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ABSTRACT

Subspace clustering is an unsupervised approach for de-
termining the union of multiple subspaces that best fits a
collection of high-dimensional samples. Self-expressive rep-
resentation, that is, expressing samples as linear combination
of other samples, is the core of most state-of-the-art subspace
clustering approaches. However, existence of sufficiently
well-spread samples within each subspace is crucial for pre-
cise representation, which might not always be available in
real-world scenarios. Inspired by the remarkable influence of
data augmentation on the performance of neural networks, we
propose a scalable approach that employs data augmentation
within subspace clustering. Benefiting from the increased
diversity in data, we use augmented samples as an enlarged
dictionary and combine the self-expressive representations
based on the assumption that augmentation does not alter the
labels of the samples. Significant improvement of the cluster-
ing performance on two real-world datasets demonstrates the
effectiveness of the proposed approach.

Index Terms— subspace clustering, data augmentation,
unsupervised learning, sparse representation, clustering

1. INTRODUCTION

Data clustering is one of the fundamental tasks in unsu-
pervised machine learning. Among the many clustering
methodologies, subspace clustering has been established as
a major approach for grouping samples according to their
underlying subspaces. Subspace clustering is based on the
assumption that the samples approximately lie on several
low-dimensional subspaces, and is defined as follows [1]:

Definition 1 (Subspace clustering) Let X ∈ Rd×n be the
data matrix containing n samples of dimension d, where each
sample, X(:, i) (i = 1, ..., n), is a column of this matrix. As-
sume that the samples are distributed on the union of un-
known r linear subspaces, {Si}ri=1, with unknown dimen-
sions {di}ri=1, with di < d. The goal of subspace cluster-
ing is to partition the samples according to their underlying
subspaces.
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In the past two decades, a wide variety of algorithms have
been proposed to tackle subspace clustering; see, e.g., [2, 3, 4,
5]. Among them, the family of approaches based on exploit-
ing the self-expressive property is the current state-of-the-
art [5, 6, 7]. Self-expressiveness assumes that every sample
on a (linear) subspace/cluster can be represented as a linear
combination of other samples in the same subspace. These
approaches require solving an optimization problem of the
form:

min
C

θ(C) + λ L(X −XC) such that diag(C) = 0, (1)

where C ∈ Rn×n is the coefficient matrix, θ(C) is a reg-
ularizer (e.g., to promote sparsity), λ > 0 is a regularization
parameter, andL is the data fitting term, which is typically the
squared Frobenius normL(X−XC) = ‖X−XC‖2F . The di-
agonal entries of the matrixC, that is, diag(C), are set to zero
in order to avoid the trivial solution (the identity matrix). Sev-
eral different regularizers have been proposed in the literature,
the three most widely used are: (1) the component-wise `1
norm, ‖C‖1, in sparse subspace clustering (SSC) [5], (2) the
nuclear norm, ‖C‖∗, in low-rank representation (LRR) [6],
and (3) the Frobenius norm, ‖C‖2F , in least square regression
(LSR) [7]. After having solved (1), each entry of the coef-
ficient matrix, C(i, j) for i, j ∈ {1, ..., n}, provides an es-
timation of pairwise similarity between the two correspond-
ing samples, X(:, i) and X(:, j). Finally, spectral clustering
is applied on the symmetric affinity matrix corresponding to
C, typically constructed as |C| + |C>|, to obtain the final
segmentation of the samples, where | · | is the element-wise
absolute value.

Despite the notable performances on several real-world
datasets, self-expressive representations heavily rely on the
existence of sufficiently well-spread samples from each sub-
space to obtain a subspace preserving representation. A co-
efficient matrix is subspace preserving if each sample only
uses the samples from the same subspace [5]. It has been
shown that the data distribution within each subspace can sig-
nificantly affect the performance of subspace clustering al-
gorithms [5]. However, to the best of our knowledge, most
subspace clustering approaches consider the given samples as
a fixed input, and focus on improving the quality of the coef-
ficient matrix given the samples.



Data augmentation has been shown to be extremely effec-
tive in supervised and lately unsupervised learning in neural
networks [8, 9, 10]. In data augmentation, new data is syn-
thetically produced from the given data. Typically, the new
data is obtained by some transformation of the given samples
in such a way that the category/cluster of the samples remain
unchanged. Inspired by their remarkable success in boosting
the performance of many neural-network based approaches,
we combine the advantages of (unsupervised) data augmenta-
tion with subspace clustering. The goal is that by leveraging
invariances, additional generated samples can help to avoid
degenerate subspaces and lead to well-spread samples.

