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Abstract: High-performance computing systems have become increasingly dynamic, complex, and
unpredictable. To help build software that uses full-system capabilities, performance measurement
and analysis tools exploit extensive execution analysis focusing on single-run results. Despite being
effective in identifying performance hotspots and bottlenecks, these tools are not sufficiently suitable
to evaluate the overall scalability trends of parallel applications. Either they lack the support for
combining data from multiple runs or collect excessive data, causing unnecessary overhead. In
this work, we present a tool for automatically measuring and comparing several executions of a
parallel application according to various scenarios characterized by the input arrangements, the
number of threads, number of cores, and frequencies. Unlike other existing performance analysis
tools, the proposed work covers some gaps in specialized features necessary to better understand
computational resources scalability trends across configurations. In order to improve scalability
analysis and productivity over the vast spectrum of possible configurations, the proposed tool features
automatic instrumentation, direct mapping of parallel regions, accuracy-preserving data reductions,
and ease of use. As it aims at accurately understanding scalability trends of parallel applications,
detailed single-run performance analyses show minimal intrusion (less than 1% overhead).

Keywords: parallel scalability; performance optimization; shared-memory programs; measurement
and analysis tool

1. Introduction

Developing parallel programs capable of exploiting the computational power of high-
performance systems is as well-known as it is challenging [1–3]. During the development
process, the code optimization step is a fundamental part of the software construction
strategy and is supported by performance measurement and analysis tools [2–11]. The
main objective of these tools is to help developers understand the execution characteristics,
allowing the identification of bottlenecks and behavioral phenomena that compromise the
program’s efficiency, thus guiding possible improvements [1,12].

Nowadays, due to the complexity of parallel systems, correctly identifying and locat-
ing performance and scalability bottlenecks depends on the developer’s ability to compare
several measurements in different execution configurations [4,13]. This investigative pro-
cess tends to be tedious and complex, requiring in-depth knowledge of the problem domain,
parallel systems, and measurement and analysis tools. Mastering the analysis tools is neces-
sary because they differ from each other in terms of measurement strategy, metrics collected,
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and the many points and focus of observation. Even though some solutions propose or-
ganizing and combining metrics from different sources, these distinct characteristics can
compel developers to exploit more than one tool depending on their analysis interests.

Every existing tool has its own contributions in helping to understand the inner
working of a program. Some can present a vast and varied set of metrics with a high
degree of detail. However, developers may have difficulty using these tools when their
interest is in analyzing parallel scalability. The main challenge arises from the emphasis
on studying a single run because scalability analysis requires contrasting runs of different
configurations. In terms of productivity, measuring and comparing only a few data between
runs of multiple configurations tends to be more significant to scalability analysis than
collecting a vast amount of finer-grain data of single-configuration runs. Furthermore, due
to the number of measurements, there is a natural overhead associated with the execution
of the analysis tool itself. Some works indicate this overhead can reach 40% of the program
runtime, which influences and damages the observation of its efficiency variation [14]. As
such, a measurement and analysis approach that uses only the data needed to understand
the application’s efficiency variation can be advantageous. First, because measuring and
collecting only the necessary data limits the degree of intrusion and, second, because this
strategy makes the analysis tool simpler and easier to use. [7].

From this context, we present a measurement tool that focuses on analyzing the
parallel scalability of programs. It primarily provides runtime and power consumption
measures in an approach that favors inspection of the overall behavior of the program
before starting a more in-depth investigation of points that naturally require more detail,
time and effort. The work explores and combines strategies already used in other solutions,
such as tracing, post-mortem analysis, and automatic instrumentation based on shared
libraries. Additionally, it includes an instrumentation model that automatically relates
parallel code regions to analysis regions, using a measurement strategy based on the
intrinsic and primary behavior of the parallel frameworks. Due to this approach, the tool
allows analyzing programs developed for shared-memory environments regardless of the
compiler or framework versions. The framework version, which in some cases also requires
specific compiler versions, is a limitation for some traditional tools like HPCToolkit [8] and
TAU (Tuning and Analysis Utilities) [7].

