action, how they relate to LSAs and how they can be augmented by relevant AI-
techniques. Building on this background, the next section describes the AI-based BMPL loop:
the underlying articulation of logics and its AI-based techniques. Next, themodel is applied to
a concrete case study, the “EasyTips” entrepreneurial project, thereby providing a primer
about how entrepreneurs can build on AI techniques to facilitate opportunity development
through LSAs. The results are presented and assessed. Finally, we conclude by discussing
results in the light of entrepreneurship research. The main advantages of the methodology –
that is, the acceleration of the pace of experiments and facilitation of the evaluation of
experiments’ results – are discussed along with their implications on uncertainty
management. Conclusions draw the limits of the current research and open up paths for
future studies.

Theoretical background
Entrepreneurial logics of action
According to effectuation theory, an effectual logic of action favors a logic of control rather
than planning and prediction (Sarasvathy, 2001). Meanwhile, causation logic emphasizes
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predicting and planning the future in a strict goal-oriented logic (Smolka et al., 2018).
Effectuation and causation differ mainly in five dimensions: views of the future, bases for
taking action, predisposition toward risk and resources, attitudes toward outsiders and
attitudes to protect themselves from unexpected contingencies (Sarasvathy, 2003; Yang et al.,
2019). First, while causation logic sees the future as a continuity of the past that can be
planned, effectual entrepreneurs believe that the future can be shaped and is not written.
Second, causal entrepreneurs are goal-oriented, and actions are taken to achieve these goals.
Effectuation, meanwhile, is characterized by a mean-oriented logic, and goals are determined
by these given means. Third, causation focuses on maximizing expected returns, while
effectuation focuses on limiting losses to an affordable level. Fourth, the attitude toward
outsiders is mainly competitive in causal logic, whereas effectual logic advocates the creation
of partnerships. Fifth, causation tries to avoid contingencies as much as possible by using
prediction and planning tools, while effectuation views contingencies as inevitable and
encourages them to be seen as opportunities.

While effectual and causal logics are often presented as two polarized logics of action, they
have been conceptualized as orthogonal dimensions that can be combined. For example,
Smolka et al. (2018) and Laskovaia et al. (2017) show that using a combination of logics have a
positive effect on new venture performance. Likewise, Berends et al. (2014) find that small
firms adopt a combination of causation and effectuation logics during product innovation
processes, and Evald and Senderovitz (2013) reveal that SMEs engaging in internal corporate
venturing activities combine causation and effectuation logics. This is in line with Andries
et al. (2013), who argue that, in uncertain environments, new ventures concurrently focusing
on causal and effectual logicsmight bemore innovative, andwithVanderstraeten et al. (2020),
who provided some evidence for this synergistic effect in small businesses. This stream of
research suggests that there are synergistic effects to combine logics and even presents such
combinations as a survival imperative in dynamic environments (Laine and Galkina, 2017).
However, few elaborate on themechanisms to do so. In spite of their relevance for opportunity
development (Galkina et al., 2021), it remains unclear how entrepreneurs can combine
causation and effectuation and howhybrid practices can provide entrepreneurswith learning
advantages in terms of lower information costs or faster decision-making (Gr�egoire and
Cherchem, 2020).

One candidate for the operationalization of effectual and causal logics is the LSA. Broadly
speaking, LSA applies a Lean management mindset to the problem of finding the right
productmarket fit throughmultiple iterations (or loops). It advocates for validated learning to
grasp what customers want in order to meet their needs. According to Ries (2011), this is done
using the scientific method, which consists of designing, running and analyzing experiments
in order to prove or reject the startup team’s hypotheses. This process is guided by the BML
loop (see Figure 1).

First, hypotheses about the product and growth are implemented in a minimum viable
product (MVP) during the first build phase.AnMVP is “that version of the product that enables a
full turn of the BML loop with a minimum amount of effort and the least amount of development
time” (Ries, 2011, p. 77). Then the MVP is tested by users or potential customers during the
measure phase. The information collected and quantified (people’s impressions, textual
feedback, churn rate, bounce rate, click through rate, conversion rate, etc.) is then analyzed in
the learn phase to validate or invalidate hypotheses, and the newknowledge gathered serves as
the basis for formulating new hypotheses to test. A new iteration thus starts with the
implementation of the new hypotheses. LSAs and their experimentation-oriented mindset are
nowadays largely adopted by the practitioners as evidenced by the success of Ries’ book and its
widespread use in entrepreneurship curricula (Sarasvathy, 2021). It is becoming the standard
among entrepreneurs, in aid organizations and in university courses on entrepreneurship
(Blank, 2013; Ghezzi, 2019; Mansoori and Lackeus, 2020; Shepherd and Gruber, 2020).
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As a result, authors such as Sarasvathy (2021) suggest that it would be useful to understand
how LSAs enable the operationalization of both causal and effectual logics of action.

According to Frederiksen and Brem (2017, p. 181), “it is tempting to regard [the Lean
startup] as the practical implementation of Sarasvathy’s research.” Ghezzi (2019) suggested
that combining extremely scarce resources into an MVP is tightly connected to effectuation
and bricolage (Baker and Nelson, 2005). He also highlighted that formulating hypotheses
about how the world could change and how startups can play a role in it is very similar to the
effectuation’s view on the future. According to him, even experimenting and testing these
hypotheses to gather relevant feedback is consistent with effectuation’s principle stating that
contingencies should be handled and exploited by entrepreneurs.

Likewise, Yang et al. (2019) examined the cognitions behind the Lean startup. They
argued that effectuation is mainly associated with search activities, while causation is
associated with more execution activities. Search activities are the controlled and proactive
processes of attending to, examining and evaluating new knowledge and information (Li
et al., 2013). Execution is the process of establishing and accomplishing well-defined plans
(Yang et al., 2019). In practice, Yang et al. (2019) divided the journey of an entrepreneurial
firm into two stages: the early development stage, in which mainly search activities are
conducted, and the late development stage, in which mainly execution activities are
conducted. This view is consistent with the view of Ghezzi (2019), who defines the turning
point for moving from the search stage to the execution stage as the moment when the
product-market fit is achieved. This is in line with Blank’s view in his book Customer
Development (Blank, 2005), that a startup should at first focus on the task of finding a
sustainable business model (search phase) and then exploit it (execution phase). Therefore,
the works of Yang et al. (2019) and Ghezzi (2019) argue that entrepreneurs following an LSA
start with an effectual cognitive logic and then switch to a causal logic once the product-
market fit is reached.

