
����������
�������

Citation: Silva, V.R.G.d.; Valderrama,

C.; Manneback, P.; Xavier-de-Souza,

S. Analytical Energy Model

Parametrized by Workload, Clock

Frequency and Number of Active

Cores for Share-Memory

High-Performance Computing

Applications. Energies 2022, 15, 1213.

https://doi.org/ 10.3390/en15031213

Academic Editors: Andrea Bonfiglio

and Andrea Mazza

Received: 15 November 2021

Accepted: 31 January 2022

Published: 7 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Analytical Energy Model Parametrized by Workload, Clock
Frequency and Number of Active Cores for Share-Memory
High-Performance Computing Applications
Vitor Ramos Gomes da Silva 1,* , Carlos Valderrama 1 , Pierre Manneback 1 and Samuel Xavier-de-Souza 2

1 Department of Electronics and Microelectronics (SEMi), University of Mons, 7000 Mons, Belgium;
carlosalberto.valderramasakuyama@umons.ac.be (C.V.); pierre.manneback@umons.ac.be (P.M.)

2 Department of Computer Engineering and Automation, Universidade Federal do Rio Grande do Norte,
Natal 59078-970, Brazil; samuel@dca.ufrn.br

* Correspondence: vitor.ramosgomesdasilva@umons.ac.be

Abstract: Energy consumption is crucial in high-performance computing (HPC), especially to enable
the next exascale generation. Hence, modern systems implement various hardware and software
features for power management. Nonetheless, due to numerous different implementations, we can
always push the limits of software to achieve the most efficient use of our hardware. To be energy
efficient, the software relies on dynamic voltage and frequency scaling (DVFS), as well as dynamic
power management (DPM). Yet, none have privileged information on the hardware architecture
and application behavior, which may lead to energy-inefficient software operation. This study
proposes analytical modeling for architecture and application behavior that can be used to estimate
energy-optimal software configurations and provide knowledgeable hints to improve DVFS and
DPM techniques for single-node HPC applications. Additionally, model parameters, such as the level
of parallelism and dynamic power, provide insights into how the modeled application consumes
energy, which can be helpful for energy-efficient software development and operation. This novel
analytical model takes the number of active cores, the operating frequencies, and the input size as
inputs to provide energy consumption estimation. We present the modeling of 13 parallel applications
employed to determine energy-optimal configurations for several different input sizes. The results
show that up to 70% of energy could be saved in the best scenario compared to the default Linux
choice and 14% on average. We also compare the proposed model with standard machine-learning
modeling concerning training overhead and accuracy. The results show that our approach generates
about 10 times less energy overhead for the same level of accuracy.

Keywords: energy model; dynamic frequency and voltage scaling; dynamic power management;
high performance computing

1. Introduction

Data center energy efficiency has become of crucial importance in recent years due
to its high economic, environmental, and performance impact. For example, the leading
petaflop supercomputers consume a range of 1–18 MW of electrical power, with 1.5 MW
on average, which can be easily translated into millions of dollars per year in electricity
bills [1]. Data center energy consumption was estimated to be between 1.1% and 1.5% of
worldwide electricity usage in 2010 [2,3], generating as much pollution as a nation such as
Argentina [4]. In some cases, the power costs exceed the cost of purchasing hardware [5].
Furthermore, the energy costs of powering a typical data center doubles every five years [6].
Therefore, with such a steep increase in power use, electricity bills have become a significant
expense for today’s data centers [7,8]. For these reasons, data center energy efficiency is
now considered a primary concern for data center operators, often ahead of the traditional
considerations of availability and security.

Energies 2022, 15, 1213. https://doi.org/10.3390/en15031213 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15031213
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-4582-9245
https://orcid.org/0000-0002-1693-6394
https://orcid.org/0000-0003-3990-3621
https://orcid.org/0000-0001-8747-4580
https://doi.org/10.3390/en15031213
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15031213?type=check_update&version=3

Energies 2022, 15, 1213 2 of 22

There are several approaches for green computing, from electrical materials to cir-
cuit design, systems integration, and software. These techniques may differ, but they
share the same goal—to substantially reduce overall system energy consumption with-
out a corresponding negative impact on delivered performance. The processor and main
memory are the components that usually dominate power consumption, as shown in
Figure 1. The processor can consume as much as 50% of the total energy [9–11]. For that
reason, modern processors incorporate several features for power management [12–15],
such as dynamic power management (DPM) and dynamic voltage and frequency scaling
(DVFS). DPM encompasses a set of techniques for obtaining energy-efficient computing
by deactivating or reducing the system components’ performance when they are idle or
partially utilized [16,17]. DVFS allows the frequency and voltage to be adjusted in run-time
depending on current needs.

(a) (b)

Figure 1. Power breakdown of a typical node of an HPC cluster at full use. The system used in this
study (a) was built in 2016 and equipped with two Intel Xeon E5-2698, 128 GB of DDR4 memory and
SSD as storage, while (b) the case study in [11] was built in 2012 and equipped with two Xeon E5507,
32GB of DDR3 memory and HDD as storage.

DVFS is motivated by the well-known fact that frequency and power have a near-cubic
relationship [1,2]; this implies that running the CPU at a lower frequency causes a linear
reduction in performance and a near-cubic reduction in power, which could lead to a
near-square reduction in CPU energy. Because of this, it is possible to achieve dramatic
energy savings just with frequency control, depending on the system and its architecture.
Although very promising, the system software has yet to determine when and what voltage
and frequency to use when running applications. Otherwise, not only will performance
deteriorate, but, in the worst case, energy consumption would also increase [1]. Indeed,
reducing the frequency results in a longer execution time, which increases the energy
consumption of other system components, such as memory and disks. There is also an
overhead of time and energy associated with a voltage and frequency switch that needs
to be considered. Thus, finding the most appropriate voltage and frequency to use in all
circumstances is not easy. Therefore, since its introduction in 1994 [1], there has been a
tremendous amount of research on DVFS algorithms.

The DPM technique can achieve substantial energy savings on systems where the
static power is high, or the system remains inactive for a long time. In that case, the problem
is to determine when and which components to turn on/off. With DPM, energy savings of
70% have been reported [16,17].

However, at the same time, while these power-saving techniques reduce system energy,
they can compromise performance leading to a complex trade-off that needs to be carefully
exploited to produce more energy-efficient algorithms. Indeed, this study investigates
whether the construction of an energy consumption model of an application can lead to
significant energy savings.

We propose an analytical energy model for a given application in the function of the
two control variables present in most HPC systems: CPU operating frequency and number
of active cores. The model is composed of three application-dependent parameters and
three parameters relating to the architecture of the system. The application parameters
incorporate characteristics of the percentage of parallelism and the input size. The system

Energies 2022, 15, 1213 3 of 22

architecture parameters include power-related and technology-dependent components,
such as dynamic, static, and leakage power.

The main contributions of the proposed model are:

• Simple model: faster to fit and compute, good for DVFS and DPM optimization.
• Parameters with logical meaning: helps to understand the contribution of each specific

term.
• Analytical analysis: several analyses can be derived from the equation.
• Controllable variables: the equation is in the function of parameters that we can

control directly.

We have organized the rest of this paper in the following way. In Sections 2 and 3, we
present a general review of existing models showing the differences between each approach
and their applications. In Section 4, we propose our model and derive its parameters
alongside its constraints. In Section 5, we validate the model with the PARSEC benchmark
applications. Further on, in Section 5.8, we present use cases of the model, as well as how
we applied it in DVFS algorithms. Finally, we conclude with a discussion in Section 6.

2. Related Work

Merkel et al. [18] developed an energy model for processors based on events. Their
model assumes a fixed energy consumption αi for each activity, and by counting the number
of occurrences ci of every activity, they estimate the total energy as:

E =
n

∑
i=1

αici. (1)

Another event-based model, introduced by Roy et al. [19], described the computational
energy consumed by a CPU for an algorithm A as the Equation (2)

E(A) = PclkT(A) + PwW(A), (2)

where Pclk is a processor clock leakage power, T(A) is the total execution time, W(A) is the
total time taken by non-I/O operations, and Pw is used to capture the power consumption
per operation performed by the CPU. T(A) and W(A) are estimated using performance
features.