The proposed tool uses a tracing-based measurement technique to identify and mea-
sure the boundaries of the analysis regions. The tracing approach supports a hierarchical
region analysis model allowing users to see how the efficiency of inner parts can impact
the program’s overall scalability. In addition, the tool uses an aggregation feature to reduce
the volume of data produced while preserving accurate analysis capability with minimal
overhead. The tool also includes usability features that reduce the developer’s efforts
during the measurement and analysis process. These features allow one to automate the
process of running and merging data collected from multiple configurations, bypassing
manual efforts and avoiding the drawbacks of non-computer-oriented analysis. The col-
lected data, available from the terminal in tabular form, can be exported as data blocks that
can be interpreted by other tools or even rendered by graphics libraries to facilitate the
visualization and data analysis.

We offer an alternative tool for realizing parallel scalability analysis more efficiently
than single-run-centric performance measurement and analysis tools. In addition to that,
our framework can also be used to promote energy-aware software; methods that rely on
accurate and efficient energy collection could benefit from energy consumption data for
the entire program and specific regions of the application [15–18]. To summarize, the main
contributions of this work are:

• A lightweight automated process of measuring and comparing runs with different
configurations.

• Transparent linking of parallel code sections to analysis regions.
• Hierarchical views and degrees of efficiency for the inner parts of a program.
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• The imposed overhead is low and minimally intrusive, mainly because of the mea-
surement approach and the number of metrics collected.

• It provides energy consumption measures for the different configuration parameters.

The following sections describe how the tool is built and used for performance analysis.
Section 2 presents the related works. Section 3 describes the tool architecture and goals;
it explains the main features, usage, and collected data. The experimental results are
presented in Section 4. Finally, the contributions are summarized in Section 5, with an
outlook of future works.

2. Related Works

Performance analysis aimed at code optimization is an essential activity for developing
parallel applications with scalable performance. For this purpose, performance analysis
tools, like Caliper [19], HPCToolkit [8], Scalasca [6], TAU [7], Vampir [3], and VTune [20],
are useful because they help developers identify where the application uses the available
computing resources inefficiently through collecting detailed data of its execution. Such
tools differ from each other mainly in terms of data measurement and analysis strategy:
tracing or profiling, post-mortem or real-time; individual or comprehensive observation
focus; and for providing or not providing visual elements that facilitate the judgment of
collected data. Other solutions, like the DASHING framework [2] and the HATCHET
library [12], allow inspection of performance data from multiple sources. In this case, the
goal of DASHING and HATCHET is to provide a more robust data set to support the
analysis process.

In the performance analysis process, observing the parallel program’s execution
as a sequence of events representing significant activities is essential to understand its
behavior [21]. Events are basic units of the analysis process, and the way they are observed
influences strategies for collecting performance data. Profiling-based analysis tools collect
information from events that occurs in the program execution and commonly operate by
statistical sampling using interruptions. These interruptions can be caused, for example,
by periodic breaks or hardware events. Interruptions allow checking the system state and
the information collected depends on the focus of observation. Profiling-based tools use
statistical techniques to describe the program behavior in terms of aggregate performance
metrics. They usually ignore the chronology of events, but are known to be useful for
identifying, for example, load imbalance, high communication time, or excessive routine
calls. Paradyn [9], and Periscope [22] are tools that adopt this strategy.

On the other hand, tracing-based analysis tools collect performance data from events
that occur when the program takes over a particular state. Tracing can provide valuable
information about the time dimension of a program, allowing users to check when and
where transitions of routines, communications, and specific events occur. This measurement
strategy tends to be more invasive and intrusive, generating a larger dataset than the
profiling-based approach. Vampir [3] and Paraver [23] are examples of this group. Some
tools like HPCToolkit [8], Scalasca [6], TAU [7] and VTune [20] support both profiling
and tracing.

In this work we propose tracing to identify when parts of a code were executed. To
mitigate some of the disadvantages related to tracing, in addition to adopting a time-
based analysis, the tool implements features such as automatic instrumentation mode
and resources aggregation. Our automatic instrumentation mode allows users to analyze
program execution without modifying the source or the executable. Although many other
analysis tools use the automatic instrumentation mode, this work presents a different way
of mapping and measuring the code parts. In our proposal, parallel regions are the main
focus of analysis. The strategy is effective enough to identify the scaling trends of parts or
of the entire running parallel program. Furthermore, collecting only specific runtime data
reduces the overhead associated with the measurement process. As with other similar tools,
such as HPCToolkit [8] and TAU [7], there is no limitation on the version of OpenMP used.
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Runtime overhead is an attribute associated with the set of additional instructions
that are executed to collect the program measurements. The time to perform this “extra
code” varies in line with the tool and is directly related, in quantity and degree of detail, to
the aspects it measures. Limiting this overhead is crucial because it can compromise the
understanding of program behavior, and divert optimization efforts to less effective points.
According to some comparative and practical studies in this regard, tests on traditional
tools have shown a runtime overhead ranging from 2% to 40% [14]. Although different
depending on the program analyzed, the overhead resulting from our instrumentation
strategy can be considered negligible (less than 1%) and optimal for analyzing trends in
parallel applications.

