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Abstract: With the emergence of smartphones, video surveillance cameras, social networks, and
multimedia engines, as well as the development of the internet and connected objects (the Internet
of Things—IoT), the number of available images is increasing very quickly. This leads to the neces-
sity of managing a huge amount of data using Big Data technologies. In this context, several sectors,
such as security and medicine, need to extract image features (index) in order to quickly and effi-
ciently find these data with high precision. To reach this first goal, two main approaches exist in the
literature. The first one uses classical methods based on the extraction of visual features, such as
color, texture, and shape for indexation. The accuracy of these methods was acceptable until the
early 2010s. The second approach is based on convolutional neuronal networks (CNN), which offer
better precision due to the largeness of the descriptors, but they can cause an increase in research
time and storage space. To decrease the research time, one needs to reduce the size of these vectors
(descriptors) by using dimensionality reduction methods. In this paper, we propose an approach
that allows the problem of the “curse of dimensionality” to be solved thanks to an efficient combi-
nation of convolutional neural networks and dimensionality reduction methods. Our contribution
consists of defining the best combination approach between the CNN layers and the regional max-
imum activation of convolutions (RMAC) method and its variants. With our combined approach,
we propose providing reduced descriptors that will accelerate the research time and reduce the
storage space while maintaining precision. We conclude by proposing the best position of an
RMAC layer with an increase in accuracy ranging from 4.03% to 27.34%, a decrease in research
time ranging from 89.66% to 98.14% in the function of CNN architecture, and a reduction in the
size of the descriptor vector by 97.96% on the GHIM-10K benchmark database.

Keywords: CBIR; image indexation; features extraction; dimensionality reduction; CNN; deep
learning; RMAC; RMAC+; MS-RMAC

1. Introduction

Nowadays, several devices can collect data due to people using their phones to pro-
duce images and videos every day before sharing them with friends and family on differ-
ent social network platforms, such as Instagram and TikTok, and on a wide variety of
subjects. These images are of increasingly high quality.

Other images can be present in different domains (medicine, spatial) which need to
be found quickly and efficiently [1]. This is becoming an important area of research, which
is called image retrieval [2]. This field of research is useful for different sectors such as
video surveillance [3], for example, to identify cars where a faster search is desired with
high accuracy, identification of people [3,4]; e-commerce, to identify shopping recommen-
dations based on photos; various applications to recognize flowers, mushrooms, etc. To
solve this problem, research engines appeared a few years ago. The first one was based
on keywords, but this was not enough to index effectively. Later, a content-based research
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engine appeared, called CBIR, which stands for “content-based image retrieval”. This is a
way of querying a database within a query image; the goal is to find similar images. The
user aims to upload a query image into the research engine. The latter extracts the prop-
erties of the query image into a descriptor vector and compares them with the image prop-
erties in the database. Finally, the research engine returns similar images to the user by
ranking them from the most similar to the least similar.

In the literature, there are two main methods: hand-made and deep learning meth-
ods. The hand-made methods are based on image descriptors, such as color histogram,
grey level covariance matrix, local binary pattern, or scale-invariant feature transform.
Deep learning methods are well known in the field, especially the convolutional neural
network (CNN), and are widely used to address this problem thanks to their precision
potential, but they are computationally intensive since the image descriptors are large,
which results in significant computation time and storage issues. To reduce image de-
scriptors, we propose a comparative study of dimensionality reduction methods with a
focus on those appropriate to CNN descriptors.

This paper is organized as follows:

*  Related work:

In this section, we will study CBIR and consider the different existing methods to
extract visual features classically and within deep learning. Then, we will check the dif-
ferent possibilities to reduce the size of the descriptors depending on the extraction meth-
ods. At the end, we will expose the methods adapted to the dimensionality reduction in
the extracted descriptors within CNNs by analyzing them and, more particularly, the re-
gional maximum activation of convolutions method (RMAC) and two of its variants.

*  Proposed approach:

In this section, we explore and implement the different RMAC methods to compare
and analyze in detail the process and impact of each method on CBIR algorithms. We
detail the results obtained on different architectures for the GHIM-10k database according
to different criteria and discuss the results obtained for these different methods by ex-
plaining these results according to the architectures. As a result, we propose the best ap-
propriate position for the dimension reduction layer within a convolutional neural net-
work.