Models based on events present some drawbacks, they are highly dependent on the
operating system and its architecture, making them problematic to port for other platforms.
There are also limitations regarding the number of simultaneous events that can coexist
without adding a non-negligible overhead. Additionally, there are cases where events need
multiplexing, for example, when using more hardware events than the CPU can provide.
There are also some well know problems regarding the precision of some events, as shown
in many studies [20–25]. Some events that should be exact and deterministic (such as the
number of executed instructions) show run-to-run variations and over-count on various
architectures, even when running in strictly controlled environments. Because of that,
our proposed model is not dependent on events and, therefore, not vulnerable to those
drawbacks.

An instruction-level energy model was also proposed in [26] by Yakun et. al. Where
they proposed an energy per instruction (EPI) characterization made on Xeon Phi. Their
model is expressed as:

E(f) =
(p1 − p0)(c1 − c0)/ f

N
, (3)

where N is the total number of dynamic instructions, p0 is the initial idle power, p1 is
the average dynamic power, and (c1 − c0) refers to the cumulative number of cycles the
micro-benchmark performs. This model is suitable for estimating the energy after the
application finishes executing when it is possible to count the total cycles. However, it is
challenging to use for optimization or forecasting since it does not have an application

Energies 2022, 15, 1213 4 of 22

model to predict the cycles. Our model integrates the behavior of the application, taking
into account the execution time.

Lewis et al. [27] described the overall system energy consumption using the following
equation:

E = A0(Eproc + Emem) + A1Eem + A2Eboard + A3Ehdd, (4)

where, A0, A1, A2, and A3 are unknown constants that are calculated via linear regression
analysis and those remain constant for a specific server architecture. This model, as the
previous one, relies on knowledge of energy spent on each component, being a suitable
option for estimation after the application has already run, but not for optimization of the
run itself, which is the aim of our model.

In another energy consumption model based on system utilization, Mills et al. [28]
modeled the energy consumed by a compute node with CPU (single) executing at speed σ
as Equation (5)

E(σ, [t1, t2]) =
∫ t2

t1

σ3 + ρσmax3dt, (5)

where ρ stands for the overhead power consumed regardless of the processor speed, t1
and t2 are the application’s initial and final execution times. The overhead includes power
consumption by all other system components, such as memory, network, and more. For
this reason, although the authors mentioned the energy consumption of a socket, their
power model is generalized to the entire server. This model lacks a closed-form, i.e., it
depends on the definition of α(t) to be complete. Our model has a closed-form which
facilitates analyses.

Although much work has been done on DVFS, the focus is still on the consumer
electronics and laptop markets. For HPC, the notion of energy perception is relatively
new [29]. Moreover, the operational characteristics of non-HPC and HPC systems are
significantly different. First, the workload on non-HPC systems is very interactive with the
end-user, but the workload on the HPC platform is not. Second, activities conducted on a
non-HPC platform tend to share more machine resources. In contrast, in HPC, each job
often runs with dedicated resources. Third, an HPC system is usually much larger than a
non-HPC system, making it more challenging to gather information, organize, and execute
global decisions. Therefore, it is worthwhile to investigate whether a DVFS scheduling
algorithm, which works well for conventional computing, remains effective for HPC.

Our paper proposes a full-system energy model based on the CPU frequency and
the number of cores. The model aims to understand and optimize the energy behavior
of parallel applications in HPC systems according to application parameters, such as the
degree of parallelism and CPU parameters related to dynamic and static power. The pro-
posed model differs from existing ones, including the frequency and number of cores in the
same equation for estimating the energy for a specific application in a given configuration.
This model can serve as a base for considering DVFS and DPM optimization problems,
including frequency and active cores. It can also be used to analyze the contribution of
each parameter (ex: level of parallelism) to energy consumption. Furthermore, the number
of cores is essential in HPC since applications are designed to run on multiple cores.

The proposed energy model is the product of an application-agnostic power model
and an architecture-specific application performance model. The power model is based
on the CMOS logic gates power draw as a function of the frequency [30,31] augmented to
include the number of cores. The performance model is based on Amdahl’s law [32–34],
which can be used to estimate runtime in multi-core systems. In addition, this model has
been extended to include execution frequency and input size, characterizing the application
on the target architecture.

Table 1 summarizes the models comparing the system dependencies and the control-
lable variables.

Energies 2022, 15, 1213 5 of 22

Table 1. Related work summary.

Model System Dependency Variable Controllable Variables

Merkel et al. [18] performance counters number of activities -
Roy et al. [19] performance counters io operations, total time -

Yakun et al. [26] number of instructions frequency frequency
Lewis et al. [27] energy of subcomponents energy of subcomponents -
Mills et al. [28] power of subcomponents total time, frequency frequency

Our model - frequency, cores, input size frequency, cores, input size

3. Theoretical Background

A model is a formal representation of a natural system. The representation of computer
system models includes equations, graphical models, rules, decision trees, representative
collections of examples, and neural networks. The choice of representation affects the
model’s accuracy, as well as its interpretability by people [35–37]. Accurate energy and
power consumption models are essential for many energy efficiency schemes employed in
computing equipment [5], and they can have multiple uses, including the design, forecast-
ing, and optimization of data center systems. This study focuses on analytical models that
could aid energy optimization and analyses of crucial factors in the total energy draw.

The desirable properties of a full-system model of energy consumption include ac-
curacy, speed, generality and portability, inexpensiveness, and simplicity [38]. However,
modeling an HPC system’s exact energy consumption behavior is not straightforward,
either at the whole-system level or at the level of individual components. Data centers’
energy consumption patterns depend on multiple factors, such as hardware specifications,
workload, cooling requirements, or the type of the applications. Some of these factors
cannot be measured easily. Furthermore, it is impractical to perform detailed measurements
of the energy consumption of lower-level components without additional overhead.

Several proposed models have already been classified concerning their input parame-
ters, as shown by Dayarathna et al. [2], who analyzed more than 200 models according to
their characteristics and limitations and classified them into categories where the model is
more suited to its objectives:

• System utilization or workload
• Frequency
• Other system states, such as cache miss, branch prediction, number of instructions

executed, and more

Often, energy models are described as a combination of two main parts, the power
model of the system and the performance model of the application. This is because the
concept of energy (E) is the total amount of work performed by a system over a period of
time (T), while power (P) is the rate at which the system performs the work. The relation
between these three amounts can be expressed as:

E =
∫ T

0
P(t)dt. (6)

3.1. Power Models

The modeling of system parameters is becoming popular nowadays with the ad-
vantage of performance counters provided by the CPU or the operating system. These
counters can measure micro-architectural events, such as instructions executed, cache hits,
miss-predicted branches, and more; thus, providing a base for many different estimations
of power usage. This makes this type of model very suitable for power estimation because
it can use information about several internal states of the computer.

Frequency-based models are the most common kind of model. They serve as a base
for many power models [30,31,39]. These models utilize the fact that every digital circuit
(including modern processors) is composed of transistors. Thus, modeling one transistor’s
interaction and scaling this to the chip can give a reasonable estimate of the entire system’s

Energies 2022, 15, 1213 6 of 22

energy. One of the most common frequency-based model approximations is defined as
follows:

P = α + β f 3, (7)

where α and β are model parameters, and f is the operating frequency (details of this
equation are covered in Section 4). This type of model is suitable for optimization problems
since these are a function of the operating frequency, which can be easily controlled.