Several performance analysis tools employ a post-mortem approach. In this case, the
tool performs performance measurements and data collection while the program is running,
and then the collected data will be interpreted. HPCToolkit [8], Scalasca [6], TAU [7] and
VTune [20] are examples of post-mortem performance analysis tools. Depending on the
type of analysis, these tools may require storing large amounts of data, but they are best
suited to provide an overall view of the execution. In contrast, run-time analysis tools
perform both operations at run time. This approach allows detecting waiting states and
communication inefficiencies accurately. Periscope [22] and Paradyn [9] are examples
of tools in this group. However, run-time analysis generally requires the coordinated
action of tools, which increases the structural complexity. The need for synchronous
initialization and communication between analysis resources as well as their impact on
the runtime environment are the drawbacks of this approach. In addition, the analysis,
particularly that of scalability, which relies on the data collected at the end of the execution,
is potentially degraded by the infrastructure overhead and therefore does not benefit from
the characteristics of real-time tools.

Energy management solutions can also provide similar features for example GEOPM [16],
allows the measurement of time and energy of specific regions. The main advantage that
we could not find in any other framework is that our tool can provide specific data of
energy consumption of parallel regions in a completely automated way. For example, in
GEOPM, it is necessary to instrument the source code to obtain the same result.

By focusing on objective analysis, we offer an alternative tool to observe the scalability
trend of a parallel program. Thus, we collect just the information allowing us to infer the
overall behavior of the program, or, according to the interest of the user, specifically chosen
parts of it, including features relevant to an effective measurement and analysis process. To
this end, it is essential to also automate the processes to obtain comparative measurements
of several runs. Supported features are the automation of program executions according to
various configuration parameters, including a user-specified granularity, the generation
of datasets containing comparative measurements of runtime parameters, and efficient
optimization of the amount of produced data. Regarding the amount of data collected, our
approach uses data aggregation, which facilitates storage and further analysis.

3. Design and Features

This section presents the architecture, components, and interconnections used in the
design of the proposed tool. It also includes a discussion about main features, instrumenta-
tion modes, and output file structure that contains the data measured and collected by the
proposed tool.

3.1. Architecture

The tool we propose to measure, combine and compare multiple runs of a parallel
application implements two main concepts to achieve this goal: actuators and sensors.

Actuators characterize the parameters we intend to observe. They are variables
representing elements external to the program and which, when changed, can influence
aspects such as the performance and efficiency of the running application. Therefore,
analyzing the result of actuators’ variation is essential to understand how these elements
impact program behavior, especially scalability and power consumption. By default, the
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tool implements actuators controlling the number of active cores and threads, the program
input, and the CPU operating frequency.

The sensor is the concept we use to represent the elements addressed to measure and
monitor the variation of actuators. Both sensors and actuators are plugged into the tool
core as modules. Currently, the tool implements three types of sensors:

• Begin/end: collects data at launch and end of each program run.
• Time sample: periodically collects data.
• Events-based: collects data when a specific event happens.

Currently, there are sensors to measure time, energy, and performance counters. The
default sensor is a begin/end type used to collect the execution time of the whole application.
To measure energy consumption, we developed sampling sensors capable of retrieving data
from RAPL (Running Average Power Limit) and IPMI (Intelligent Platform Management
Interface), which are interfaces that provide power information from the CPU and the entire
system. Apart from that, there are time sample and begin/end sensors to gather performance
counters data.

Measurements that support scalability analysis are taken from event-based sensors.
For this, the tool includes markers that trigger events to automatically identify the bound-
aries of parallel regions defined by developers in codes that use POSIX Threads or OpenMP.
This feature is essential for relating parallel code sections to analysis regions and measuring
execution times directly from binary code. The triggers for this measurement mode are
implemented in a wrapper library and therefore already available in the system. The tool
also provides manual marks that can be inserted into the source code to monitor specific
parts of the program. Furthermore, any system event can be set as a trigger. Figure 1
describes the integration of each part of the proposed software. The idea is that actuators
and sensors are modular parts that can easily be added or removed. The tool’s core is
responsible for all operations, launching the application, and data gathering.