However, LSAs might not be devoid of any causal logic. For instance, Frederiksen and
Brem (2017) suggested that the goal of building a successful business might be causal in
essence. More fundamentally, it could be argued that the BML loop is rooted in a predictive
ontology, whereby the market is knowable and an optimal solution can be found. At the core
of LSAs, it is about predicting themarket rather than controlling for uncertainty (Sarasvathy,
2021). As suggested byMansoori and Lackeus (2020), and despite the ambition of Ries to help
entrepreneurs create new products and services under conditions of extreme uncertainty,
dealing with said uncertainty is a key weakness of LSAs (Mansoori and Lackeus, 2020).
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Paradoxically, LSAs are often used to reduce perceived uncertainty rather than to leverage
truly unknowable events. Entrepreneurs are stuck in a quest for an optimal solution instead
of sealing an affordable one.

This paradox is not inevitable. For instance, Sarasvathy (2021) recently suggested that
entrepreneurs following LSAsmight start in a causal, prediction-based framework in order to
develop their product-fit and only shift to a control-based logic when elaborating their
business model. It would mean predicting an optimal product (i.e. causal approach) and then
finding an “acceptable” business model (i.e. effectual approach). It follows that LSAs might
enable the combination of effectuation and causation sequentially and concurrently. In the
next section, we show how an AI-based infrastructure can facilitate this process.

Digital infrastructures for entrepreneurs
Digital entrepreneurship entails a large variety of phenomenon. For Nambisan (2017), it
focuses on the way new digital technologies, including data analytics and machine learning,
“has transformed the nature of uncertainty inherent in entrepreneurial processes and outcomes
as well as the ways of dealing with such uncertainty.”Nambisan (2017) highlights three distinct
but related sources of digitalization: digital artifacts, digital platforms and digital
infrastructure. Basically, digital artifacts are the digital components that are part of a new
product (or service). Digital platform is about the shared set of services and architecture that
host complementary offerings. Digital infrastructures are the digital resources and tools, such
as communication tools, social media, cloud computing, automation, AI techniques or digital
MVP builder, that help entrepreneurs when developing their venture. The present research is
about the latter category. By incorporating AI-based techniques into the LSAs, its
contribution is about AI-based (digital) infrastructures and how it can help entrepreneurs to
deal with uncertainty when developing their opportunity. To better position this contribution
in the broader product design literature, a summary is presented hereafter.

In the last decade, AI-based and big data-based techniques have received an increasing
amount of attention in product design. As product design is an important part of the Lean
startup methodology, it is interesting to have an overview of extant research. Two main sets
of methods are found. The first set deals with searching for the best features to integrate into
a specific product, whereas the second set gathers approaches aiming to maximize the
affective design of a product. For both sets, certain techniques propose to implement natural
language processing methods (text analysis), while others use strictly numerical methods.

When it comes to predicting the best features in product design, the most common
approach is to implement a conjoint analysis method (Fan et al., 2017; Luce and Tukey, 1964).
The key challenge of conjoint analysis is to find the best product variant in a multi-attribute
product space. This is commonly done by asking for customers’ ratings about variants of the
product in order to build a utility function for each customer. Three other types of conjoint
analyses have arisen from studies trying to improve the traditional method: choice-based
conjoint analysis (Louviere andWoodworth, 1983), adaptive conjoint analysis (Johnson, 1987)
and self-explicated conjoint analysis (Green and Srinivasan, 1978; Rao and others, 2014).

Besides conjoint analysis approaches, other types of methods usually seen in the
marketing literature for incorporating customers’ preferences into product design and
development are quality function deployment and heterogeneous design. Quality function
deployment introduces a planning matrix to relate customer preference to design,
manufacturing and marketing teams in a firm (Hauser and Clausing, 1988). Heterogeneous
design adapts the homogeneous design method by presenting different designs to different
customers. S�andor and Wedel (2005) were the first to propose this approach and
demonstrated the value of taking prior information about heterogeneity across consumer
preferences into account.
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More recently, Jiao et al. (2019) provided an integration model that addresses the problems of
generating feasible configuration plans and selecting the plan that best satisfies the customer
requirements. The model uses transaction data for generating configuration plans after
analyzing the segmented market characteristics. The customer requirements are then
mapped to the configuration plans using a Naı€ve Bayes classifier. Likewise, Tao et al. (2019)
presented a method for product design using a digital twin approach. The digital twin – a
virtual representation of a physical product – is used to better understand how customers
interact with the current version of the product and for virtually testing its improvements
under different conditions.

In the context of improving an existing product, some studies intend to predict the best
features to include in the next version by analyzing what customers say about the features of
the current product on the Internet. For instance, extraction of customer needs was carried
out in Ireland and Liu (2018). To start, their framework divided the reviews extracted from
Amazon.com into separate sentences, a Naı€ve Bayes classifier was then applied to determine
sentiment polarities and finally feature-sentiment pairs – pairs of words: one sentiment word
and one word describing a product feature – were generated and their significance was
evaluated. The authors demonstrated through the case study the utility of what they called
“data-driven product design.” Likewise, Chen et al. (2019) implemented several artificial
intelligence techniques including feature extraction, sentiment analysis, anomaly and
novelty detection, and time-series analysis for analyzing customers reviews and classifying
product features.

Affective design is also a method aiming to maximize customer satisfaction in purchasing
new products. This technique, based on Kansei engineering (Nagamachi, 1995), is commonly
implemented through machine learning methods that deal with survey data and/or big data.
A product with good affective design is a product that excites consumers’ feelings of wanting
to buy it. For instance, Wang et al. (2019) exploited online customer reviews from Amazon.
com to extract affective opinions. This was done through a heuristic method combining text
mining rules and deep learning models. It is thus different from the papers introduced above,
since there is no product features extraction phase. The study focused on what people said
about the product as a whole, and not on what they said about each feature of the product.
The aim here is to understand the customers’ comments from an affective perspective.
Instead of using existing comments, Ling et al. (2014) evaluated different affective responses
to new products through an online survey. Finally, Chien et al. (2016) provided a data mining
framework to capture user experiences of product visual aesthetics. User background
information, perception data and user experience reaction were used to train a rule-based
model. The role of the resulting model was to predict the user experience reaction from
information about the user and her or his perception of some characteristics of the product.