3.2. Performance Models

The most common way to model the application performance is using the workload.
The workload is an abstract representation of the amount of work done for a given time
and speed. The workload (W) can be defined in many different ways. One common way,
used in many studies, such as Paolillo et al. [40], Francis et al. [1], and Kim et al. [41], is
the following:

W =
∫ τ

0
s(t)dt = sτ, (8)

where τ is total active time, and s is the execution speed in instructions/second.
Utilization models [1,42] are also found in the literature, defined as the ratio between

the time that the system is active and the total time (idle and active). These models are
present in many DVFS algorithms present in Linux. They can be viewed as a good alterna-
tive to the workload since it is impossible to measure workload in real-time. Equation (9)
defines workload in terms of CPU utilization (u):

u =
τ

T
=

W/s
T

, (9)

where T is the total execution time (idle and active), and τ is the active time, meaning when
the processor was executing instructions. Models based on CPU utilization are the basis for
DVFS algorithms. Even though this is not a controllable parameter, it is straightforward to
measure system utilization with almost no overhead, and it is also very portable in terms
of operating systems and architectures.

4. Modeling Energy with Performance and Power

This section describes the models proposed for power, performance, and energy.

4.1. Power Model

The developed power model is based on the developed frequency models [43–46]. In
this approach, the idea is to reduce the complexity of the processor dynamics by looking
only at the main element that it is composed of, the transistor. Thus, modeling the power
consumption can be resumed to model the logic gates and multiply this by the total number
of gates, reducing the complexity of the modeling process.

FINFET and MOSFET comprise the main techniques to manufacture transistors. How-
ever, FINFET is the more recent, and has gradually replaced the mature technology MOS-
FET. Despite having different characteristics, they have aspects in common that can be
modeled [43–46]. These are static power Pstatic, dynamic power Pdynamic, and leakage power
Pleak, which, in combination, comprise and approximate the total power draw.

The dynamic power and leakage power behavior can be approximated by the follow-
ing equations, respectively, as shown by Sarwar et al. [30] and Butzen et al. [31].

Pdynamic = CV2 f , (10)

Pleak ∝
∼

V, (11)

where C is the load capacitance, V is the voltage applied to the circuit, and f is the switching
frequency.

Energies 2022, 15, 1213 7 of 22

Another common approximation is to assume a linear relationship between the voltage
and the applied frequency [39], such that:

f ∝
∼

V, (12)

These approximations have been demonstrated to be very precise. In the work of Silva
et al., the mean percentage error was calculated to be 0.75% [47].

Thus, the proposed model for one processing core of a multi-core processor is derived
by using Equations (10)–(12) to write Equation (13).

P(f) = c1 f 3 + c2 f + c3, (13)

where c1 c2, and c3 are the model’s parameters associated with the dynamic, leakage and
static power aspects, respectively. Including the number of active cores p, the proposed
estimation of the power consumption of the whole processor becomes Equation (14)

P(f , p) = p(c1 f 3 + c2 f) + c3, (14)

4.2. Performance Model

We consider a program as a set of instructions executed on a mean frequency f with
ck instructions per cycle to model the application execution time. The time Tf that this
program will take to complete at a given frequency is devised as follows:

Tf =
I

ck f
, (15)

where I is the total number of instructions and ck the ratio of instructions per unit of time.
The next step is to include the number of cores in the equation. Amdahl’s law [32],

gives the theoretical background for that. It describes the speedup in latency of the execu-
tion of a task at a fixed workload.

S =
Ts

Tp
=

1
1− w + w

p
, (16)

where Ts is the serial time, Tp the parallel time, S is the theoretical speedup of the execution
of the whole task, w is the proportion of the execution time that benefits from improving
system resources, and p is the speedup part of the task that benefits from improved system
resources. Combining this with Equation (15), the parallel time at frequency f can be
written as:

Tp =
Ts

S
=

Tf
1

1−w+ w
p

, (17)

We can then write the equation of the program execution time as a function of fre-
quency, the number of cores, and parallelism as Equation (18) and subsequently derive
Equation (19):

T(f , p) =
I

ck f
1−w+ w

p

, (18)

T(f , p) =
d1(p− wp + w)

f p
, (19)

where d1 is a constant.
Finally, to fully characterize the application, a parameter representing the application’s

workload, called input size N, is introduced, representing the number of basic operations
needed to complete a problem [48]. In Oliveira et al. [49], they showed that this parameter
could generally be described as exponential. Therefore the proposed performance model is

Energies 2022, 15, 1213 8 of 22

presented in Equation (20). This resulting equation describes the behavior of the execution
time of a program for an input N, frequency f , and active cores p:

T(f , p, N) =
d1Nd2(p− wp + w)

f p
, (20)

where d1, d2 and w are constants that depend on the application.

4.3. Energy Model

Combining the power model output described in Section 4.1 and the characterization
of the application performance described in Section 4.2, the total energy can be modeled as:

E(f , p, N) = P(f , p)× T(f , p, N), (21)

where P(f , p) is the total power modeled by Equation (14), T(f , p, N) is the execution time
estimated by the Equation (20), f is the frequency, p is the number of active cores, and N is
the input size. The final equation can be written as:

E(f , p, N) =
d1Nd2(p− wp + w)(p(c1 f 3 + c2 f) + c3)

f p
. (22)

5. Experimental Validation

In this section, the models presented in Sections 4.1 and 4.2 were validated with
a benchmark specific for multi-core architectures. Additionally, in order to assess the
modeling overhead and accuracy, our proposal was then compared to machine learning
approaches. We compared against support vector regression (SVR) [50], decision tree [51],
k-nearest neighbors [52], multilayer perceptron [53], and some new methods, such as Gao
et al. [54]. However, SVR was chosen as the most representative because it performed best
in our tests without aggressive fine-tuning, as shown in Figure 2.

10 20 30 40 50 60
Training data size

102

103

M
ea

n
sq

ua
re

d
er

ro
r

Equation
KNN
MLP
SVR
Tree

Figure 2. Average of the mean squared error for all applications of our study case Section 5.2.

5.1. Case Study Architecture

The experiments were executed in one computer node equipped with two Intel Xeon
E5-2698 v3 processors with sixteen cores each and two hardware threads for each core. The

Energies 2022, 15, 1213 9 of 22

maximum non-turbo frequency was 2.3 GHz, and the total physical memory of the node
was 128 GB (8 × 16 GB). Turbo frequency and hardware multi-threading were disabled
during all experiments. The operating system used was Linux CentOS 6.5, kernel 4.16.

The Linux kernel has many different policies for power management, depending on
the driver. In the default driver, the acpi-cpufreq, the options are Powersave, Performance,
Ondemand, Conservative, and Userspace. Each governor has a policy on how the frequency
is selected. In this investigation, the frequency control was performed using the Userspace
governor, which allows the user or any userspace program to set the CPU to a specific
frequency. The core control was accomplished by modifying the appropriate system files
with the default CPU-hotplug driver.

The architecture was equipped with the intelligent platform management interface
(IPMI), a set of interfaces allowing out-of-band management of computer systems and
platform-status monitoring via the local network [55]. It can monitor variables and re-
sources, such as the system’s temperature, voltage, fans, and power supplies, with inde-
pendent sensors attached to the hardware.

5.2. Case Study Applications

The applications blackscholes, bodytrack, canneal, dedup, fluidanimate, freqmine,
raytrace, swaptions, vips and x264 from the PARSEC https://parsec.cs.princeton.edu/
download.htm (accessed on 20 February 2020). parallel benchmark suite, version 3.0 [56],
OpenMC [57] and LINPACK (HPL) [58], were chosen as case studies. The PARSEC bench-
mark focused on emerging workloads and was designed to represent the next-generation
shared-memory programs for chip-multiprocessors. It covers an ample range of areas,
such as financial analysis, computer vision, engineering, enterprise storage, animation,
similarity search, data mining, machine learning, and media processing. The OpenMC and
the LINPACK are two classic HPC programs.

5.3. Verifying Hypothesis

In this section, we validate whether the assumptions of our model are valid for the
system used.

5.3.1. Frequency and Voltage Relation

One of the assumptions was that the frequency and the voltage have a linear relation-
ship, as indicated by Equation (12). To verify that, we build an experiment that sets the
frequency to a specific value while sampling the voltage using the APERF and MPERF
registers that provide feedback on the current CPU frequency. The average result of the
sampling voltages is shown in Figure 3, where we can observe a near-perfect linear relation.
This is because manufacturers implement this curve in the processors, using tables that
relate ranges of frequencies to voltages so that they can precisely define any curve that will
better suit their design.