Incorporating data augmentation techniques with sub-
space clustering is mostly overlooked in the literature. To
the best of our knowledge, [11] is the only existing approach
that combines the benefits of augmentation with the previ-
ously proposed deep subspace clustering framework [12]. In
particular, the representations are learned such that they lead
to consistent subspaces for different augmentation strategies.
However, pursuing subspace consistency among different
sets of augmented samples can be interpreted as a multi-view
subspace clustering where each set of newly generated data is
a different view of the original samples. Instead of focusing
separately on different sets of augmented samples, the main
goal of this paper is to propose an approach that computes
the coefficient matrix using the whole augmented data as an
enlarged dictionary to represent the given samples.

This paper is organized as follows. In Section 2, we
present the detailed description of the proposed approach,
dubbed augmented k-nearest neighbors subspace clustering
(AK-SC), and provide a geometric illustration on how aug-
mentation can improve the quality of the coefficient matrix,
especially as the affinity between subspaces increases. In
Section 3, we provide numerical experiments illustrating the
effectiveness of AK-SC compared to state-of-the-art subspace
clustering algorithms.

2. AUGMENTED SELF-EXPRESSIVE
REPRESENTATION

Generally, the goal of data augmentation is to increase the
data diversity using the existing samples. How to generate
new artificial samples from the given data, without alternat-
ing the category of the corresponding sample, is an active re-
search direction. In this paper, we focus on image data and
utilize classic augmentation transformations (such as flip, ro-
tation and scaling). In this section, we first present the pro-
posed approach for merging the benefits of augmentation with
subspace clustering in a unified optimization model. Then the
geometrical interpretation for augmented self-expressive rep-
resentation is provided.

2.1. Augmented k-nearest neighbors subspace clustering

Let X̂ = [X̂1, ..., X̂m] ∈ Rd×nm be the generated augmented
data by applying m different augmentation strategies on the
input data matrix X , where X̂i ∈ Rd×n is the generated data
by the i-th strategy, for i = 1, ...,m. We form the final over-
complete dictionary X̃ by concatenating the original data, X ,
and the augmented samples, X̂ , as X̃ = [X, X̂]. Using the
new extracted information in X̃ , our proposed sparse self-
expressive representation is formulated as follows:

C̃ = argmin
C∈Rn(m+1)×n

‖C‖1 +
λ

2
‖X − X̃C‖2F (2)

such that C(j,Ω(j)) = 0 for j = 1, ..., n,

where Ω(j)={j+(k−1)n}m+1
k=1 contains j and the indices of

the augmented samples corresponding to X(:, j). By setting
the corresponding entries in C̃ to zero, we avoid representing
a sample using its augmented samples. On the other hand, the
rectangular matrix C̃ has a specific block-wise structure, that
is, C̃ = [C̃1 ; ... ; C̃m+1] which is obtained by vertical con-
catenation of sub-matrices {C̃i}m+1

i=1 ∈ Rn×n. In particular,
C̃1 contains the representation coefficients between the origi-
nal samples inX , and {C̃i}m+1

i=2 between the original samples
and the augmented samples, {X̂i}mi=1. We construct the final
coefficient matrix as follows Cf =

∑m+1
i=1 C̃i, and the cluster

assignments are obtained by applying spectral clustering on
the affinity matrix Af = |Cf |+ |C>f |. The matrix Cf merges
the representation coefficients using the original data and all
augmented samples in a simple unsupervised way. This is
based on the assumption that the augmented samples should
belong to the same clusters of the corresponding original data,
and representing the data using the augmented samples in-
dicates a connection/link to the corresponding original sam-
ple. As we will see, this simple strategy performs rather effi-
ciently. Designing more sophisticated aggregation strategies
is a topic of further research.

Augmentation leads to an enlarged dictionary, X̃ , which
increases the computational complexity. To reduce the com-
putational burden of dealing with the augmented samples,
we impose a sparsity structure on C̃, namely each sample
is only allowed to use columns of the dictionary corre-
sponding to the k nearest neighbors. Let Nk(X(:, j)) be
the k nearest neighbors of X(:, j) in X̃ and Ψj be the set
containing the indices of these samples. We ensure that
Ψj ∩ {j + (k − 1)n}m+1

k=1 = ∅, that is, no augmented sam-
ple of X(:, j) is included in Nk(X(:, j)). Finally, for each
j = 1, 2, . . . , n, we solve the following problem:

C̄(:, j) = argmin
c∈Rk

‖c‖1 +
λ

2
‖X(:, j)−Nk(X(:, j))c‖22.