19/10/2021 09:49
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Figure 1. Architecture showing the interconnections of the central parts of the tool. Either binary
(using the wrapper library) or an instrumented source code, the target application can be launched
on the target platform by the tool core following the configuration parameters chosen by the user
while deploying actuators/sensors. The resulting data collection is stored in Json file format for post
analysis and visualization (GUI).

3.2. Instrumentation and Intrusiveness

The instrumentation module is one of the most crucial. In addition to automating the
instrumentation, it determines the overload and level of intrusiveness of the instrumen-
tation process. This module is designed to execute the fewest instructions possible in the
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most optimized manner. Currently, there is instrumentation support for C/C++ languages
through shared libraries that work with either automatic or manual instrumentation. Man-
ual instrumentation is preferred when it is necessary to examine the application program
in specific code sections, regardless of the type of content.

The manual instrumentation mode is implemented in three routines: one for initial-
ization, another to mark the beginning of the region of interest (analyzer_start), and
finally, a routine to mark the end of that region (analyzer_stop). The initialization routine
is called when loading the library to create the necessary data structures and set up the
data exchange communication. The routines analyzer_start and analyzer_stop identify
threads in a region and store timestamps. These routines are implemented in such a way
that only one thread at a time writes in a designated position of a two-dimensional array,
thus ensuring thread safety and eliminating the necessity of locks.

The automatic instrumentation includes a routine allowing us to intercept the creation
of threads via the LD_PRELOAD environment variable. This routine overwrites parts of an
existing native library. In this manner, the functions responsible for thread spawning,
such as pthread_create in the pthread library, GOMP_parallel (GCC implementation),
__kmpc_fork_call (Clang implementation) in the OpenMP framework, and similar func-
tions for other compilers, are intercepted to identify the parallel regions automatically.
This approach is less intrusive than other tools, such as using a debugger interface with
breakpoints or performing binary code instrumentation.

A key point of performance analysis tools, particularly important when analyzing
real-time program execution, is that instrumentation must have a negligible impact on
program behavior and execution time. Indeed, as mentioned in Section 3.1, we support
three types of sensors, each of which has a different degree of intrusion. There is hardly
any sensors intrusion at the start and then at the end of the program execution since it is
simply the invocation of both data collection routines.

With sampling sensors, the degree of intrusion depends on the sampling rate and the
total execution time of the application under study. Therefore, the intrusion needs to be
assessed on a case-by-case basis with this type of sensor.

The instrumentation overhead does not depend on the number of instructions or
the runtime required to process the set of instructions to be analyzed. However, it varies
according to the number of processing units used and measurements taken. To estimate
the order of magnitude of the overhead (Tmeasurement), we measured recurring calls to the
proposed sampling functions delimiting the regions in a simple benchmark code. This
experiment was carried out in the same target architecture described in the experimental
results of Section 4.2, and the code structure is presented on Listing 1.

Listing 1. Code used to measure the overhead of instrumentation functions (analyzer_start and
analyzer_stop) defined as Tmeasurement.

1 {int main(int argc , char** argv) {
2 get_time(begin);
3 #pragma omp parallel for
4 for (c=0; c<n_iterations; c++) {
5 analyzer_start (1);
6 usleep (1e4); // to simulate a simple operation
7 analyzer_stop (1);
8 }
9 get_time(end);

10 time = begin -end;
11 }

The time required to execute N calls to the analyzer_start and analyzer_stop
functions was obtained by the routine gettimeofday, from the sys/time.h library. The
algorithm ran with 1 × 104, 2 × 104, 3 × 104, 4 × 104, 5 × 104, and 1 × 105 calls to the
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pair of functions, each test repetited ten times, and the mean, median, and variance values
computed. Figure 2 shows these results.
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Figure 2. Measuring variance of the time to single instrumentation, i.e., a call to analyzer_start and
analyzer_stop while varying the number of measurements. (a) Time consumed from sampling a
region one time in seconds. (b) Box plot showing the statistics of the sampling time of a single region.

In Figure 2a, we can see the mean, median, and variance of the time for a single call
to our instrumentation function while varying the number of calls/measurements. The
Figure 2a complements these results showing the variance in each execution.