The papers introduced above proposed techniques based on AI, sometimes supported by
big data-based methods, to assist the design of new products. While those approaches are
promising, they are not always relevant for new opportunity development. Indeed, a
significant proportion of these starts with the assumption that a current version of the
product is already on the market and is largely distributed – largely enough to be able to
gather a large number of textual comments –which is not the case for a new venture. Others
assume that similar products are already commercialized, which is not always possible for
highly original products. Furthermore, extant research did not fully address several
questions that managers or entrepreneurs may ask, such as the following: How can the
method be integrated into an entrepreneurial process ? At which steps should we use the
algorithm?What should we do with the output of the algorithm? Does the algorithm actually
reduce uncertainty? Are the algorithm results accurate? In other words, they fail to propose a
methodology so that entrepreneurs can articulate the AI techniques into their management
and entrepreneurial processes.
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The LSAs try to reach the shared goal of the articles introduced above: guiding the
product design to create a product that best satisfies customer expectations. Assisting the
LSAs with AI-based techniques might achieve this goal even more effectively, as long as it
enables an articulation of causal and effectual logics, taking into consideration that
information about new opportunity development is scarce and uncertain. It is about
predicting what users who have not given feedback about a certain feature are likely to think
about it. In the next section, an extended LSAs “Build-Measure-Predict-Learn” loop is
presented, along with its AI-based components.

An AI-based build-measure-predict-learn loop for blended logics
According to current research on effectuation, a constellation of behaviors is possible, from
sequential use of causal and effectual phases (Yang et al., 2019) to concurrent use of logics
(Smolka et al., 2018), with synergetic effects (Galkina and Jack, 2021). Furthermore, LSAs
have the potential to articulate both logics of action as a set of hybrid practices. On the one
hand, LSAs and effectuation share the basic tenant that a high degree of uncertainty can only
be effectively and actively reduced through an experimental process that converts
assumptions into facts (Fiet, 2002; Mansoori and Lackeus, 2020; Pfeffer and Sutton, 2006).
As such, LSAs have been presented as a set of methods to operationalize effectuation
(Frederiksen and Brem, 2017; Ghezzi, 2019). On the other hand, LSAs hold an ontological
perspective (a view of the world) that is coherent with a predictive framework, whereby the
market can be known and an optimal solution can be found. Recently, Sarasvathy (2021) even
suggested that LSA might provide tools that fit in both prediction-based and controlled-
based approaches. Hence, LSA is a good candidate to accommodate hybrid practices.

The main goal of this section is to present how entrepreneurs can extend the LSAs’ BML
loop to harness predictive technologies while keeping a control-based, effectual approach for
opportunity development. When implementing the extended BMPL loop, each phase can be
qualified as fitting with effectual, causal or both logics, and thus offers a frame to better
articulate them. The BMPL loop is illustrated in Figure 2, specifying the underlying logic of
each phase. The remainder of this section is dedicated to a more detailed description of
the model.

Build: implementing hypotheses
The BMPL loop starts with the formulation of hypotheses about the new product and
expected growth, as is the case with traditional LSAs. After identifying the hypotheses that
should be tested in the new iteration, they are translated into concrete product design
decisions (PDD) to be implemented into the MVP. Imagine a startup offering a mobile
application which enables users to share their drawings with friends. If the team uncovers
that its users find the app’s profile screen too insipid, one hypothesis it can formulate is that
users should appreciate putting some funny filters on their profile picture. The PDD can be:
“implement a filter adder feature in the profile settings screen with five different filters: a
clown, a dog, a cat, a monster and a frog.” Then, a preliminary version of the functionality is
implemented (theMVP) through a frugal approach (Mansoori and Lackeus, 2020). In line with
Ghezzi (2019), the build phase mostly fits with a control-based, effectual logic of action since
building an MVP might require assembling available resources in a constrained
environment.

Measure: collecting feedback
The role of the measure phase is to assess the extent to which users are satisfied with a new
PDD implemented in the product they use. To this end, users rate the new PDD, and the AI
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system collects the information. This can be achieved in several ways, such as embedding a
5-star rating system in the digital product to ask users who have tried a feature to rate it;
another optionwould be to request the ratings through an online survey. Although this paper
emphasizes the implementation of the BMPL loop in a digital environment, it can be
implemented by a company offering physical products, since ratings for each new PDD can
be collected via an online survey or interviews after a few interactions with the MVP. The
main advantage of a digital environment is the possibility tomore quickly implement and test
a new PDD in the product.

Ghezzi (2019) convincingly argued that measuring can be part of an effectual view of the
world, wherein startup can imagine and create the future. However, as suggested by
Mansoori and Lackeus (2020), entrepreneurs adopting an LSA “discover the future” by
measuring it. This contrasts with an ontological view of uncertainty in which the future is
unknowable in principle (Knight, 1921; see Mansoori and Lackeus, 2020), thus requiring an
effectual approach. Instead, LSAs consider that uncertainty can be reduced through adequate
information gathering strategies. In line with these argument, the present model suggests
that themeasure phase better fits with a causal logic of action, since it implies that themarket
can be known and quantified.

Predict: seeing beyond the collected data
Furthermore, the predict phase might be considered as causal in essence as it relies on the
prediction of a knowable market. In the traditional BML loop, the function of the measure
phase is to collect feedback that will be assessed during the learn phase. In the BMPL loop, its
role is to gather enough feedback from users on new PDDs in order to run a collaborative
filtering recommender system (CFRS). CFRS intends to predict what all users would think
about the new PDD based on the ratings they gave for other PDDs in the past. A startup team
using such a methodology should not wait until a representative part of the users has
expressed their opinion on the newPDD, but only until enough feedback is collected to run the
CFRS. In order for the CFRS to perform well, the feedback gathered consists of the ratings
given by the users on a PDD. Let us denote as I the set of PDDs for which ratings have been
collected, as U the set of users who have already given feedback and as rui the rating of user
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u for PDD i. We distinguish predicted ratings from the known ones by denoting as brui the
prediction of rui. The prediction problem is thus to compute [1]brui∀u∈U for whom rui is not
known for a new PDD i.

The objective of this phase is to predict the ratings of users that did not rate the new PDD
during the previous phase. This corresponds to the AI-based causal part of the BMPL loop.

The functioning of measure and predict phases is illustrated in Figure 3.

Computing the similarity weights
Computing the similarity weights σuv between users uand v can be done using (1) through the
Pearson correlation (PC) method, which compares ratings by removing effects of mean and
variance (Ning et al., 2015). The similarity between user u and user v, denoted by wuv,
computed by the PC method is:

wuv ¼ PCðu; vÞ ¼
P

i∈I uv

�
rui � ru

��
rvi � rv

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i∈I uv

�
rui � ru

�2P
i∈Iuv

�
rvi � rv

�2
r ; (1)

where I uv is the set of items rated by both u and v, and ru (rv) is the mean rating given by u
(by v). Note that wuv ∈ ½−1; 1�when using PC.