(3)
An additional advantage of limiting the dictionary to the k
nearest neighbors is that the samples are represented using
spatially close samples which promotes locality preserving



representations [13]. The sparse n(m+1)×nmatrix C̃ is con-
structed by setting C̃(Ψj , j) = C̄(:, j) for j = 1, ..., n. We
use an ADMM based algorithm [14] to solve (3); see Algo-
rithm 1. We refer to our proposed algorithm as augmented k-
nearest neighbors subspace clustering (AK-SC): AK-SC first
solves (3) using Algorithm 1 to obtain Cf , and then performs
spectral clustering on |Cf |+ |C>f |.

Algorithm 1 ADMM for (3) in AK-SC
Input: X ∈ Rd×n, m predefined augmentation strategies,

parameters λ and k.
Output: Pairwise coefficient matrix Cf .

1: Initialization: Apply m augmentation strategies to obtain
X̃ ∈ Rd×nm, C̄ = A = ∆ = 0, µ = λ

maxi6=j |xTj xi|
,

ρ = λ
2: for each sample X(:, j) in X do
3: Set D = Nk(X(:, j)) as the dictionary, Ψj as the in-

dices ofNk(X(:, j)) with Ψj∩{j+(k−1)n}m+1
k=1 = ∅.

4: while some convergence criterion is not met do
5: A(:, j) ←

(
µD>X(:, j) + ρIk

)−1
(µD>X(:, j) +

ρC̄(:, j)−∆(:, j)) where Ik is the identity matrix of
dimension k.

6: C̄(:, j)← T 1
ρ

(A(:, j) + ∆(:, j)/ρ)

where Tγ(y) = max (0, |y| − γ) sign(y) is the soft-
thresholding operator.

7: ∆(:, j) = ∆(:, j) + ρ(A(:, j)− C̄(:, j))
8: end while
9: Set C̃(Ψj , j) = C̄(:, j)

10: end for
11: Set Cf as block-wise sum of submatrices in C̃.

2.2. Geometrical motivation of self-expressive represen-
tation using augmented data

In the noiseless case, solving (1) using the component-wise
`1-norm regularizer for the coefficient matrix has an interest-
ing geometrical interpretation. Let P(±X−j) be the sym-
metrized convex hull of the columns of the matrix X except
for the jth sample. It has been proved that the nonzero entries
in the coefficient vector, C(:, j), correspond to the vertices of
the face of P(±X−j) that intersects with the ray generated by
X(:, j), that is, the line that goes from the origin to the point
X(:, j) [15, 5].

Following this geometric interpretation, we claim that
generating new samples using augmentation can improve the
accuracy, especially when dealing with close subspaces (high
affinity). This is illustrated in Figure 1. Suppose the samples
(shown in full circles) are drawn from three disjoint linear
subspaces (a plane and two lines). Let x be a point on the in-
tersection of S1 and S2

⊕
S3. The symmetrized convex hull

of the points on S1 (discarding x) and the points on S2

⊕
S3

are shown in dotted blue and magenta, respectively. The ray

passing through x reaches the symmetrized convex hull of
S2

⊕
S3 later than the one corresponding to S1, and hence

is represented by the sparse representation of samples from
the wrong subspaces. However, after introducing appropriate
augmented samples (the crosses on Figure 1), the sample x
is represented correctly by the samples from the same sub-
space. As the affinity between subspaces increases, we have
observed that the augmented samples typically become more
beneficial in improving the quality of the coefficient matrix.
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Fig. 1. Illustration of the role of augmented samples in self-
expressive based subspace clustering. The original samples
are drawn from three disjoint subspaces {Si}3i=1 and shown
in full circle. The corresponding symmetrized convex hull of
the points on the S1 (without x) and S2

⊕
S3 are shown in

blue and magenta dotted lines, respectively. Using the origi-
nal samples, the sample x is represented wrongly by samples
from S2

⊕
S3. However, by introducing augmented samples,

the crosses within S1, the ray generated by x reaches the face
of S1 later than the one in S2

⊕
S3, and hence is correctly

represented by samples from the same subspace.

3. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the proposed
AK-SC for clustering the images of two real-world datasets:
COIL-20 (Columbia Object Image Library) [16] and MNIST.
COIL-20 contains 72 images of size 128 × 128 of each of
the 20 objects, for a total of 1440 images. The images were
taken from objects in different poses. We downsampled them
to 32 × 32 pixels as in [12]. The MNIST dataset contains
70,000 images with 28×28 pixels of 10 handwritten digits.
The dataset is divided into 60,000 images for training and
10,000 images for testing. We use 50 images per digit (clus-
ter) from the MNIST test dataset. The performance of AK-SC
is compared with the following popular subspace clustering
algorithms: SSC [5], EnSC [17], OMP [18], KSSC [19], and
knn-SSC [20]. The parameters are selected following the rec-
ommendations in the corresponding papers to obtain the best



performance. We did not compare with the deep subspace
clustering approach with data augmentation from [11] as the
implementation is not available. Moreover, [11] is based on
introducing a linear self-expressive based layer in an autoen-
coder network, which is shown in [21] to be ill-posed and lead
to a degenerate embedding of the data. The code to run the ex-
periments is available from https://bit.ly/AKSC_v1.

We evaluate the performances by measuring the clustering
error. Let ˆ̀∈ {1, . . . , r}n be the obtained labels (clusters) by
a clustering algorithm (recall that r is the number of clusters).
Given the ground-truth labels ` ∈ {1, . . . , r}n, the clustering
error is calculated as follows:

err = min
π, a permutation

∣∣{i | `(i) 6= ˆ̀
π(i)}

∣∣
n

,

where ˆ̀
π are the labels obtained after permuting using π.

For the MNIST dataset, we follow the common practice
of applying a scattering convolution network [22] on the data
to extract feature vectors of dimension 3472, and then project
them to dimension 100 using PCA [18]. Nine datasets corre-
sponding to different number of digits (from 0 to 1, . . . , 9) are
constructed. The clustering errors of the different algorithms
are reported in Table 1. For the proposed AK-SC, we used two
standard augmentation strategies: 5 random rotations within
the range [−30◦, 30◦], and 5 random scalings within the range
[0.8, 1.2], and hence a total of 10 augmented samples. Due to
the random nature of the augmented strategies, the average
and standard deviation of ten trials are reported for AK-SC.
We set the parameters of AK-SC as k = 30 and λ = 100.
We did not notice major sensitivity to the parameter k. For
instance, for k = 20 (resp. 40), we obtained an average error
rate of 8.00% (resp. 8.49%) for clustering the digits [0 : 9].

Table 1. Clustering error rate (%) on the MNIST dataset (best
performance in bold, second best underlined).

Digits SSC OMP EnSC knn-SSC KSSC AK-SC
[0:1] 0 0 0.1 0 0 0±0
[0:2] 0 0.62 0 0.67 0 2.93±0.56
[0:3] 32.50 4.00 32.50 4.50 1.50 2.05±0.43
[0:4] 27.20 30.00 27.60 4.00 1.60 2.08±0.41
[0:5] 22.33 23.33 22.33 9.33 7.71 3.33±0.27
[0:6] 21.14 22.29 19.43 8.86 7.71 3.62±0.55
[0:7] 19.25 21.25 17.50 8.75 7.75 3.67±0.48
[0:8] 18.22 23.56 18.67 21.33 14.22 6.02±0.26
[0:9] 18.00 23.20 18.20 22.40 15.60 7.90±0.80

For the COIL-20 dataset, we use the augmentation strate-
gies of flipping left to right, 5 random rotations within the
range [−30◦, 30◦], and 5 random scalings within the range
[0.8, 1.2]. We set k = 10 and λ = 20 for AK-SC. We ob-
served that for larger values of k, more augmented samples
are needed to keep the error rate unchanged. The error rate
of different algorithms are reported in Table 2. The results of
AK-SC are also averaged over ten different trials.

Table 2. Clustering error rate (%) on the COIL-20 dataset
(best performance in bold, second best underlined).