1.2 1.4 1.6 1.8 2.0 2.2
Frequency (GHz)

0.68

0.70

0.72

0.74

0.76

V
ol

ta
ge

 (
V

)

Figure 3. Frequency voltage relation.

https://parsec.cs.princeton.edu/download.htm
https://parsec.cs.princeton.edu/download.htm

Energies 2022, 15, 1213 10 of 22

5.3.2. Input Size and Instructions

We ran the applications with different inputs assuming linear growth in the amount
of work for one input to the other when building our model. However, measuring and
controlling the amount of work would require much instrumentation and tuning to find an
input corresponding to a certain amount of work. Therefore, to build our models, we use
the time to reference the amount of work, assuming that the work is proportional to the
executing time. Figure 4 corresponds to the verification of this supposition.

Table 2 shows that the assumption was reasonable since the average correlation was
0.96 for all applications, indicating that growth in the number of instructions will follow
the time. This was the case for all applications that we ran in our benchmark and should
hold for any data parallelism type of application.

140 160 180 200 220
Time (s)

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

In
st

ru
ct

io
ns

1e12

(a) Blackscholes.

74 76 78 80 82 84
Time (s)

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

In
st

ru
ct

io
ns

1e11

(b) Canneal.

Figure 4. Relation between time and instructions for each input size.

Table 2. Correlation of time and instructions for all applications.

Application Bl
ac

ks
ch

ol
es

Bo
dy

tr
ac

k

C
an

ne
al

D
ed

up

Fe
rr

et

Fl
ui

da
ni

m
at

e

Fr
eq

m
in

e

O
pe

nm
c

R
ay

tr
ac

e

Sw
ap

ti
on

s

V
ip

s

x2
64

H
PL

Correlation 0.99 0.99 0.99 0.99 0.96 0.99 0.99 0.94 0.99 0.99 0.98 0.99 0.79

The next assumption was that the application’s behavior was the same when varying
the workload. This condition is necessary for using the model with an unknown input
size because, if the behavior is the same, we can interpolate the known inputs. One way to
verify this is to measure the rate of instructions per second normalized by the frequency, as
shown in Figure 5.

0 20 40 60 80 100
Percentage of execution (%)

0

1

2

3

4

In
st

ru
ct

io
ns

/s
ec

on
ds

1e10

input 1
input 2
input 3
input 4
input 5

(a) Blacksholes.

0 20 40 60 80 100
Percentage of execution (%)

0

1

2

3

4

5

6

7

In
st

ru
ct

io
ns

/s
ec

on
ds

1e9

input 1
input 2
input 3
input 4
input 5

(b) Canneal.

Figure 5. Rate of instructions per second varying the input size normalized by the frequency.

Energies 2022, 15, 1213 11 of 22

Figure 5 shows that the applications have roughly the same curve when normalized;
this also happens for all other applications in our benchmark.

The final assumption is that the workload should also not vary depending on the num-
ber of cores or frequency. To verify, we measure the total number of executed instructions
while varying the cores from 1 to 32. Table 3 shows the results.

Table 3. Variation of the number of instructions when changing the number of cores for the same
input.

Average Standard StandardApplication Number of Instructions Deviation Deviation (%)

Vip 7.97× 1011 7.16× 106 0.00
Openmc 8.17× 107 1.65× 104 0.02
Rtview 9.91× 1012 1.55× 109 0.02
X264 4.52× 1011 5.81× 107 0.01

Bodytrack 1.86× 1012 3.95× 1010 2.13
Fluidanimate 2.09× 1012 8.44× 1010 4.04

HPL 1.14× 108 1.24× 105 0.11
Blackschole 3.75× 1012 1.40× 109 0.04

Dedup 1.02× 1011 5.74× 107 0.06
Swapti 2.43× 1012 8.87× 108 0.04

Canneal 1.19× 1011 4.46× 107 0.04
Freqmine 1.27× 1012 4.78× 108 0.04

Ferret 4.76× 1011 7.04× 107 0.01

Table 3 shows the standard deviation and what that corresponds to in terms of the
total number of instructions as a percentage.

The same test was performed for the frequency, varying from 1.2 to 2.2 GHz with
100 MHz steps. The results are shown in Table 4.

These results show that all the assumptions were reasonable, and we can safely move
to the validation of the model’s prediction.

Table 4. Variation of the number of instructions when changing the frequency for the same input.

Average Standard StandardApplication Number of Instructions Deviation Deviation (%)

Vip 7.97× 1011 1.16× 106 0.00
Openmc 8.17× 107 4.52× 103 0.01
Rtview 9.91× 1012 6.64× 105 0.00
X264 4.52× 1011 1.54× 105 0.00

Bodytrack 1.84× 1012 2.54× 105 0.00
Fluidanimate 2.38× 1012 1.70× 109 0.07

HPL 1.14× 108 5.95× 103 0.01
Blackschole 3.75× 1012 4.36× 105 0.00

Dedup 1.02× 1011 8.32× 107 0.08
Swapti 2.43× 1012 1.48× 105 0.00

Canneal 1.19× 1011 3.01× 105 0.00
Freqmine 1.27× 1012 3.70× 108 0.03

Ferret 4.76× 1011 5.63× 107 0.01

5.4. Fitting the Models

To find the parameters of Equation (22), 10 uniformly random configurations of
frequencies (f), cores (p) and inputs (N) were chosen from the range 1 <= p <= 32,
1.2 <= f <= 2.2 and 1 <= N <= 5, respectively. The application was executed for each

Energies 2022, 15, 1213 12 of 22

chosen configuration, and the measured energy and time values were collected. For the
input size, if we assume that all CPU instructions take approximately the same time to
execute, the number of basic operations will be directly correlated with the time. Thus,
we can estimate the input size by looking at the execution time, allowing us to divide a
large input size into several smaller ones, knowing their relationship, as performed in the
work of Oliveira [49]. The unity can also vary depending on the definition. For simplicity,
we assign numbers from 1 to 10, increasing the problem linearly, so it is also possible to
interpolate any input in between these values.

For each configuration, samples of the power were collected using IPMI every 1
second. This sampling rate was chosen based on the magnitude of the mean run time of
the applications, which is in the order of minutes. Therefore, this rate provides enough
samples to measure average power. Additionally, timestamps and the total run time were
collected. The total energy spent on each configuration is estimated by first interpolating
the power samples using the first-order method and then integrating this function in the
time.

The model’s parameters are calculated by solving an optimization problem of finding
the values that minimize the squared error of the prediction to the measured values using
the non-linear least-squares method.

The Python library Scikit-Learn was used to build the SVR model [59]. The SVR was
trained using the same data used for parameter estimation of Equation (22) with a grid
search used to find the best kernel function and the best values for the hyper-parameters
penalty for the wrong (C) and (γ). For this data, the best function was the radial base
function (RBF), and the hyper-parameters were C = 104 and γ = 0.5.

5.5. Measured versus Modeled Energy

To validate the model, we ran all possible configurations in the tested machine, varying
the cores in a range of 1 <= p <= 32, the frequency in 1.2 <= f <= 2.2, and the input in
1 <= N <= 5. The total number of configurations varies from 400 to over 1000 depending
on the application, as some applications have restrictions on the number of cores that they
can run. Once the data was collected, we computed the mean percentage error (MPE)
according to the following equation:

MPE =
1
N

N

∑
i

|yestimated − ymeasured|
ymeasured

. (23)

5.5.1. Frequency × Cores

Figure 6 plots the measured and modeled energy consumption for some of the appli-
cations modeled. In addition, some of the possible shapes that the model can take while
varying the number of active cores, and operating frequency, are shown.