Table 1 shows the results from the same experiment above comparing the time with
and without the analyzer. We can observe that proportional impact (overhead) was constant
while the number of interactions increased. Table 1 also presents the data referring to the
simulation using the TAU profiling tool. For this simulation, we replaced the analyzer direc-
tives with the time measurement directives (TAU_PROFILE_START and TAU_PROFILE_STOP)
of TAU, which allowed us to approximate the measurement and analysis conditions.

Table 1. Instrumentation overhead estimation varying the number of samples collected for TAU
and Analyzer.

Iterations
Time (s) Overhead (%)

Real Time TAU Analyzer TAU Analyzer

10,000 100.933 100.992 101.053 0.058 0.118
20,000 201.863 201.980 202.094 0.057 0.114
30,000 302.797 302.977 303.142 0.059 0.114
40,000 403.738 403.978 404.176 0.059 0.108
50,000 504.675 504.959 505.212 0.056 0.106

100,000 1009.359 1009.927 1010.432 0.056 0.106

From the results, it is possible to see that the tool proposed in this work has a higher
overhead than that presented by the TAU, but the analysis capabilities are distinct. TAU adds
the individual runtime of each thread to define the execution time of a parallel region. This
strategy does not consider the simultaneous action of threads in processing instructions and
can count the same period of time more than once, damaging a precise measurement of the
parallel region. The analyzer works around this problem because the intersection periods are
counted just once. In this sense, although the TAU has lower overhead, a scalability analysis
depends on a more accurate measurement like the one proposed in this work.
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Varying the number of threads impacts the cost of instrumentation. As shown in
Table 2, there is a trend for the percentage of overhead to increase concerning the applica-
tion’s runtime. However, it is also possible to see that this increase is negligible, considering
the exponential increase in the number of threads. The increase in the processing load, on
the other hand, has a beneficial impact on the relationship between execution time and the
percentage of overhead. This behavior occurs because the runtime will increase with the
greater need for processing, and the overhead will only change if the number of threads is
also changed.

Table 2. Instrumentation overhead while varying the number of threads with the number of samples
fixed to one million.

Threads
Time (s)

Overhead (%)
Direct with Analyzer

1 1009.360 1010.430 0.107
2 504.733 505.374 0.127
4 252.399 252.742 0.135
8 126.215 126.390 0.138
16 63.109 63.199 0.143

For pluggable sensors, overhead is generally not a concern as they run on a separate
thread and have very low CPU usage, which presents only a few scenarios where they can
cause interference.

One of these scenarios is where the application needs all the machine’s resources at the
same time that we have sensors that can respond faster than the processing speed at a given
sample rate. In this case, the overhead would be directly associated with the sample rate and how
the system handles concurrency. In general, this is rarer to happen in HPC (High-performance
computing) since it would require an application with a perfect linear scaling.

Another possible scenario is I/O overhead, where some network, disk, or memory
resource becomes unavailable due to high sensor usage. However, this scenario is even
rarer as sensors seldom produce data that quickly and, in all the performed tests, this was
not close to being an issue.

3.3. Features and Usage

The analyzer is a simple and easy-to-use tool that allows the user to understand
the general behavior of a program before investing in efforts that require in-depth and
sometimes longer-term analysis. However, to meet the objectives that best match the needs
and resources of the user, the tool provides functionalities to parameterize the measurement
process. Among the main ones are:

1. Automated execution and deployment of parameterized code, actuators, and sensors
2. Automated low-overhead binary code instrumentation.
3. No need of the source code or to recompile, unless the user desires it.
4. Flexible user-defined observation regions: analysis of contexts within and beyond

parallel regions.
5. Automatic instrumentation of parallel and remaining intermediate serial regions.
6. Aggregation, by region, of the collected metrics, which significantly reduces the

amount of data stored on disk and RAM usage; useful in cases where it would be
impossible to store information about all sensor events, such as the instrumentation of
a for loop with billions of iterations. In this case it is possible to choose how to group
the data either by mean, median, minimum or maximum values.

7. Hierarchical regions: The proposed analyzer also facilitates the identification of
aligned regions, enabling the identification of the calling hierarchy of inner regions
and block analysis.



Electronics 2022, 11, 689 9 of 16

The tool can be used in the command line or via its API. The API provides calls to
integrate sensors and actuators as shown in the Listing 2.

Listing 2. Python script showing some API features provided by the tool, on how a custom run can
be configured.