However, a problem may arise when
P

i∈I uv

ðrui − ruÞ2 ¼ 0 or
P

i∈I uv

ðrvi − rvÞ2 ¼ 0. In this

case, the PC between u and v cannot be computed. Therefore, when one of these sums is zero,
the preference similarity between uand v is computed through the cosine vector (CV) formula.
This formula is identical to (1) except that the average rating is not subtracted from the
ratings rui. Nonetheless, as CVðu; vÞ∈ ½0; 1�, the following linear transformation is applied:

wuv ¼ 2CVðu; vÞ � 1: (2)

Therefore, when a new PDD i is shown to users, the ratings collected in themeasure phase are
added to the previously gathered ratings to form the set R. Note that when a PDD is the
improvement of an existing feature, the system does not remove the PDD corresponding to
the previous improvements nor the PDD corresponding to the first implementation of it since
these contain important information about users’ opinions. After adding new ratings toR, a
matrix of similarity weights of size ðn3 nÞ is fulfilled with the wuv computed fromRwith (1).

Selecting the neighbors
The next step is to predict what users who have not rated the new PDD i are likely to think
about it. As shown in Figure 3, for each missing rating rui, the prediction computation starts
with the selection of the setN iðuÞ of nearest neighbors. The setN iðuÞ contains between kmin

and kmax users who rated i, with the highest values of wuv, where wuv must be greater than a
threshold value wl to be considered.

Once the nearest neighbors of uwho rated i are selected, the prediction of her/his rating for
i is computed by:

brui ¼ ru þ σu

P
v∈N iðuÞwuv

�
rvi � rv

�.
σvP

v∈N iðuÞjwuvj ; (3)

where σu and σv denote the standard deviation of the ratings given by u and v. Equation (3)
uses the Z-score normalization. The objective of Z-score is to convert individual ratings into a
more universal scale by taking into account the average and the spread of the ratings that
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users gave (Ning et al., 2015). The rating of neighbor v influencesmore the computation ofbrui if
the rvi differs from rv and the standard deviation is small. In other words, if a neighbor of u
rates i very differently from its usual, this must intervene in the prediction in an inversely
proportional way to σv.

As the system is built to predict everymissing rating of i, predictions have to be computed
even if fewer than kmin potential neighbors, that is, with wuv ≥wl, are available. In this latter
case, Equation (3) is replaced by:

brui ¼ 1

2

�
ru þ ri

�
(4)

where ru and ri are the average rating of user u and the average rating received by PDD i,
respectively. This simple model takes into account both user behavior and PDD popularity.
The choice of kmin is thus crucial since it affects the proportion of ratings obtained by (9). The
optimal values of parameters wl, kmin and kmax are determined by cross-validation.

Figure 3.
The overall

functioning of measure
and predict phases
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Predicting with a normalization scheme
Once the nearest neighbors of u who rated i are selected, the prediction brui is computed by
applying Equation (3). Note that the Z-score normalization scheme can lead to impossible
predictions when σv ¼ 0. In this case, σv is fixed to 0.1 to specify that v is used to
systematically rate in a similar fashion.

After estimating each unknown brui for i, the collected and predicted ratings about i are
gathered in the vector ri.

Learn: understanding the customers
Finally, the Learn phase starts with tacking stock of the information collected during the
experiments. From an effectual perspective, unexpected contingencies can be leveraged and
should be seen as opportunities to learn (Funken et al., 2020; Harmeling and Sarasvathy, 2013;
Nielsen and Sarasvathy, 2016). However, authors such as Sanz-Velasco (2006) also suggest
that causation might be valuable in a learning phase, since it involves choosing from among
the given alternatives (like in A/B testing) rather than generating new ones. It might even
mean combining both logics when finding solutions that build on existing knowledge while
still requiring substantial development (Sanz-Velasco, 2006). While the prior phases suggest
a sequential combination of logics, entrepreneur would benefit most of the BMPL loop by
engaging in hybrid practices in the Learning phase. The learning opportunities from the AI-
based system are described below.

The ratings in ri give the development team a simple way to understand users’ opinions
about the newPDD i. If each rating option has a clearmeaning as: 15 disturbing, 25 useless,
35 improvable, 45 useful and 55 essential (in a 5-star rating scale), the proportions of users
giving each possible answer contribute to understanding customer reactions to the feature
added. For example, a high proportion of 3s in riwould indicate that improvements need to be
made to the feature associated to the corresponding PDD, but that the idea behind it is well
accepted by the majority of users. In contrast, a high proportion of 1s would demonstrate a
wrong PDD. In the latter case, the development team would have avoided wasting time to
perfectly develop a feature that was highly rejected by the users for several months.

In addition to ratings, a new metric is proposed: the product potential. It measures the
proportion of users for whom the PDD i is of interest. For instance, if 85% of the ratings are
positive, that is, above a threshold rl, the product potential is 0.85. This makes it possible to
quickly evaluate the enthusiasm of users for a newPDDwith a simple indicator. Coupledwith
traditional indicators, such as churn rate, time on page and bounce rate, the collected and
predicted ratings, as well as the product potential can provide valuable information for the
next steps of the product design.

These ratings as alongwith the product potential are simple ways to evaluate the extent to
which a new PDD is well received by users. The newly collected ratings are added to the
ratingmatrixR of size ðn3mÞ, where n is the number of users andm the number of PDDs, by
adding a new column.

In conclusion, the BMPL loop has the potential to articulate causal and effectual decision-
making logics. In the next sections, the model is implemented in a case study, the “EasyTips”
project.

Case study
Data set presentation
To estimate the validity of the proposed BMPL loop, we conducted an empirical study with
the collaboration of an entrepreneurial project: EasyTips. EasyTips is a mutual aid platform
where students can share course content and find relevant information about their questions.
The data set was formed through an online survey in which we asked EasyTips users to
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evaluate 12 features of the platform. Note that each PDD here corresponds to one feature of
the digital platform. The way in which opinions are solicited has a significant impact on the
quality of feedback collected. First, it has to be adapted to the purpose of the product. As
EasyTips aims to help students with their studies, a good indicator to evaluate a feature is its
usefulness. In contrast, for a video game, the questions and the choicesmight instead focus on
the extent to which each feature is entertaining. Second, the ratings gathered should express
clear feelings about the features. For instance, directly asking for a rating to evaluate a feature
is too vague. Indeed, a 3 can express many different opinions: “I do not know what to think
about this feature,” “I do not use this feature much,” “I like it but it should be improved,” “this
feature bugs half the time,” “I do not hate it,” “It is sometimes useful,” “It is useless but it does
not bother me” and so forth. Countless opinions can be summarized by a single rating value.
Therefore, the questions were formulated as: “What do you think about the feature < name of
the feature>? ” illustrated by a screenshot of the feature in action. The answer options were:

“harmful to the proper use of the website” – “useless” – “good idea but not like this,”

“useful” – “essential.”