Frequencies (GHz)

1.10
1.30

1.50
1.70

1.90
2.10

2.30

Active threads

1.00
5.00

9.00
13.00

17.00
21.00

25.00
29.00

E
nergy (K

J)

0

100

200

300

400

Trained values
Measured values
Model

(a)

Frequencies (GHz)

1.10
1.30

1.50
1.70

1.90
2.10

2.30

Active threads

1.00
5.00

9.00
13.00

17.00
21.00

25.00
29.00

E
nergy (K

J)

12

14

16

18

20

22

Trained values
Measured values
Model

(b)
Figure 6. Example fit for a specific input size: Blackscholes (a) and Canneal (b). “measured values”
are the sensor data, and “minimum energy” is the minimum energy model prediction.

Energies 2022, 15, 1213 13 of 22

5.5.2. Frequency × Input

Figure 7 plots the measured and modeled energy consumption for some of the appli-
cations modeled. The diagrams show some of the possible shapes that the model can take
while varying the operating frequency, and input size.

Frequency (GHz)
1.10

1.30
1.50

1.70
1.90

2.10
2.30Input size

1.00

5.00

E
nergy (K

J)

15

20

25

30

35

Trained values
Measured values
Model

(a)

Frequency (GHz)
1.10

1.30
1.50

1.70
1.90

2.10
2.30Input size

1.00

5.00

E
nergy (K

J)

0

5

10

15

20

Trained values
Measured values
Model

(b)
Figure 7. Example fit for a specific input size: Blackscholes (a) and Canneal (b). “measured values”
are the sensor data and “minimum energy” is the minimum energy model prediction.

5.5.3. Cores × Input

Figure 8 plots the measured and modeled energy consumption for some of the appli-
cations modeled. The diagrams show some of the possible shapes that the model can take
while varying the number of active cores, and input size.

Input size

1.00

3.00

5.00

Active threads

1.00
5.00

9.00
13.00

17.00
21.00

25.00
29.00

E
nergy (K

J)

0

50

100

150

200

250

300

350

Trained values
Measured values
Model

(a)

Input size

1.00

3.00

5.00

Active threads

1.00
5.00

9.00
13.00

17.00
21.00

25.00
29.00

E
nergy (K

J)

13

14

15

16

Trained values
Measured values
Model

(b)
Figure 8. Example fit for a specific input size: Blackscholes (a) and Canneal (b). “measured values”
are the sensor data and “minimum energy” is the minimum energy model prediction.

5.5.4. Validation

The average results for each application were calculated using a model trained with
only 10 configurations, and the comparison is displayed Figure 9.

Fr
eq

m
in

e

D
ed

up

S
w

ap
tio

ns

Fl
ui

an
im

at
e

B
od

yt
ra

ck

R
ay

tra
ce

C
an

ne
al

B
la

ck
sc

ho
le

s

x2
64

H
P

L

O
pe

nm
c

V
ip

s

Fe
rr

et

0

5

10

15

20

25

30

35

M
ea

n
pe

rc
en

ta
ge

 e
rr

or

Mean SVR
Mean model
SVR
Model

Figure 9. Comparison of the mean percentage error between the proposed model and SVR. “Model
mean” and “SVR mean” are the average of all MPE values for all applications.

Energies 2022, 15, 1213 14 of 22

Figure 9 shows that the proposed model always performed better, with a lower MPE
than SVR, when we were limited to 10 training points. This result is further explored in the
next Section 5.6, where we undertake a comparison with different training sizes.

5.6. Overheads on Training

It is known that machine learning is data-driven; in that sense, the SVR model obtained
using only 10 configurations could be improved, but what about the analytical model? To
answer that question, the proposed model and the SVR were also trained with a varying
number of configurations. We then compared the MPE and the amount of energy spent to
create each model. This accuracy-energy trade-off is crucial since building models’ energy
overhead defeats the primary goal of saving power when running applications.

20 40 60 80
Number of samples

5

6

7

8

9

10

11

12

M
ea

n
pe

rc
et

ag
e

er
ro

r

SVR
Model

(a) MPE for Ferret.

20 40 60 80
Number of samples

2

4

6

8

10

M
ea

n
pe

rc
et

ag
e

er
ro

r

SVR
Model

(b) MPE for Blackscholes.

20 40 60 80
Number of samples

2

4

6

8

10

12

14

16

M
ea

n
pe

rc
et

ag
e

er
ro

r

SVR
Model

(c) MPE for x264.

20 40 60 80
Number of samples

6

7

8

9

10

11

12

13

14

M
ea

n
pe

rc
et

ag
e

er
ro

r

SVR
Model

(d) MPE for Dedup.
Figure 10. MPE of the case studies versus training size, comparing how many training points is
necessary to reach an acceptable result.

Figure 10 shows the comparisons of MPE and energy spent to create each model for
two selected applications. According to the results, the analytical model is very stable, not
changing much as more data is added, while the SVR keeps reshaping to adapt to the data.
The error of the analytical model is almost constant but that of the SVR, initially very high,
drops as more data is used in the training process.

20 40 60 80
Number of samples

500

1000

1500

2000

2500

E
ne

rg
y

(K
J)

Mean energy model and SVR

(a)

20 40 60 80
Number of samples

6

8

10

12

14

16

18

20

M
ea

n
pe

rc
et

ag
e

er
ro

r

Mean error SVR
Mean error model

(b)
Figure 11. Overall results for energy and MPE for each training size. (a) Average energy spent on all
applications during model creation. The two curves are identical because the same data were used to
adjust the SVR and the model. (b) MPE of all applications: SVR needs 10 times more data to have an
MPE lower than the proposed model.

Energies 2022, 15, 1213 15 of 22

Figure 11 presents the overall results, with the mean energy overhead and MPE for
all applications. The meeting point of the MPE for the SVR and the proposed model can
be extracted from Figure 11b. It shows that, in around 90 configurations, the SVR starts to
have a smaller error. The cost of that is the linear increase in energy spent on training. The
increase in energy, about 10 times more, can be observed in Figure 11a.

5.7. Analysis

One of the most significant advantages of using an analytical model is the understand-
ing of the problem that an equation provides, making many different kinds of analysis
possible that are otherwise impossible with a machine learning model. In this section, we
discuss one of the possible analyses. In the following figures, we try to understand the
contribution of each parameter of the equation to the total energy consumption.

For this analysis, we took the model of one of the applications and, varying one param-
eter of the equation, we display the energy versus performance (time) for all configurations.
After that, we computed the Pareto frontier, a set of all Pareto efficient allocations, i.e., all
the configurations where resources cannot be reallocated to make one individual better
off without making at least one individual worse off. This gives us all the configurations
where we have an optimal trade-off of performance and energy to choose from.

Figure 12 shows the Pareto frontier for several values for the static power parameter
(c3 in Equation (22)) with configurations of frequency ranging from 1.2 to 5 GHz and cores
from 1 to 64, so that we can also have an idea of what is the tendency when we increase the
frequency and number of cores.

0 20 40 60 80
Time (s)

0

10,000

20,000

30,000

40,000

50,000

E
ne

rg
y

(J
)

(2.30 (GHz), #7)

(4.90 (GHz), #63)

(2.80 (GHz), #8)

(1.20 (GHz), #1)

(3.40 (GHz), #9)

(1.20 (GHz), #1)

(3.70 (GHz), #10)

(1.20 (GHz), #1)

50
100
200
300

Figure 12. Pareto frontier for several values of static power parameter. The arrows with blue
heads indicate the maximum energy, while the arrows with a red head the minimal energy for each
corresponding curve.

From this figure, we can see that when increasing the value of the static power
parameter, the total energy consumption increases as expected. We can also observe that

Energies 2022, 15, 1213 16 of 22

the values that minimize the total energy consumption tend to be high frequency and
multiple cores. This is one of the consequences of increasing the static power factor. As
the dynamic factor proportionally decreases, its variables tend to have less impact on total
consumption, enabling configurations with high frequency and several cores. This also
enables chip-level optimization for choosing components that change the ratio between
static and dynamic power.

Figure 13 shows the Pareto frontier in the same ranges described before but for the
parameter corresponding to the level of parallelism of the application (w in Equation (22)).