1 from analyzer.run import Run
2 from analyzer.actuators import CPUFrequencies
3 from analyzer.actuators import CPUCores
4 from analyzer.sensors import RAPL
5 from analyzer.sensors import fingerprint
6 from itertools import product
7
8 lsensors = [
9 RAPL(),

10 fingerprint(counters =["INSTRUCTIONS"])
11 ]
12 cores = [
13 CPUCores(c) for c in range (1 ,32)
14 ]
15 freqs = [
16 CPUFrequencies (2800000) ,
17 CPUFrequencies (2600000)
18 ]
19
20 # all combinations
21 configs = list(product(cores ,freqs))
22 app = Run(application="a.out",
23 repetitions =10,
24 instr_auto=True ,
25 sensors=lsensors)
26 app.run(configs)
27 app.savedata("out.json")

3.4. Exported Data Structure

The data collected by the tool is exported to a .json file and stored on disk. The
data structure is divided into two large groups. One group contains information about
the configuration parameters driving deployment and execution. The other includes the
performance measurements. The data is grouped in keys representing the processed input,
the number of processing elements used in the execution, and the simulation ID. Since the
tool can perform the same configuration many times, a simulation ID distinguishes runs
that use the same input and number of processing elements.

Listing 3 presents an example file exported by the analyzer. There we can see the
main parts of the exported structure, with the header where essential information about
the system is written followed by the description of the collected data, where the list of
actuators is presented as well as the specific type of information that was collected from
the sensors. Finally the samples are presented separated by actuator configurations, and
sensor type.

The keys and values in the .json file do not represent information that is easy for
the user to identify and understand. However, it can be easily interpreted by a script
or visualization software such as the PaScal Viewer [13]. The proposed tool provides a
visualization module, responsible for interpreting and presenting data in an organized and
user-friendly manner.



Electronics 2022, 11, 689 10 of 16

Listing 3. Sample of exported data file showing the internal structure and organization of the data.

1 {
2 " conf ig " : {
3 * * * * * * * * * * * * * * * * * * Header * * * * * * * * * * * * * * * * * *
4 " pkg " : " . / a p p l i c a t i o n " ,
5 " execdate " : "00 −00 −0000 _00 : 00 : 00" ,
6 " kernel " : " Linux − 4 . 4 " ,
7 "command" : " analyzer . . . " ,
8 " hostname " : " host " ,
9 . . .

10 * * * * * * * * Data c o l l e c t e d d e s c r i p t i o n * * * * * * * *
11 " d a t a _ d e s c r i p t o r " : {
12 * * * * * * * * Mandatory c o l l e c t e d values * * * * * * * *
13 " values " : [
14 " s t a r t _ t i m e " , " stop_time " , . . .
15 ] ,
16 * * * * * * * * * * * * * * Actuators l i s t * * * * * * * * * * * * * *
17 " keys " : [ "A1" , "A2" . . . ] ,
18 * * * * * * * * * Sensor data d e s c r i p t i o n * * * * * * * * * *
19 " e x t r a s " : {
20 " regions " : { . . . }
21 " sensors " : { . . . }
22 }
23 } ,
24 " arguments " : [ " input_1 " , . . . ]
25 } ,
26 * * * * * * * * * * * * * * Data c o l l e c t e d * * * * * * * * * * * * * *
27 " data " : {
28 * * * * * Actuator values separated by " ; " * * * * *
29 "X ; Y ; Z" : {
30 * * * * * * * * * Data c o l l e c t e d by sensor * * * * * * * * *
31 " regions " : { . . . } ,
32 " sensors " : { . . . } ,
33 " s t a r t _ t i m e " : t i ,
34 " stop_time " : t f
35 }
36 }
37 }

4. Experimental Results

In this Section, we discuss the measurements and simulation results for three distinct
cases, including two real applications. We also demonstrate how external libraries and
standalone visualization tools can be used to render the collected data and investigate
performance aspects such as the program’s scalability capacity.

4.1. Case-Study Applications

We used three experiments to assess the tool and demonstrate its ability to support
analysis aimed at observing parallel scalability. The first includes a runtime imbalance
between processing units in a specific parallel region. In this case, the objective is to present
how the analyzer helps users observe the impact of the inefficiency of a code part on the
whole program. The code for this experiment is presented in Listing 4. It consists of two
simple parallel regions with the same functionality that divide the iterations of a loop
between the available threads. The difference between the regions lies in the strategies used
to manipulate the sum variable, used in the example to store the values of the calculations
performed in each thread. We assume that the anyop() function, in this case, invariably
has the same runtime in all function calls.