The possibility was given to skip a question when the corresponding feature was not known
to the user, so the rating matrix is not fully plain. Assuming that the differences in
appreciation between each semantic choice can be considered as regular, each answer is
transformed into an integral rating. Thereby, each “harmful to the proper use of the website” is
transformed into a 1, each “useless” into a 2, each “good idea but not like this” into a 3, each
“useful” into a 4 and each “essential” into a 5.

The EasyTips data set consists of 1,880 ratings from 164 users about 12 features where
each feature is associated with a PDD. The proportions of each value among the 1880 ratings
are shown in Figure 4. The data set is particular for two reasons: the rating matrix is highly
dense (95.53%) and is much smaller than those commonly used in collaborative filtering
recommender systems. This data set allows us to carry out credible experiments on a real set
of data collected in an entrepreneurial context. The small size of the data set is the main
reason that led us to choose a neighborhood-based approach rather than a model-based
approach. Indeed, model-based approaches usually perform better but should only be
preferred if the model has enough data in the offline phase to train the model. In addition, due
to the small number of PDDs, a user-user variant is the only relevant choice since a pertinent
set of nearest-neighbors cannot be computed with only 11 possible neighbors.

Simulating the integration of a new product design decision
In order to imitate the measure and predict phases of the BMPL loop with the EasyTips data
set, the implemented algorithm loops on each PDD and hides one at a time. For instance, at the
first iteration, PDD 1 is seen as the newly implemented PDD, that is,. feature 1 has just been
implemented, and the others as the known PDDs, that is, corresponding features are known
by the users, for which we already have the ratings.

The first 10% of ratings given to PDD 1 are kept and the others are hidden, that is,
removed from R. The similarity weights and the predictions are computed from R. Then
10% more ratings are uncovered, and the process is repeated until 50% of ratings are
uncovered. Besides imitating the gradual arrival of ratings from users, this progressive
addition of ratings in R serves for studying the proportion of ratings needed to compute
relevant predictions.

Evaluating the results
In order to evaluate the quality of predictions, they were classified into two classes: ratings
unfavorable to the new PDD (the negative class), and ratings favorable to it (the positive
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class). A prediction brui is seen as negative if brui < rl, and positive otherwise. We set the
threshold rl to 3�mean absolute error (MAE) – as it corresponds, in a 1-5 scale, to the answer
option fromwhich the opinion can be considered as positive, and subtracting theMAE allows
to take into account the general precision of the method as the MAE corresponds to the mean
error made in absolute value. Such a process avoids considering a predicted rating of 2.9 as a
negative rating, whereas it should likely be seen as a 3.

The performance of the algorithm is assessed with both error metrics and accuracy
metrics. Therefore, the RMSE (6), MAE (7), precision (8), recall (9) and F-measure (10) are
computed withRtest being the set of triplets ðu; i; ruiÞhidden with i being the PDD considered
as new.

The above metrics are mathematical ways to assess the performance of both predictions
and classification. However, as the objective of this research is to demonstrate the relevance
of the BMPL loop from a business viewpoint, we also evaluate the performance of the
algorithm in predicting the product potential PP). For instance, if 85% of ratings collected
during the survey for PDD i are higher than rl, the associated real PP is 0.85. Then, if ri (i.e. the
vector containing known and predicted ratings about i) contains 89% of ratings higher than
rl, the estimated PP is 0.89. The product potential error (PPE) in this example is �0.04. The
PPE is computed by:

PPE ¼ PP� cPP ¼ #fn�#fp

#ratings
; (5)

where #fn and #fp are the number of false negative and false positive (see Appendix), and
#ratings is the number of ratings known plus the number of ratings predicted, which is equal

Figure 4.
Proportions of ratings
in the EasyTips
data set
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to the number of ratings collected by the survey for the PDD i. Note that a negative PPE
indicates that the algorithm has been too optimistic, while a positive PPE indicates
pessimistic predictions.

The active learning version of the algorithm
The key idea behind active learning is that a machine learning model can achieve good
accuracy with only a few well selected labeled training instances. The challenge is thus to
select the appropriate training instances to label. Active learning is relevant in our case since
the labels, that is,. the ratings, are difficult, time-consuming or expensive to obtain (Settles,
2009). The chosen active learning query framework is the following. The active learning
build-measure-learn algorithm (AL-BMPLA) computes the similarity weights and brui for all
hidden ratings. The next 10% of ratings to uncover are those for whichbrui is closest to rl. The
ratings thus collected are then used to recompute the similarity weights and the predictions.
This is done from 10% to 50% of ratings collected. Uncovering ratings predicted close to the
limit rl (also called the “border”) is an intelligent way to select the data to label. Indeed, these
ratings correspond to the critical instances since a slight modification of the predictions
would have produced a different classification. In a digital application, this active learning
query framework could allow the selection of the users that should be questioned after
collecting some ratings randomly.

Results
The parameters are identical for both the traditional BMPLA and the AL-BMPLA and are
summarized in Table 1. The parameter nc corresponds to the minimum number of common
evaluated items by two users u and v to allow the computation of wuv. The values were
determined by cross-validation.

Figures 5 and 6 show error metrics, the F-measure and the PPE for each feature for both
variants of the algorithm after collecting (i.e. uncovering) 30 and 50%of ratings. Note that the
RMSE is always above the MAE in the graphs. It can be noted that for both BMPLA and AL-
BMPLA, collecting more ratings tends to reduce the PPE. Looking at the other metrics, the
RMSE,MAE and F-measure are not systematically improvedwith the collection of 20%more
ratings when applying the BMPLA. In contrast, it significantly enhances the RMSE, MAE
and F-measure with the AL-BMPLA. Together with the fact that metrics are almost always
better with AL-BMPLA than with BMPLA, this demonstrates the relevance of the active
learning query framework. Note, however, that comparing the metrics with and without
active learning is not strictly rigorous from a mathematical point of view. Indeed, the metrics
are not determined on the same test set since the hidden ratings are not the same in both cases.
However, comparing the metrics with and without active learning from a product design
viewpoint enables us to measure the extent to which the approach precisely predicts the
opinions of users with the same amount of data collected.