0 20 40 60 80
Time (s)

0

10,000

20,000

30,000

40,000

50,000

E
ne

rg
y

(J
)

(4.90 (GHz), #1)

(4.90 (GHz), #63)

(4.90 (GHz), #2)

(4.90 (GHz), #63)

(4.80 (GHz), #3)

(4.90 (GHz), #63)

(3.80 (GHz), #6)

(1.20 (GHz), #1)

(3.00 (GHz), #13)

(1.20 (GHz), #1)

0.1
0.3
0.6
0.8
0.9

Figure 13. Pareto frontier for several values of static power parameter. The arrows with blue heads
indicate the maximum energy, while the arrows with a red head, the minimal, for each corresponding
curve.

In Figure 13, we observe that, as the parallelism level increases the total energy
decreases. The number of cores tends to be higher with a higher level of parallelism as
expected, and the frequency shows an inverse relation.

5.8. DVFS and DPM Optimization

The effectiveness of the proposed approach during optimization was evaluated with
a simple algorithm that finds the optimal frequency and number of active cores from the
proposed equation. The results were then compared to the Linux default choices for power
management.

With Equation (22), it is possible to calculate energy consumption estimates for each
possible configuration since there is a finite range of possible values for the frequency and
number of cores. It is also possible to apply constraints on the execution time, frequency, and
the number of active cores. Then, the configuration that minimizes energy consumption for
a given input can be selected. The complete workflow is shown in Figure 14. We can see that
any optimization problem can be structured with our model and the system’s constraints.
In the following examples, the optimization problem that we build is to minimize the

Energies 2022, 15, 1213 17 of 22

energy equation given the constraints of possible frequencies and the number of cores that
our system can run. The algorithm selected to minimize was the newton-CG [60].

Current HPC managers leave to the user the choice of how many cores to use. On this
basis, three situations were analyzed in relation to the number of cores:

1. Worst choice: number of cores that maximize the total energy consumed;
2. Random choice: energy consumed for a random choice of the number of cores;
3. Best choice: number of cores that minimize the total energy consumed (oracle).1/18/22, 4:09 PM DVFS optim

https://whimsical.com/dvfs-optim-Hdb4ictbZSvP6kzZeggyH6 1/1

Application

Model

Constraints

Optmization

algorithm

Optimal values

Figure 14. Optimization workflow showing how DVFS and DPM optimization could be implemented
from ou model.

The default option for the Linux governor is Ondemand, and, by default, it has no
DPM control for the number of active cores. As Ondemand only performs DVFS, for
comparison, each application was executed with all available cores in the system, from 1 to 32.

Figures 15–17, show the energy savings with respect to Ondemand, i.e., Ondemand−Modelmin
Ondemand

for the three cases described above. The savings and losses for each case are:

1. Worst choice: save 69.88% on average;
2. Random choice: save 12.04% on average;
3. Best choice: lost 14.06% on average.

Energies 2022, 15, 1213 18 of 22

H
P

L

D
ed

up

C
an

ne
al

S
w

ap
tio

ns

B
la

ck
sc

ho
le

s

O
pe

nm
c

B
od

yt
ra

ck

R
ay

tra
ce

V
ip

s

Fr
eq

m
in

e

S
w

ap
tio

ns

R
ay

tra
ce

x2
64

0.0

0.2

0.4

0.6

0.8

R
el

at
iv

e
sa

vi
ng

Mean saving

Figure 15. Energy savings comparisons between the proposed model and the Worst case.

H
P

L

D
ed

up

C
an

ne
al

S
w

ap
tio

ns

B
la

ck
sc

ho
le

s

O
pe

nm
c

B
od

yt
ra

ck

R
ay

tra
ce

V
ip

s

Fr
eq

m
in

e

S
w

ap
tio

ns

R
ay

tra
ce

x2
64

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

R
el

at
iv

e
sa

vi
ng

Mean saving

Figure 16. Energy savings comparisons between the proposed model and the Random case.

By default, operating systems do not implement DPM at the core level, and, in HPC,
the user usually explicitly chooses the number of cores to run their job. To give a better
idea of the impact on the energy consumption of DPM at the core level, we analyzed the
choices of the number of cores over a period of one year in the HPC center at UFRN. The
result is plotted in Figure 18.

It is of note that the most common choice of many regular users is a single core
requested per job, matching the worst-case choice for all applications analyzed in this
investigation. The best choice was quite often 32 cores, which is the third most popular
choice among users, but it is 72 times less frequent than 1 core. This led us to envision
how much energy could be saved and encouraged us towards future research using the
proposed model for DPM or more advanced optimization algorithms.

Energies 2022, 15, 1213 19 of 22

In practice, this approach can be implemented by allowing the resource manager
to perform these changes for the user using pre-scripts and post-scripts for high energy
consumption job submissions.

H
P

L

D
ed

up

C
an

ne
al

S
w

ap
tio

ns

B
la

ck
sc

ho
le

s

O
pe

nm
c

B
od

yt
ra

ck

R
ay

tra
ce

V
ip

s

Fr
eq

m
in

e

S
w

ap
tio

ns

R
ay

tra
ce

x2
64

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1
R

el
at

iv
e

sa
vi

ng

Mean saving

Figure 17. Energy savings comparisons between the proposed model and the Best case.

1 10 32 64 8 2 12 16 24 4 30 12
8

27
2 5 15 20 6 96 9

25
6 13 51
2 3

60
8 18 62 40
0

73
6 28 86
4 60 16
0 14 19
2 48 80
0

32
0

46
4

52
8 55 57 58 59 40 50 7

33
6 22

Requested cores

100

101

102

103

104

105

106

N
um

be
r o

f j
ob

s

Figure 18. Number of CPU requests during one year in HPC cluster, sorted by the number of cores
requested per job.

6. Conclusions

This paper proposes an energy model based on the operating frequency and the
number of cores for a shared memory system. This model serves as a reference for DVFS
and DPM optimization problems.

Results from three different HPC benchmarks demonstrate the potential of the pro-
posed model while consuming 10 times less energy than a machine learning approach,
such as SVR, to characterize applications. Moreover, it can provide knowledge-based hints

Energies 2022, 15, 1213 20 of 22

to improve DVFS and DPM algorithms by enabling analysis of the contribution of each
model parameter (e.g., level of parallelism) to the energy consumption. Indeed, as shown in
Section 5.8, when no oracle is available to choose the frequency and the number of cores the
application should use, the proposed model can save around 12% of energy for a random
choice and up to 70% for the worse possible choice. Considering the job history of our
own HPC center, which shows the prevalence of worse possible choices made by users, the
potential energy savings are very significant and encourage further research.

Although the model is promising, it still has some limitations. The main one is related
to the input size, which needs to be estimated to create the application model and optimize
the application. Another limitation concerns the power model, which does not consider the
load variation, so our model ends up using an average of the energy consumption, which
is enough to obtain good results but limits its implementation in real-time optimization.
Future research is intended to solve both problems, first adapting the model to use the
ratio of executed instructions as input size, something which is more tangible and easy
to measure in modern systems without much overhead, and adding new parameters to
the power model to account for the load. This would allow us to develop more advanced
DVFS models that could identify different phases of a target program with more subtle
changes in frequency, and, perhaps, in the number of active cores to further improve the
results presented here.

Author Contributions: Conceptualization, V.R.G.d.S., S.X.-d.-S.; methodology, V.R.G.d.S., S.X.-d.-S.
and C.V.; software, V.R.G.d.S.; validation, V.R.G.d.S., S.X.-d.-S. and C.V.; formal analysis, V.R.G.d.S.;
investigation, V.R.G.d.S.; resources, V.R.G.d.S., S.X.-d.-S., C.V. and P.M.; data curation, V.R.G.d.S.;
writing—original draft preparation, V.R.G.d.S.; writing—review and editing, V.R.G.d.S., S.X.-d.-S.,
C.V.; visualization, V.R.G.d.S.; supervision, C.V., P.M. and S.X.-d.-S.; project administration, C.V., P.M.
and S.X.-d.-S.; funding acquisition, C.V., P.M. and S.X.-d.-S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available on Github at
https://github.com/VitorRamos/analytical-energy-model.