The other two experiments use applications Raytrace [24] and OpenMC [25]. Ray-
trace is an application addressed on rendering photorealistic scenes. It is available on the
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PARSEC Benchmark suite, version 2.0. The PARSEC benchmark, focused on emerging
workloads, represents the next-generation shared-memory programs for chip multiproces-
sors. It covers a wide range of areas such as financial analysis, computer vision, engineering,
enterprise storage, animation, similarity search, data mining, machine learning, and me-
dia processing.

Listing 4. Sample code used to visualize the impact of regions on program scalability.

1 int main(int argc , char **argv) {
2 unsigned long sum = 0;
3 int ops = atoi(argv [1]);
4
5 #pragma omp parallel for schedule(static) reduction (+: sum)
6 for (int i = 0; i < ops; i++)
7 sum += anyop();
8
9 #pragma omp parallel for schedule(static)

10 for (int i = 0; i < ops; i++) {
11 #pragma omp critical
12 sum += anyop();
13 }
14 }

OpenMC is an application that implements the Monte-Carlo method to simulate the trans-
port of neutrons and photons. It is a classic program aimed at high-performance computing.

4.2. Case-Study Architecture

The experiments were executed in a computer node of a SGI ICE X machine, USA,
equipped with two Intel Xeon E5-2698 v3 processors with sixteen cores each and two
hardware threads for each core. The maximum non-turbo frequency is 2.3 GHz, and the
total physical memory of the node is 128 GB (8 × 16 GB). Turbo frequency and hardware
multi-threading were disabled during all experiments. The operating system used was
Linux CentOS 6.5, kernel 4.16.

4.3. Experiments

The command presented on Listing 5 was used as base to perform experiments. For
the experiment of Listing 4, we use just the parameters -c, -r, -t, -a and -o, including the
64 value to -c option.

Listing 5. Command line showing how experiments were run through a terminal.

1 analyzer
2 application
3 -c 1,2,4,8,...,32 # threads/cores
4 -r 3 # number of repetitions
5 -t auto # automated instrumentation
6 -a 1 # aggregation mode
7 --ipmi ip user psswd # energy sensor
8 --idtm 5 # idle time between runs
9 --dhpt # disable hyper -thread

10 --dcrs # disable cores
11 --ipts ... # application specific inputs
12 -o application.json # output file

The command return a .json file with all the information necessary for our analysis.
We can quickly generate tables with the collected data from this file, thus supporting
observation and analysis of scalability, energy trends, and model fitting. The code described
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in Listing 6 and Table 3 are samples of how users can easily read and view collected data
from the control terminal in a tabular way.

Listing 6. Example of using the Python API to load analyzer files.

1 from analyzer import Data
2
3 data = Data("application.json")
4 data.energy(regions=True)
5 # data.speedup ()
6 # data.efficiency ()
7 # data.regions ()

Table 3. Dataframe generated automatically from collected samples using the Python API.

Repetition Input Cores Regions Start Time (s) Stop Time (s) ipmi Energy (J)

1 1 1 1 0.00 66.31 13,156.19
1 1 1 2 0.00 66.27 13,148.87
... ... ... ... ... ... ...
1 5 30 4 0.00 8.46 1903.82
1 5 30 5 0.02 58.16 13,067.01

4.4. Results and Analysis

The analyzer does not display graphics and other visual elements natively. However,
the simple use of external libraries allows generating graphics and visualizing points of the
program’s behavior that you want to observe. In addition, specialized visualization tools
can also be used to view the results. PaScal Viewer [13], for example, natively interprets
the analyzer’s output files, complementing its functionality and creating an integrated and
appropriate environment for the program’s parallel scalability analysis.

To analyze the experiment presented in Listing 4, we use PaScal Viewer to observe in a
hierarchical way how the different OpenMP clauses impacted the region’s efficiencies. The
efficiency pinpoints how a program can take advantage of increasing processing elements
on a parallel system. It is defined as the ratio of speedup to the number of processing
units. In this sense, PaScal Viewer displays an efficiency diagram for each analysis region,
as presented in Figure 3. Comparing these diagrams, it is possible to see how the critical
clause damages the scalability. In addition, it is also possible to relate that this second
region affects the efficiency of the whole program due to the code characteristics.