*  Discussion and conclusion:

We will draw conclusions based on our results for the different methods and high-
light the advantages of these methods.
*  Perspectives and future work:

We conclude this paper by putting forward different perspectives of this work and
future potential works.

2. Related Work

For indexing and searching images, content-based image retrieval search engines
(CBIR) are the most widely used since they are able to extract visual information from the
image without the need for keywords. Indeed, manual annotations with keywords can
lead to malfunctions. For example, some similar words may have different meanings.
Conversely, different words can be used to express the same thing. Content-based engines
avoid these problems but have other disadvantages such as vector size and increased
search time.

2.1. CBIR System

CBIR is a system that allows the retrieval of similar images based on a query image,
where a descriptor vector is extracted based on the query image features and compared
to the feature vectors of the images in the database. In order to extract the features of an
image, there are different methods—the classical ones and those based on deep learning.
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The classical methods are based on feature extraction methods and the comparison
of descriptors is then done via similarity measures [5]. To define images, a large part of
CBIRs focus on primitive [6], also called low-level, features such as color, shape, texture
[6-9], and spatial features [8,9]. These features are extracted with methods such as color
histograms [6,9,10], the grey level co-occurrence matrix (GLCM) [5,7], or the Local Binary
Pattern (LBP) [7,11], to name only the best known. In addition to color, shape, and texture
features, there are also points of interest in an image, which are information-rich points
such as a corner or a boundary. These points are robust to illumination variations, rota-
tion, and scale changes. The most well-known descriptors for highlighting points of inter-
est in the literature are: Scale Invariant Feature Transform (SIFT) and Speeded Up Robust
Features (SURF) [4].

For several years, neural networks have shown their efficiency for image feature ex-
traction and, more particularly, for convolutional neural networks (CNN), which lead to
high precision thanks to the convolutional layers [12]. Moreover, some works use the com-
bination of features or neural network architectures to increase the accuracy of CBIR [4,13-
15]. This leads to a high increase in the descriptors’ size and research time.

Given the amount of data to be managed, the usefulness of CBIR systems is no longer
in doubt in many sectors. However, with the increase in image quality such as 4k and 8K
resolutions, the size of the descriptor vectors is big, which can negatively influence the
research time and the storage space. This is accentuated by the increase in the size of the
databases, which are more crowded due to the ability of connected objects to capture more
and more images and the ability to store them easily.

We therefore face a trade-off between precision and reasonable research time. To deal
with this problem, several dimensionality reduction methods have emerged.

Another type of architecture, called transformers, start to be used for image recogni-
tion with comparable performance to CNNs. Notice that transformers were mainly used
for natural language processing [16] and are slowly being applied to computer vision [17].
According to the authors in [18], CNNs and transformers are complementary to reach
better performance. In [19], the authors mention that transformers can also be competitive
to provide small descriptor vectors. In this paper, we focus our work on dimensionality
reduction applied to CNN only.

2.2. Dimensionality Reduction

In [20], the authors show that the choice of the dimensionality reduction technique
depends on several factors, including the type of data. It should reduce the dimensionality
without the loss of important information, and it should gain in precision and computa-
tion time.

For classical indexing methods, we can mention the Fisher Vector and the Vector of
Locally Aggregated Descriptors (VLAD). These vectors allow different features to be as-
sembled into a compact vector [13]. Principal component analysis (PCA) also allows the
dimension of the feature vector to be reduced [2,7,21]. The authors in [22] studied the
different reductions related to PCA applied to scale-invariant feature transform (SIFT) and
Speeded Up Robust Features (SURF) descriptors on Wang
(http://wang.ist.psu.edu/docs/related/, accessed on 20 March 2021) and Coil100
(https://wwwl.cs.columbia.edu/CAVE/software/softlib/coil-100.php, accessed on 20
March 2021) databases and concluded that the optimal reduction was at 70%. These au-
thors conclude that PCA can effectively reduce the computational cost and maintain high
accuracy [22]. The above methods are not suitable for deep neural networks.

2.2.1. Extraction of a Feature Vector from a CNN

The features of an image can be extracted from different locations in the network.
Two methods regularly appear: either from the last convolutional layer, as illustrated in
Figure 1, or from fully connected layers. According to the authors in [4], the deeper the
network, the more powerful learning capability it can provide, thus extracting high-level
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abstract and semantic data. Extracting features from fully connected layers can have lim-
itations as explained by the authors in [4]. Some authors take the fully connected layers as
a feature vector and compare the similarities with the Euclidean distance or the cosine
distance [12,23].