Acknowledgments: The experiments performed in this investigation used the compute nodes of the
High-Performance Computing Center (NPAD/UFRN).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DVFS Dynamic voltage and frequency scaling
DPM Dynamic power management
SVR Support vector regression
RBF Radial base function
HPC High performance computing
IPMI The intelligent platform management interface
RBF Radial base function
MPE Mean percentage error

References
1. Ishfag, A.; Sanjay, R. Handbook of Energy-Aware and Green Computing; Chapman & Hall/CRC: London, England, 2012; Volume 1,

pp. 702–713.
2. Dayarathna, M.; Wen, Y.; Fan, R. Data Center Energy Consumption Modeling: A Survey. IEEE Commun. Surv. Tutor. 2016, 18,

732–794. [CrossRef]
3. Corcoran, P.; Andrae, A. Emerging Trends in Electricity Consumption for Consumer ICT; National University of Ireland: Galway,

Ireland, 2013; pp. 1–56.

https://github.com/VitorRamos/analytical-energy-model
http://doi.org/10.1109/COMST.2015.2481183

Energies 2022, 15, 1213 21 of 22

4. Mathew, V.; Sitaraman, R. K.; Shenoy, P. Energy-aware load balancing in content delivery networks. In Proceedings of the 2012
Proceedings IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 954–962.

5. Rivoire, S.; Shah, M.A.; Ranganathan, P.; Kozyrakis, C.; Meza, J. Models and Metrics to Enable Energy-Efficiency Optimizations.
Computer 2007, 40, 39–48. [CrossRef]

6. Buyya, R.; Vecchiola, C.; Selvi, S.T. Mastering Cloud Computing; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2013;
pp. 3–27

7. Poess, M.; Nambiar, R.O. Energy cost, the key challenge of today’s data centers. Proc. VLDB Endow. 2008, 1, 1229–1240. [CrossRef]
8. Gao, Y.; Guan, H.; Qi, Z.; Wang, B.; Liu, L. Quality of service aware power management for virtualized data centers. J. Syst. Archit.

2013, 59, 245–259. [CrossRef]
9. Fan, X.; Weber, W.D.; Barroso, L.A. Power provisioning for a warehouse-sized computer. ACM SIGARCH Comput. Archit. News

2007, 35, 13–23. [CrossRef]
10. Barroso, L.A.; Hölzle, U. The Case for Energy-Proportional Computing. Computer 2007, 40, 33–37. [CrossRef]
11. Malladi, K.T.; Nothaft, F.A.; Periyathambi, K.; Lee, B.C.; Kozyrakis, C.; Horowitz, M. Towards energy-proportional datacenter

memory with mobile DRAM. In Proceedings of the 2012 39th Annual International Symposium on Computer Architecture (ISCA),
Portland, OR, USA, 9–13 June 2012; pp. 37–48.

12. Rotem, E.; Naveh, A.; Ananthakrishnan, A.; Weissmann, E.; Rajwan, D. Power-Management Architecture of the Intel Microarchi-
tecture Code-Named Sandy Bridge. IEEE Micro 2012, 32 20–27. [CrossRef]

13. Brown, L.; Moore, R.; Li, D.S.; Yu, L.; Keshavamurthy, A.; Pallipadi, V. ACPI in Linux. Symposium 2005, 51, 1–51.
14. Hackenberg, D.; Schone, R.; Ilsche, T.; Molka, D.; Schuchart, J.; Geyer, R. An Energy Efficiency Feature Survey of the Intel Haswell

Processor. In Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium Workshop, Hyderabad,
India, 25–29 May 2015; pp. 896–904.

15. Intel. 12th Generation Intel ® Core™ Processors; Intel: Santa Clara, CA, USA, 2020; pp. 420–430
16. Shuja, J.; Madani, S.A.; Bilal, K.; Hayat, K.; Khan, S.U.; Sarwar, S. Energy-efficient data centers. Computing 2012, 94, 973–994.

[CrossRef]
17. Benini, L.; Bogliolo, A.; De Micheli, G. A survey of design techniques for system-level dynamic power management. IEEE Trans.

Very Large Scale Integr. (VLSI) Syst. 2000, 8, 299–316. [CrossRef]
18. Merkel, A.; Bellosa, F. Balancing power consumption in multiprocessor systems. ACM SIGOPS/EuroSys Eur. Conf. Comput. Syst.

2006, 40, 403–4014.
19. Roy, S.; Rudra, A.; Verma, A. An energy complexity model for algorithms. In Proceedings of the 4th conference on Innovations in

Theoretical Computer Science, New York, NY, USA, 9–12 January 2013.
20. Weaver, V.M.; McKee, S.A. Can hardware performance counters be trusted? In Proceedings of the 2008 IEEE International

Symposium on Workload Characterization, Seattle, WA, USA, 14–16 September 2008; pp. 141–150.
21. Weaver, V.M.; Terpstra, D.; Moore, S. Non-determinism and overcount on modern hardware performance counter implementa-

tions. In Proceedings of the 2013 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS),
Austin, TX, USA, 21–23 April 2013; pp. 215–224.

22. Das, S.; Werner, J.; Antonakakis, M.; Polychronakis, M.; Monrose, F. SoK: The Challenges, Pitfalls, and Perils of Using Hardware
Performance Counters for Security. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA,
USA, 19–23 May 2019; pp. 20–38.

23. Mc Guire, N.; Okech, P.; Schiesser, G. Analysis of Inherent Randomness of the Linux Kernel. In Proceedings of the Eleventh
RealTime Linux Workshop, Dresden, Germany, 28–30 September 2009.

24. Ramos, V.; Valderrama, C.; Xavier de Souza, S.; Manneback, P. An Accurate Tool for Modeling, Fingerprinting, Comparison,
and Clustering of Parallel Applications Based on Performance Counters. In Proceedings of the IEEE International Parallel and
Distributed Processing, Rio de Janeiro, Brazil, 20–24 May 2019; pp. 797–804.

25. Silva-de Souza, W.; Iranfar, A.; Bráulio, A.; Zapater, M.; Xavier-de Souza, S.; Olcoz, K.; Atienza, D. Containergy—A Container-
Based Energy and Performance Profiling Tool for Next Generation Workloads. Energies 2020, 13, 2162. [CrossRef]

26. Shao, Y.S.; Brooks, D. Energy characterization and instruction-level energy model of Intel’s Xeon Phi processor. In Proceedings of
the International Symposium on Low Power Electronics and Design (ISLPED), Beijing, China, 4–6 September 2013; pp. 389–394.

27. Lewis, A.; Ghosh, S.; Tzeng, N.F. Run-time energy consumption estimation based on workload in server systems. In Proceedings
of the 2008 Conference on Power Aware Computing and Systems, San Diego, CA, USA, 8–10 December 2008; pp. 3–4.

28. Mills, B.; Znati, T.; Melhem, R.; Ferreira, K.B.; Grant, R.E. Energy Consumption of Resilience Mechanisms in Large Scale Systems.
In Proceedings of the 2014 22nd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing,
Turin, Italy, 12–14 February 2014; pp. 528–535.