Looking at the results of AL-BMPLA with 30% of known ratings, good results are
observed for each metric. TheMAE is around 0.4, which means that the ratings are predicted

Parameter Value

nc 4
kmax 40
kmin 1
wl 0.5

Table 1.
Parameters of the

algorithms

Predictions
through Lean

startup?



with an average absolute error of 0.4. The RMSE is always higher than the MAE, which
indicates that few higher errors exist. The F-measure is always higher than 80% and is well
improved when collecting 20%more ratings. Assessing the PPE, we see that for eight PDDs
out of twelve, the AL-BMPLA enables us to reach a PPE lower than 0.05 in the absolute value,
which means that for those PDDs, after collecting 30% of the ratings, the EasyTips team
would have been able to know the proportion of users favorable to the PDD with an error of
less than 0.05. Three other PDDs lead to a PPE lower than 0.1 and one leads to a PPE between
0.1 and 0.15 in the absolute value. Note that the four cases are widely improved when
collecting 50%of the ratings. It can also be observed thatwhen PPEs are negative, it indicates
that the algorithm tends to be too optimistic. It is partially due to the higher proportion of
positive ratings in the data set, as seen in Figure 4, and the choice of rl ¼ 3−MAE. As shown
in Figures 5 and 6, the AL-BMPLA performs unequally according to the PDD. When
assessing the error metrics, it seems that PDDs 4 and 8 lead to a weaker performance. Graphs
on F-measure and PPE indicate that PDDs 4, 8, 9 and 12 present less convincing results.
Intuitively, error metrics can be especially affected when the spread of ratings is large, and
the two other indicators are more sensitive to the proximity of the average rating with the
border rl. This can be confirmed by inspecting the value of the mean and standard deviation
of ratings given to each PDD in Table 2. Therefore, computing the mean and standard
deviation of ratings collected for a new PDD allows to determine if predictions are likely to be
difficult.

The graphs represented in Figure 7 show the evolution of PPE as a function of the
percentage of ratings collected for each PDD. Analyzing the graphs gives a rough
approximation of the proportion of ratings to collect when a new PDD appears in the system
for a fixed limit PPE. Indeed, by determining both the mean and standard deviation of the
new PDD, it is possible to bring it closer to one of the previous PDDs. For example, if the new
PDD 13 looks like PDD 2 regarding r13, we can tell that we need to collect about 20% of 164
ratings to reach a PPE of less than 5%. On the contrary, if the new PDD 13 resembles PDD 8
when comparing their means, we would conclude that the PPE, after collecting
approximately 50% of 164 evaluations, is likely to be about 5%.

Figure 5.
Error metrics, F-
measure and PPE after
collecting 30% of
ratings available with
BMPLA (blue) and AL-
BMPLA (red)

Figure 6.
Error metrics, F-
measure and PPE after
collecting 50% of
ratings available with
BMPLA (blue) and AL-
BMPLA (red)
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Beyond PP, the collection of data about users and the related predictions can provide
opportunities for further analysis, such as segmentations. Knowing the ratings collected and
predicted as well as the type of features of the EasyTips data set presented in Table 3, the set
of users can also be segmented in a data-driven manner. To this end, we gathered all known
ratings into a rating matrix R of size ðn3mÞ and ran the neighborhood-based method to
fulfill the unknown elements. When R is plain, a k-means method with k ¼ 3 is used to cluster
users on the basis of their rating patterns. The parameter k is set at 3, because it is the value
for which the clusters are the most interpretable in terms of users’ opinions. In Figure 8, the
clusters are pinpointed by showing the mean rating that users of each cluster gave to each
PDD. Three distinct categories of users can be observed. Cluster 1 represents users who find
features of EasyTips useful and are highly satisfied by the website, even though they seem
more critical of some features. Cluster 3 gathers users with very clear-cut opinions about
EasyTips. They are convinced by both the file sharing and document quality review, but not
by social network features. Cluster 2 contains the users who are only convinced by the file
sharing features. Therefore, in addition to the advantages presented above, the BMPL loop
allows the segmentation of the set of users according to their tastes. Assessing the number of
users in each computed cluster provides valuable information too. For instance, in Figure 9,

PDD 1 2 3 4 5 6 7 8 9 10 11 12

ri 4.31 4.14 3.37 3.17 4.49 3.78 3.53 3.01 3.34 4.50 4.68 2.91bσi 0.68 0.90 0.85 0.97 0.64 0.84 0.92 0.95 0.94 0.71 0.54 0.95

File sharing Document quality review Social network

PDD/Feature 1, 2, 5, 10, 11 6, 7 3, 4, 8, 9, 12

Table 2.
Mean and standard

deviation of ratings for
each product design
decision (PDD) of the

EasyTips data set

Figure 7.
PPE after collecting 10,
20, 30, 40 and 50% of
ratings available with

AL-BMPLA

Table 3.
Type of each feature

associated to each PDD
of the EasyTips

data set
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the proportion of users in each cluster is illustrated. According to the pie chart, almost half of
users are highly satisfied by EasyTips. However, it becomes clear that features designed to
review the quality of documents and for social interactions might need to be rethought. For
this purpose, a new iteration might integrate interviews rather than prediction only in order
to better understand the reasons for their low ratings (when themarket is seen as foreseeable)
or to embrace their feedbacks as new contingencies (in an unknowable future).

Discussion
At the core of this paper lies one paradox. As new AI-based infrastructures are available to
deal with more uncertainties (Nambisan, 2017), entrepreneurs might get stuck in a quest for
optimal solution rather than an affordable one, thus threatening their ability to face
remaining unexpected contingencies (Mansoori and Lackeus, 2020). Building on effectuation
theory, a possible solution would be to implement LSAs as a source of hybrid practices,
instantiating predictive (causal) and controlled (effectual) logics of action. Thus, the proposed
model articulates effectual and causal phases while, at the same time, examining its technical
implementation in a concrete case study, the “EasyTips” entrepreneurial project. The results
given by the BMPL algorithms, and especially by its active learning variant, provide support
for the relevance of the BMPL loop for opportunity development. In addition to strong
prediction performance, it has the ability to prevent less relevant PDDs. Both qualities
provide entrepreneurs with a way to rapidly evaluate the impact of a new PDD and thus
generate entrepreneurial learning without waiting for many users to test and evaluate their
choices.

Doing so, the model first contributes to the conversation about hybrid practices and the
key mechanisms that help entrepreneurs blend causal and effectual logics (Galkina et al.,
2021; Galkina and Jack, 2021). It clarifies how LSAs can enable blended logics and shows how
the BML loop can be extended to incorporate a predict phase into each iteration. Second, it
contributes to digital entrepreneurship research. The current article proposes an algorithm
able to predict what users think about a new PDD – that is, the implementation of a new
feature or the improvement of an existing feature –with very little collected feedback – that is,
ratings. More importantly, it highlights the implication of machine learning on decision-

Figure 8.
Mean rating of each
cluster for each item
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making in situation of risk and uncertainty (Nambisan, 2017). Especially, the model tackles
uncertainties in three ways: (1) through epistemological expansion by accelerating the pace of
experiments and reducing the time required to perform each iteration, (2) through ontological
reduction by transforming previously uncertain elements into “knowable” content by the
machine, beyond the limitation of human cognition and (3) through methodological
scaffolding, by providing a practical framework that enables hybrid predictive (causal) and
controlled (effectual) practices.