In [24], the authors use the penultimate fully connected layer of the AlexNet as a
feature extractor. In [22,25], the authors extract features from the last three convolutional
layers. It should be noted that the latter approach has limitations due to the type of fully
connected layer. Indeed, in a fully connected layer, each neuron is linked to all neurons of
the previous layer and fully connected layers have a global field. This leads to two limita-
tions: firstly, a lack of spatial information, and secondly, a lack of local geometric invari-
ance, i.e,, it affects the robustness of image transformations such as truncation and occlu-
sion [4].

In [4], the authors derive the feature vector of an image via convolutional layers. This
is often the last layer that retains more structural detail. Usually, the robustness of these
features improves after pooling, as these layers preserve more local information such as
corners or edges. A neuron in a convolutional layer is linked to a local region of the input
image. This smaller receptive field ensures that features are more robust against occlusion
and truncation [26].

It has been shown that the pooling strategy on the last convolutional layer performs
better than on hidden layers and fully connected layers [4] because these layers reduce
the sensitivity to distortions such as scale changes [26].
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Figure 1. Illustration of position for extraction feature vectors after the last convolutional layer.

A specific method proposed by Tolias et al. in [27], called RMAC, reduces the size of
the descriptors extracted from a CNN.

2.2.2. RMAC

Another method to reduce the dimension of the feature vector seems to be differen-
tiated in the field of content-based image indexing and retrieval with CNN. It was pre-
sented by Tolias et al. in [27], called the RMAC descriptor, for the Regional Maximal Ac-
tivation of convolution.

According to the authors in [27], RMACs are state-of-the-art descriptors for image
retrieval. The authors explain that it is a representation that encodes and aggregates mul-
tiple regions of the image into a compact and dense representation. An image runs
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through a pre-trained CNN on ImageNet (https://image-net.org/update-mar-11-2021.php,
accessed on 28 April 2022), the output of the last convolutional layer, then goes through a
max-pooling over different regions of different scales to obtain a feature vector for each
region. These vectors are then L2-normalized, reduced within PCA, normalized again
with L2, and finally aggregated by summing the whole, normalized to obtain the final
vector [28]. The authors in [29] indicate that this is the most used descriptor in image re-
trieval problems.

This method relies on a maximum convolution activation layer called the Maximum
Activations of Convolutions (MAC) layer which is also used by the authors in [30], who
add such a layer following the convolutional layers that max-pool over each subregion
(2 x 2) in order to more efficiently represent the image features.

They consider that a pre-trained CNN is a fully convolutional network, i.e., all fully
connected layers are discarded [27]. They consider square regions, R, at different sizes, L,
on the image, I. At the largest scale, the region size is equal to the minimum between the
width and height of the image, I. The regions are chosen uniformly so that the overlap
between two consecutive regions is as close to 40% as possible [27].

At each different scale, some regions are uniformly sampled, which results in 20 re-
gions when L = 3 [27]. Figure 2 shows us these regions, which are represented by the dots
as their centers.

R

Figure 2. [llustration of RMAC regions.

Figure 3 shows these regions as an example. There are two regions in the first repre-
sentation, six in the second, and twelve in the last. It is the sum of these regions that con-
stitutes the twenty regions of the method.

A descriptor vector is created for each region, on which an L2-normalization is ap-
plied, followed by a PCA, and again an L2-normalization [12]. Finally, the RMAC vector
is obtained by the sum all the features of the regions into a single vector (Equation (1) [12]:

N N N N T
F=) fo= lz Fua ) Frge ). fl (1)

where j is the layer of convolutional maps and N is the total number of regions. The final
dimension of the RMAC descriptor is equal to the number of feature channels, K. The
authors in [27] conclude that they have better results than the MAC method with the same
vector dimension and without additional computational costs.
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(©) (d)

Figure 3. Example of RMAC regions. (a) Query image, (b) Two first areas of RMAC method, (c)
Six next areas of RMAC method, (d) Twelve last areas of RMAC method.

2.2.3. RMAC+

In [31], the authors propose a variant of the RMAC method called RMAC+ and apply
it for landscape recognition. There are two main differences between RMAC+and RMAC,
in the division of the zones and in the search method.