29. Feng, W.c. Making a Case for Efficient Supercomputing. Queue 2003, 1, 54–64. [CrossRef]
30. Sarwar, A. Cmos power consumption and cpd calculation. In Proceeding: Design Considerations for Logic Products; Texas Instruments:

Dallas, TX, USA, 1997.
31. Butzen, P.; Ribas, R. Leakage Current in Sub-Micrometer CMOS Gates; Universidade Federal do Rio Grande do Sul: Porto Alegre,

Brazil, 2007; pp. 1–30.
32. Amdahl, G.M. Validity of the single processor approach to achieving large scale computing capabilities. In Proceedings of the

Spring Joint Computer Conference on—AFIPS ’67 (Spring), New York, NY, USA, 18–20 April 1967.

http://dx.doi.org/10.1109/MC.2007.436
http://dx.doi.org/10.14778/1454159.1454162
http://dx.doi.org/10.1016/j.sysarc.2013.03.007
http://dx.doi.org/10.1145/1273440.1250665
http://dx.doi.org/10.1109/MC.2007.443
http://dx.doi.org/10.1109/MM.2012.12
http://dx.doi.org/10.1007/s00607-012-0211-2
http://dx.doi.org/10.1109/92.845896
http://dx.doi.org/10.3390/en13092162
http://dx.doi.org/10.1145/957717.957772

Energies 2022, 15, 1213 22 of 22

33. Eyerman, S.; Eeckhout, L. Modeling critical sections in Amdahl’s law and its implications for multicore design. In Proceedings of
the 37th Annual International Symposium on Computer Architecture—ISCA ’10, New York, NY, USA, 19–23 June 2010.

34. Gustafson, J.L. Reevaluating Amdahl’s law. Commun. ACM 1988, 31, 532–533. [CrossRef]
35. Seel, N.M. Encyclopedia of the Sciences of Learning; Springer: Berlin/Heidelberg, Germany, 1988; pp. 223–242.
36. Roy, P.; Mahapatra, G.S.; Dey, K.N. Forecasting of software reliability using neighborhood fuzzy particle swarm optimization

based novel neural network. IEEE/CAA J. Autom. Sin. 2019, 6, 1365–1383. [CrossRef]
37. Zhu, W.; Liu, X.; Xu, M.; Wu, H. Predicting the results of RNA molecular specific hybridization using machine learning. IEEE/CAA

J. Autom. Sin. 2019, 6, 1384–1396. [CrossRef]
38. Rivoire, S.; Ranganathan, P.; Kozyrakis, C. A comparison of high-level full-system power models. In Proceedings of the 2008

Conference on Power Aware Computing and Systems, San Diego, CA, USA, 8–10 December 2008; pp. 1–5.
39. Usman, S.; Khan, S.U.; Khan, S. A comparative study of voltage/frequency scaling in NoC. In Proceedings of the IEEE International

Conference on Electro-Information Technology, Rapid City, SD, USA, 9–11 May 2013; pp. 1–5.
40. Paolillo, A. Optimisation of Performance Metrics of Embedded Hard Real-Time Systems using Software/Hardware Parallelism,

Ph.D. Thesis, Université libre de Bruxelles, Brussels, Belgium, 2018.
41. Kim, D.H.; Imes, C.; Hoffmann, H. Racing and Pacing to Idle: Theoretical and Empirical Analysis of Energy Optimization

Heuristics. In Proceedings of the 2015 IEEE 3rd International Conference on Cyber-Physical Systems, Networks, and Applications,
Hong Kong, China, 19–21 August 2015; pp. 78–85.

42. Fu, C.; Chau, V.; Li, M.; Xue, C.J. Race to idle or not: Balancing the memory sleep time with DVS for energy minimization. J.
Comb. Optim. 2018, 35, 860–894. [CrossRef]

43. Rauber, T.; Rünger, G.; Schwind, M.; Xu, H.; Melzner, S. Energy measurement, modeling, and prediction for processors with
frequency scaling. J. Supercomput. 2014, 70, 1451–1476. [CrossRef]

44. Goel, B.; McKee, S.A. A Methodology for Modeling Dynamic and Static Power Consumption for Multicore Processors. In
Proceedings of the IEEE International Parallel and Distributed Processing Symposium, Chicago, IL, USA, 23–27 May 2016; pp.
273–282.

45. Du, Z.; Ge, R.; Lee, V.W.; Vuduc, R.; Bader, D.A.; He, L. Modeling the Power Variability of Core Speed Scaling on Homogeneous
Multicore Systems. Sci. Program. 2017, 2017, 1–13. [CrossRef]

46. Gonzalez, R.; Gordon, B.; Horowitz, M. Supply and threshold voltage scaling for low power CMOS. IEEE J. Solid-State Circuits
1997, 32, 1210–1216. [CrossRef]

47. Silva, V.R.G.; Furtunato, A.F.A.; Georgiou, K.; Sakuyama, C.A.V.; Eder, K.; Xavier-de Souza, S. Energy-Optimal Configurations
for Single-Node HPC Applications. In Proceedings of the 2019 International Conference on High Performance Computing &
Simulation (HPCS), Dublin, Ireland, 15–19 July 2019; pp. 448–454.

48. Kumar, V.; Gupta, A. Analyzing Scalability of Parallel Algorithms and Architectures. J. Parallel Distrib. Comput. 1994, 22, 379–391.
[CrossRef]

49. Oliveira, V.H.F.; Furtunato, A.F.A.; Silveira, L.F.; Georgiou, K.; Eder, K.; Xavier-de Souza, S. Application Speedup Characterization.
In Proceedings of the ACM/SPEC International Conference on Performance Engineering, Berlin, Germany, 9–13 April 2018; pp.
43–44.

50. Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [CrossRef]
51. Kitts, B. Regression Trees Lecture. Data Min. 2006, 6–7.
52. Altman, N.S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat. 1992, 46, 175–185.
53. Murtagh, F. Multilayer perceptrons for classification and regression. Neurocomputing 1991, 2, 183–197. [CrossRef]
54. Gao, S.; Zhou, M.; Wang, Y.; Cheng, J.; Yachi, H.; Wang, J. Dendritic Neuron Model With Effective Learning Algorithms for

Classification, Approximation, and Prediction. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 601–614. [CrossRef]
55. Schwenkler, T.; Deutschland, S. Intelligent Platform Management Interface. In Sicheres Netzwerkmanagement; Springer:

Berlin/Heidelberg, Germany, 2006; pp. 169–207.
56. Bienia, C.; Kumar, S.; Singh, J.P.; Li, K. The PARSEC benchmark suite. In Proceedings of the 17th international conference on

Parallel architectures and compilation techniques—PACT ’08, New York, NY, USA, 25–29 October 2008.
57. Romano, P.K.; Horelik, N.E.; Herman, B.R.; Nelson, A.G.; Forget, B.; Smith, K. OpenMC: A state-of-the-art Monte Carlo code for

research and development. Ann. Nucl. Energy 2015, 82, 90–97. [CrossRef]
58. Dongarra, J.J. The LINPACK Benchmark: An explanation. In Proceedings of the 1st International Conference on Supercomputing,

Athens, Greece, 8–12 June 1987.
59. Pedregosa, F; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in {P}ython. J. Mach. Learn. Res. 2011, 12, 2825–2830.
60. Royer, C.W.; O’Neill, M.; Wright, S.J. A Newton-CG algorithm with complexity guarantees for smooth unconstrained optimization.

Math. Programm. 2020, 180, 451–488. [CrossRef]

http://dx.doi.org/10.1145/42411.42415
http://dx.doi.org/10.1109/JAS.2019.1911753
http://dx.doi.org/10.1109/JAS.2019.1911756
http://dx.doi.org/10.1007/s10878-017-0229-7
http://dx.doi.org/10.1007/s11227-014-1236-4
http://dx.doi.org/10.1155/2017/8686971
http://dx.doi.org/10.1109/4.604077
http://dx.doi.org/10.1006/jpdc.1994.1099
http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
http://dx.doi.org/10.1016/0925-2312(91)90023-5
http://dx.doi.org/10.1109/TNNLS.2018.2846646
http://dx.doi.org/10.1016/j.anucene.2014.07.048
http://dx.doi.org/10.1007/s10107-019-01362-7

	Introduction
	Related Work
	Theoretical Background
	Power Models
	Performance Models

	Modeling Energy with Performance and Power
	Power Model
	Performance Model
	Energy Model

	Experimental Validation
	Case Study Architecture
	Case Study Applications
	Verifying Hypothesis
	Frequency and Voltage Relation
	Input Size and Instructions

	Fitting the Models
	Measured versus Modeled Energy
	Frequency Cores
	Frequency Input
	Cores Input
	Validation

	Overheads on Training
	Analysis
	DVFS and DPM Optimization

	Conclusions
	References