First, the BMPL loop allows for reduced uncertainty by compressing the amount of time
required to perform an iteration and thus allowing for extended experimentations. Indeed, we
provide evidence that entrepreneurs would need to collect ten times fewer ratings to assess
the potential of their product (within an acceptable margin of error) while at the same time
being able to monitor the strength of predictions’ performances. In a real-life application
where uncollected ratings are unknown, having such an indication is valuable. In this
instance, uncertainty is framed as “epistemological” (Mansoori and Lackeus, 2020) since the
future is considered knowable in principle and uncertainty can be mitigated through
augmented information gathering strategies (Fiet and Patel, 2008). Entrepreneurs expand
their knowledge – and reduce uncertainty – thanks to the AI-enabled acceleration of
experimentation and time compression of each iteration.

Second, theAImodel enables to bring predictions to situations that were not predictable in
the past. For instance, additional feedback (textual feedback, churn rate, click through rate,
conversion rate, etc.) and ratings collected during the shortened measure phase can provide
with red flags when the system fails at correctly predicting the PP of a new PDD. Likewise,
the model can reveal implicit segmentations of users that are unexpected for the
entrepreneurs. This is about discovering “unknown unknowns” (Teece and Leih, 2016)
that were previously unforeseeable. This enlargement of the field of the predictable is akin to
an “ontological” reduction of uncertainty, whereby situations that would have previously
been seen as “unknowable in principle” are now knowable through active learning.

Finally, the AI model allows for dealing with uncertainty through methodological
“scaffolding” by providing a practical framework that enables hybrid predictive (causal) and

Figure 9.
Proportion of users in

each cluster
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controlled (effectual) practices. The articulation of the prediction phase into a framework that
accommodates both effectual and causal logics of action allows to face remaining uncertainty
by leveraging unexpected contingencies and embracing a future unknowable in principle.

By exploring “How entrepreneurs can harness prediction technologies while keeping a
control-based, effectual approach for product development,” this work provides
entrepreneurs with a primer on how to implement predictive AI-based infrastructures at
the service of their entrepreneurial project. The related indicators, the PP and the PPE, bring
significant information to generate entrepreneurial learning. Bringing more assessable
metrics certainly facilitates the use of AI-based infrastructure by entrepreneurs. Another
practical implication is the reinforcement of collaboration between users and the venture
team. The LSAs already call for user and customer involvement in the product and business
development (Frederiksen and Brem, 2017). The BMPL loop reinforces it by giving enhanced
ways to involve users. Asking users to rate a feature on a 5-star scale rating system is playful
and user-friendly, particularly if the rating system is integrated into the digital product.
“Easy to provide” feedback is likely to encourage more users to be involved in the co-creation
process. Frederiksen and Brem (2017) linked the user involvement advocated by the LSAs
with open-innovation, which is positively correlated with innovation performance (Cheng
and Huizingh, 2014) and crucial for boosting the speed of internationalization of new digital
products (Shaheer and Li, 2020).

Conclusion and future work
This paper proposes a new manner to harness AI-based prediction technologies through the
LSAs as a toolkit that accommodates both effectual and causal logics of action. An adaptation
of the Lean startup’s BML loop integrates an AI-based causal stage, called the predict phase.

This research provides the details of the active learning BMPL algorithm. It allows the
prediction of users’ opinion, in the form of ratings, of a new PDD from ratings users have
given to other PDDs and some randomly collected ratings about the newPDD. Coupledwith a
simple active learning query framework to guide the rating collection phase, the so-called
active learning BMPLA is evaluated against a data set obtained from a real entrepreneurial
project. The quality of the algorithm is showcased through its prediction performance and its
ability to detect design decisions likely to lead to less convincing results. In addition, the
related ratings and the PP are accessible metrics. It enables the acceleration of the
opportunity development by shortening the measure phase and facilitating the learn phase,
which makes the BMPL loop substantially faster than the BML loop.

Consistently with Galkina and Jack (2021) or Smolka et al. (2018), the proposed approach is
a novel way to implement hybrid practices for opportunity development. While the measure
and predict phases better fit with a causal logic of action, their integration into the BMPL loop
allows for hybrid practices in an iterative way. Uncertainty is managed in three
complementary manners: through epistemological expansion by accelerating information
gathering, through ontological reduction by turning previously unforeseeable elements into
“knowable” content and through methodological scaffolding by providing a framework that
enables hybrid practices.

This research also has key limitations. First, the case study focuses on the theoretical
development of the model and its technological feasibility from a case study. Further studies
can investigate how entrepreneurs deal with epistemological expansion, ontological
reduction and methodological scaffolding, and what are the boundary conditions for each
of them. Implementing the BMPL loop in a startup and studying its day-to-day functioning
would bring valuable information. For example, reactions of the startup team, reactions of
users, the impact on the collaboration between users and the startup team and therefore on
open-innovation and the impact on team collaboration are some interesting paths to explore.
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Especially, the literature on effectuation calls for more studies on the tensions stemming from
hybrid practices (Galkina et al., 2021). Since teams are a possible source of effectuation-
causation combinations (Ben-Hafaı€edh and Ratinho, 2019) and managing teams is another
key weakness of LSAs (Mansoori and Lackeus, 2020), it opens intriguing paths for research.
Using a digital infrastructure such as the AI-based model developed in this paper might help
in creating hybrid practices while at the same time bringing tensions between individuals
with different preferences (Alsos et al., 2016). Interestingly, the digital infrastructure might
also act as boundary objects to connect team members and develop shared understanding of
the opportunity (Shepherd et al., 2021).

Another important limitation is related to the relative acontextual nature of the research.
However, it is now established that the need for (and performance of) combined causal and
effectual logics differs according to circumstances (Chen et al., 2021; Vanderstraeten et al.,
2020). This is especially important since LSAs might be more useful in some sectors (i.e.
digital sectors) than in others. Future studies might look at the context-dependent nature of
the BMPL, across different sectors and levels of turbulence.