*  Area allocation

They first propose building the multiresolution descriptors on the resized images,
increasing the dimensions of the feature maps in order to have more features and more
local maxima compared to the classical method [31]. This method is connected to a new
region detector that detects fifteen regions (not necessarily square), unlike RMAC which
has twenty squared regions.

The first level covers the whole image (yellow in Figure 4). On the second level, it
extracts two regions that are the largest possible in relation to the image, and are either in
relation to the x-axis or in relation to the y-axis, according to the longest one (blue in Figure
4). The image is then cut into six regions (green in Figure 4), and finally, six other regions
with respect to the axis opposite to the previous step (red in Figure 4).

1
|1
1

- ——————— - — . — . —

Figure 4. [llustration region’s method RMACH+.

It is better to overlay the regions rather than not covering the whole image otherwise
we might lose essential information [31]. You can find an example of RMAC+ regions in
Figure 5.
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Figure 5. Example of region’s method RMACH+. (a) Query image, (b) First area of RMACH, (c) Two
next areas of RMAC+ method, (d) Six next areas from RMAC+ method and (e) Six last areas of
RMAC + method

] Search method

The authors in [31] propose an improvement of the search method by comparing the
vector of each region with the vector of the query image. According to [31], this new
method takes more time but can improve the performance of CBIR.

2.2.4. MS-RMAC

In [32], the authors propose another variant of RMAC. It is a method proposing a
multi-scale approach called MS-RMAC which consists of a multitude of RMAC de-
scriptors built on different convolution layers as illustrated in Figure 6. According to the
authors in [32], their MS-RMAC method gives better results than the RMAC proposed in
[27]. The authors in [33] propose another variant of MS-RMAC with the InceptionV3 ar-
chitecture and a post-processing of the vector descriptor before calculating the ranking
loss.
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Figure 6. Illustration of MS-RMAC method on VGG 16 architecture.

2.3. Performance Measures

The performance of a CBIR can be measured within precision [2,6] and recall [7], and
according to different authors, these are the most widely used methods [8,11,34]. A high
precision value implies that the system returns more relevant images than irrelevant ones,
while a high recall value means that the system returns most of the relevant images [7]. In
general, the precision value will decrease when the recall value increases. If both values
remain high, the CBIR can be considered ideal.

On the other hand, the authors in [6,34] use the evaluation measure called the mean
average precision (MaP), which is an average of the average precision (aP) that is one of
the most widely used methods [35] to evaluate the quality of returned images. The aver-
age precision takes into consideration the recall and precision.

3. Proposed Approach

The methods presented above are mainly applied to the VGG16 network. There is no
specific information for other types of architecture. We complement this method with our
approach, which proposes a position for different architectures.

The proposed approach consists of several steps: transfer learning, feature extraction,
the application of reduction methods, and analysis. Experimentations were conducted us-
ing the cluster of the Faculty of Engineering at UMONS with the following configuration:

- 48 GB of RAMV;
- Processor: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz with 32 cores;
- Graphics card: GTX 1080ti with 12GB of RAM.

Training the CNNs represented the most consuming step in terms of computation
time, which is about one day per CNN. Notice that the application of dimensionality re-
duction caused a slight increase (between 15 and 20%) in computation time when applied
after the last convolutional layer only.

At the software level:

- Python 3.5;
- Tensorflow 2.x;
- Keras.

3.1. Dataset

We used a common image dataset to demonstrate the effect of our approach on the
problem  of large-scale image  retrieval. We used the GHIM-10k
(http://www.ci.gxnu.edu.cn/cbir/Dataset.aspx) database, which contains 10,000 images
presented within 20 classes, as illustrated in Figure 7.
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Figure 7. [llustration of the GHIM-10k dataset.

3.2. Transfer Learning

Transfer learning is applied to different architectures for classification applied to the
GHIM-10K database: Xception, VGG16, VGG19, ResNet50, InceptionV3, InceptionRes-
NetV2, MobileNet, DenseNet121, DenseNet169 and DenseNet201. Five architectures will
be retained for this research by choosing the architectures that perform well in terms of
accuracy and by varying the type of architecture. The results of this transfer learning are
presented in Table 1 with a MaP based on the TOP100, with nine query images contained
in three different classes.

Table 1. Results of classification in precision.