SSC OMP EnSC knn-SSC KSSC AK-SC
24.38 29.86 12.40 20.56 14.94 0±0

Looking at Tables 1 and 2, we observe the following:
• AK-SC significantly reduces the error rate for COIL-20,
from 12.40% for the best competitor (namely EnSC) to 0%
for AK-SC, for the 10 randomly generated augmentations.
The reason is that augmentation allows to fill in the sub-
spaces by creating augmented samples to help representing
the original images using samples from the same subspace,
as explained in Section 2.2. This is particularly important
for nearby subspaces: the main struggle on COIL-20 for the
majority of (subspace) clustering algorithms is to distinguish
between three similar categories of toy cars. A reason AK-SC
performs particularly well for COIL-20 is that the original im-
ages in COIL-20 are already some kind of rotations/scalings
of the different objects (more precisely, they are taken from
different angles). In fact, it turns out the graph corresponding
to the affinity matrices of AK-SC has no wrong connections
between samples, and has sparsely connected samples within
each cluster. On the other hand, knn-SSC, which is similar
to AK-SC without augmentation, has many wrong connec-
tions between the samples of different clusters. This shows
that augmentation plays a significant role in boosting the
performance, which we also observe on MNIST.
• For the MNIST dataset, as the number of clusters increases,
particularly starting from [0 : 5], AK-SC consistently outper-
forms all other algorithms by a large margin.
• The general considerable decrease in error rate suggests that
augmentation offers more than several multi-view represen-
tations of the original data. In other words, focusing sepa-
rately on each augmented set and merely seeking consistency
between the corresponding coefficient matrices neglects the
complementary information within the augmented samples.

4. CONCLUSION

In this paper, we proposed AK-SC to integrate augmented
samples with sparse subspace clustering. Enlarging the data
using augmentation strategies that do not change the subspace
of the samples provides additional information that can sig-
nificantly benefit the self-expressive representation. The aug-
mented data serves as an overcomplete dictionary in AK-SC
and the computational cost is controlled by limiting the rep-
resentation of each sample to a few nearest neighbors. We
geometrically illustrated how augmentation can improve the
self-expressive representation, which we have illustrated on
two widely used datasets. In this paper, we focused on utiliz-
ing predefined standard augmentation strategies. An intrigu-
ing research direction is to learn the augmentation strategies
from the samples without altering the underlying subspaces.
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clustering: Algorithm, theory, and applications,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 35, no. 11, pp. 2765–2781, 2013.

[6] Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun,
Yong Yu, and Yi Ma, “Robust recovery of subspace
structures by low-rank representation,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol.
35, no. 1, pp. 171–184, 2012.

[7] Can-Yi Lu, Hai Min, Zhong-Qiu Zhao, Lin Zhu, De-
Shuang Huang, and Shuicheng Yan, “Robust and ef-
ficient subspace segmentation via least squares regres-
sion,” in European Conference on Computer Vision.
Springer, 2012, pp. 347–360.

[8] Agnieszka Mikołajczyk and Michał Grochowski, “Data
augmentation for improving deep learning in image
classification problem,” in International Interdisci-
plinary PhD Workshop (IIPhDW). IEEE, 2018, pp. 117–
122.

[9] Connor Shorten and Taghi M Khoshgoftaar, “A survey
on image data augmentation for deep learning,” Journal
of Big Data, vol. 6, no. 1, pp. 1–48, 2019.

[10] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang
Luong, and Quoc V Le, “Unsupervised data aug-
mentation for consistency training,” arXiv preprint
arXiv:1904.12848, 2019.

[11] Mahdi Abavisani, Alireza Naghizadeh, Dimitris N
Metaxas, and Vishal M Patel, “Deep subspace clustering
with data augmentation.,” in NeurIPS, 2020.

[12] Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann,
and Ian Reid, “Deep subspace clustering networks,”
in Advances in Neural Information Processing Systems,
2017, pp. 24–33.

[13] Maryam Abdolali and Nicolas Gillis, “Beyond lin-
ear subspace clustering: A comparative study of non-
linear manifold clustering algorithms,” arXiv preprint
arXiv:2103.10656, 2021.

[14] Daniel Gabay and Bertrand Mercier, “A dual algorithm
for the solution of nonlinear variational problems via fi-
nite element approximation,” Computers & Mathemat-
ics with Applications, vol. 2, no. 1, pp. 17–40, 1976.

[15] Behrooz Nasihatkon and Richard Hartley, “Graph con-
nectivity in sparse subspace clustering,” in IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2011, pp. 2137–2144.

[16] Sameer A Nene, Shree K Nayar, Hiroshi Murase, et al.,
“Columbia object image library (COIL-100),” 1996.

[17] Chong You, Chun-Guang Li, Daniel P Robinson, and
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