Technical extensions at the service of business opportunity development can also be
explored. Extending recommendation techniques to incorporate multi-criteria is considered
as one of the important issues for the next generation of recommender systems (Adomavicius
et al., 2011). It might be an interesting way to enhance predictions and the interpretability of
the active learning BMPL algorithm when dealing with new opportunity with complex value
propositions. The time-changing dynamic can also be incorporated into some model-based
methods in order to take into account changes in tastes or behavior of users as well as
changes in the popularity of PDDs (Koren and Bell, 2015). This is especially important for the
study of blended logics, which are considered as essential in dynamic environments (Laine
and Galkina, 2017). Another perspective would be to integrate textual reviews of users to
enhance the predictions, as in Bao et al. (2014) or Lei et al. (2016), or even to detect unexpected
contingencies in the written comments as sources of new pivots. Finally, prediction technique
could be extended to compare concurrent PDDs and to advise on the preferred ones in an A/B
testingmethod. As such, technical expansionswould be expanding the digital infrastructures
that provide entrepreneurs with learning advantages.

This paper can serve as a starting point for new research into AI-based digital
infrastructures and the way they can help entrepreneurs in their day-to-day operations. It can
also encourage more research on the use of hybrid predictive (causal) and controlled
(effectual) practices through the LSAs. Up until now, LSAs have been framed as an
operationalization of effectuation. This work can encourage theoretical developments,
building on effectuation and causation, to better understand Lean startup practices,
especially when supported by digital infrastructures accelerating the entrepreneurial
process.

Note

1. A summary of the mathematical and conceptual elements from recommender systems theory is
proposed in Appendix.
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Appendix
Mathematical and conceptual elements from recommender systems theory
Recommender systems address the concern of guiding users in a personalized way to content or
products that might interest to them. They play an important role in applications such as Netflix,
Amazon, YouTube, Spotify and Facebook, thanks to more than twenty years of research in this field.
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Therefore, the challenge of matching users or consumers with appropriate content or products has
become crucial in order to enhance users’ satisfaction and loyalty (Adomavicius andTuzhilin, 2005). The
general principle is to predict user u’s interest for an item i based on information about what u usually
appreciates. Recommender systems are usually classified into the following categories: content-based,
collaborative filtering and hybrid approaches (combining the first two categories). While content-based
techniques recommend items on their similarity to items that the user has expressed an interest in the
past, collaborative filtering approaches recommend items to a particular user based on what other users
with similar tastes have previously liked. For their better performance in serendipity (Ning et al., 2015),
the amount of data that can be processed (Ricci et al., 2015) and its simplicity, we chose to implement a
collaborative filtering recommender system (CFRS). For more information about recommender systems
the reader is invited to refer to the book by Ricci et al. (2015).

Mathematical notations
We define the problem as the prediction of the rating of user u for a new item i. We distinguish predicted
ratings from the known ones by denoting as brui the prediction of rui. Referring to the set of users and
the set of items as U and I , we can denote as U i all users who rated i and as I u all items rated by u.
R denotes the set of available triplets ðu; i; ruiÞ. The number of users and items are denoted by n and m,
respectively.

The computation of brui is done in the present paper by a neighborhood-based approach.
Neighborhood-based recommender systems form a subcategory of CFRS in which predictions are
directly made from the collection of known ratings without computing a model. Neighborhood-based
approaches are known to perform better on small data sets and be justifiable (Ning et al., 2015).
Predicting a rating with such a method consists of computing similarity weights, selecting neighbors
and calculating brui with a normalization scheme.

Computing the similarity weights
There are two types of neighborhood-based approaches: user-user and item-itemmethods. In a user-user
neighborhood-based method, brui is computed using the ratings given to the item by a subset of users,
called neighbors, that have rating patterns similar to u. In an item-item neighborhood-based method,brui
is computed using the ratings of u for items similar to i, called neighbors, that is, items rated similarly by
users of the system. In this research, we only consider the user-user alternative since, for the reasons set
out in Section 4, it is the most relevant approach for the empirical study conducted. The rest of this
section is therefore limited to user-user approach. It is not restrictive since the item-item variant can
easily be deducted from the following explanation.

Neighbors are determined by computing the similarities between u and other users. Similarity
weights play two important roles in a neighborhood-based recommender system: they enable us to find
the nearest neighbors and provide a means to give more or less importance to these neighbors in the
prediction calculation. Several approaches can be used to compute the similarities: cosine vector,
Pearson correlation (PC), adjusted cosine, mean squared difference, Spearman rank correlation and so
forth. We preferentially use the PC method since it compares ratings by removing effects of mean and
variance (Ning et al., 2015). The similarity between user u and user v, denoted by wuv, computed with the
PC method, is given by (1).

Selecting the neighbors
From these similarities, the prediction computation consists first in selecting the nearest neighbors of
user uwho rated the new item i. The set of nearest neighbors of uwho rated i is denoted byN iðUÞ, and is
fulfilled by applying a series of conditions detailed in Section 3.

Predicting with a normalization scheme
Once the nearest neighbors of uwho rated i are selected, the prediction of its rating for i is computed by (2).

Equation (2) uses the Z-score normalization. The objective of Z-score is to convert individual ratings
into a more universal scale by taking into account the average and the spread of the ratings that
users gave (Ning et al., 2015). The rating of neighbor v further influences the computation of brui if the rvi
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differs from rv and the standard deviation is small. In other words, if a neighbor of u rates i
very differently from its usual, this must intervene in the prediction in a way that is inversely
proportional to σv.

Evaluating the results
Assessing the performance of a neighborhood-based recommender systems is usually performed by
either computing errors metrics or accuracy metrics (Cremonesi et al., 2010). Both start by dividing the
data set into two parts: the training set – that is, triplets ðu; i; ruiÞ considered as known and thus used to
compute similarity weights – and the test set – that is, the set of triplets ðu; i; ruiÞ for which rui is hidden
and computed by (2). Error metrics evaluate how precise the predicted ratings are, while accuracy
metrics evaluate how precise the classification is. Classification can consist of considering a predictionbrui as positive if brui ≥ rl – with rl being a threshold – and negative otherwise.

Common error metrics are the root mean squared error (RMSE) and the mean absolute error (MAE)
(Gunawardana and Shani, 2015):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jRtestj
X

rui∈Rtest

�brui � rui

�2
s

; (6)

MAE ¼ 1

jRtestj
X

rui∈Rtest

jbrui � ruij; (7)

where Rtest is the set of triplets ðu; i; ruiÞ and rui is hidden.
Assessing the classification quality is done with accuracy metrics (Gunawardana and Shani, 2015):

Precision ¼ #tp

#tpþ#fp
; (8)

Recall ¼ #tp

#tpþ#fn
; (9)

where#tp,#fn,#fp and#tn are the number of true positives, false negatives, false positives and true
negatives, respectively. The meanings of tp, fn, fp and tn are summarized in Table A1.

The harmonic mean of precision and recall, commonly named F-measure, is often examined to
summarize the effects of both metrics:

F �measure ¼ 2$Precision$Recall

Precisionþ Recall
(10)
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