If the reduction clause replaces #pragma omp crtical, the second region and the
entire program become more efficient, as shown in Figure 4. The PaScal Viewer diagrams
mentioned in this work, the x-axis (i1–i7) corresponds to different data inputs and the y-axis
(2–64) to the number of threads used in the processing. Figures 3 and 4 were rendered
using a tool feature that smoothes the color transition of diagrams. This feature uses
interpolation to create a visual element where the color transition is less pronounced. The
diagram axes only show the initial and final values with this option. The user can visualize
diagrams with only discrete values or even compare the two presentation modes side by
side. Figure 5 shows the difference between discrete and smoothed modes considering the
whole program and the simulation scenario that uses the clause #pragma omp crtical.
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(a) (b) (c)
Figure 3. Efficiency diagrams and impact of inner regions on program scalability. (x-axis = inputs;
y-axis = number of threads). (a) First region diagram. (b) Second region diagram. (c) Whole
program diagram.

(a) (b) (c)
Figure 4. Efficiency diagrams after removing #pragma omp crtical clause. (x-axis = inputs; y-axis =
number of threads). (a) First region diagram. (b) Second region diagram. (c) Whole program diagram.

(a) (b)
Figure 5. Visualization modes of diagrams provided by PaScal Viewer. (a) PaScal Viewer diagram on
discrete mode. (b) PaScal Viewer diagram on smoothed mode.

Other analysis objectives not supported by PaScal Viewer, such as visualization of the
speedup curve or energy consumption, can be supported by traditional plots. Figures 6 and 7
present the charts rendered for analysis by Raytrace and OpenMC applications. In these
figures, it is possible to observe that the program efficiency varies according to the increase
in the number of threads and the execution of inputs with higher processing loads. From
the diagrams in Figure 8, it is possible to observe that the applications present different
behaviors concerning their efficiency variations and their scalability capabilities. OpenMC
maintains its efficiency almost constant. This pattern represents strong scalability and
indicates that the program can maintain its efficiency level when it uses a larger number
of threads and processing larger inputs. On the other hand, Figure 8a demonstrates that
Raytrace achieves higher efficiency values when processing larger inputs. However, it is
also possible to observe that increasing the number of processing units fixing the input size
will not improve or hold the efficiency value.



Electronics 2022, 11, 689 14 of 16

0 5 10 15 20 25 30
Cores

2

4

6

8

10

12

Sp
ee

du
p

input 1
input 2
input 3
input 4
input 5
input 6

(a)

0 5 10 15 20 25 30
Cores

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sp
ee

du
p

input 1
input 2
input 3
input 4
input 5

(b)
Figure 6. Speedup of the applications for several input sizes. (a) Raytrace speedup. (b) OpenMC speedup.
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(b)
Figure 7. Energy consumption identified in the execution of applications while varying the number
of cores for several input sizes. (a) Raytrace energy consumption. (b) OpenMC energy consumption.

(a) (b)
Figure 8. Efficiency diagram varying the input size and the number of cores. The color bar indicates
the efficiency value in percentage. (a) Raytrace efficiency diagram. (b) OpenMC efficiency diagram.

The input values shown in Figures 6–8 indicate different data sets for processing.
For example, the “input 2” represents a load that will require sequential processing with
runtime twice as long as “input 1”. Likewise, the “input 3” represents a load that will
require sequential processing with runtime twice as long as “input 2”, and so on.

Even if the analyzer does not display graphics natively, analysis aimed at observing
scalability and energy consumption of applications depends on precise measurements,
reinforcing the advantage of the analyzer proposed in this work.

5. Conclusions and Future Works

This work introduces a practical and easy-to-use tool for measuring and analyzing the
efficiency of parallel applications. The proposed tool focuses on observing scalability and
energy consumption and implements features that enables analysis at hierarchical levels
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of the program’s inner parts. It also simplifies the comparison of the application runs in
different configurations, helping developers target software optimization efforts.

The tool has a low level of intrusion added to the program’s performance measurement
under analysis, which is a fundamental aspect of understanding the program’s behavior
and scalability capacity. Although it does not offer graphic elements to visualize the
collected metrics, the tool itself makes it possible to examine the data from the command
terminal. It also allows this data to be analyzed by an interface provided in Python or
through .json files.

In future work, we intend to evolve this tool to include the ability to predict speedup
and efficiency from a few samples using state-of-the-art prediction models present in the
literature [26,27]. The idea is to present the general behavior of the program and its scalability
trend and reduce the execution time necessary to compose a comprehensive analysis. Fur-
thermore, we intend to include features that allow the observation of parallel applications in
distributed environments that use the Message Passing Interface (MPI) standard.
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