Models Accuracy (%) Loss VAL_ACC (%) VAL_LOSS
Xception 99.13 0.038 99.00 0.036
VGG16 99.31 0.022 99.80 0.008
VGGI19 98.94 0.031 99.33 0.021
ResNet50 99.43 0.023 99.87 0.004
MobileNet 98.50 0.055 100 0.003
InceptionV3 99.27 0.029 99.93 0.002
InceptionResNetV2 98.91 0.045 99.80 0.014
DenseNet121 99.11 0.035 100 0.002

DenseNet169 99.76 0.013 100 0

DenseNet201 99.64 0.019 100 0.001

On the basis of the results illustrated in Table 2, the models retained are VGG16, Mo-
bileNet, Xception, DenseNet169, and ResNet50. We have categorized these architectures
into “simple architectures” which include straight architectures such as VGG16 and Mo-
bileNet, i.e., the connections between the layers follow one after the other, and “complex
architectures” where the input of a layer comes from different layers, as is the case for
DenseNet169, ResNet50, and Xception. Based on these results, we can conclude that the
DenseNet architecture is the most suitable for GHIM database search.

Another essential criterion in the CBIR is the search time which depends, in particu-
lar, on the size of the feature vector. The search time and the size of the vector can be found
in Table 2. Based on this criterion, the architecture VGG16 is by far the best.
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Table 2. Comparison of models based on time search (in seconds) and vector size.

Models Search Vector Size
Simple architecture VGGI6 0.58 25,088
MobileNet 1.04 50,176
ResNet50 2.09 100,352
Complex architecture Xception 4.29 100,352
DenseNet169 1.67 81,536

3.3. Position of the Initial Feature Vector Extraction

The convolutional neural networks (CNN) are composed of two parts. One part con-
cerns the feature extraction, while the second concerns the classification composed of the
fully connected layers and the classifier layer. The remainder of this paper only focuses
on the first part concerning feature extraction. We removed the classification layer and the
fully connected layers before applying the dimension reduction, as shown in Figure 1.

3.4. Reduction Method Application
3.4.1. RMAC Method

According to [28], the RMAC layer must be applied after the last convolutional layer
of the network. This is illustrated in Figure 8.

RMAC

Legend.: ﬁ : conv2D layer

Maxpooling

Figure 8. Position of the RMAC layer in VGGI16.

For the five selected models, this corresponds to positioning the RMAC layer after
the layers mentioned in Table 3.

Table 3. Previous layer of the RMAC position based on models.

Models Layer Before RMAC Position
Xception conv2d_3
VGG16 block5_conv3
ResNet50 conv5_block3_3_conv
MobileNet conv_pw_13
DenseNet169 convb_block32_2_conv

The results of the addition of the RMAC layer after the last convolutional layer can
be found in Table 4. Two architectures, namely VGG16 and MobileNet, which are “simple
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architectures”, keep good performances in terms of MaP while the “complex architec-
tures” give poor results.

Table 4. MaP with RMAC layer after the last convolutional layer (in %).

Simple Architectures

VGG16 MobileNet
MaP (in %) 99.64 97.75
COMPLEX ARCHITECTURES
ResNet50 Xception DenseNet169
MaP (in %) 79.13 4.20 0

Analysis of RMAC Results

In order to improve the results obtained in Table 4, we analyzed the impact of the
position of the layer RMAC on the “complex architectures”.

By analyzing the position of the RMAC layer in simple and complex architectures,
we assumed that, for this to work well, the RMAC layer should not be placed in a block,
but instead after one. In other words, the results of a layer pass entirely to the following
layer until the end of the network, while the other architectures have parallel blocks. There
are two other possible positions for Xception and one other possible position for ResNet50
and DenseNet169.

Alternative Position in ResNet50

The architecture ResNet50 is composed of a repetition of blocks constituted by sev-
eral convolutions in series, as well as in parallel, as illustrated by Figure 9.

|

MaxPooIngD

Conv2D

BatchNormalization

[ Conv2D

[ BatchNormalization

Activation

[ J
[ )
[ ]
[ )
e ]
[ )
[ )
[ ]
[ ]
[

BatchNormallzatlon

Actlvatlon

ConVZD

BatchNormallzatlon

)
Add |

Figure 9. Partial illustration of ResNet50 architecture.

By adding the RMAC layer to the last convolution layer (conv2D), as the first method
proposed, this layer is added to one of these blocks and lost a part of the information.
According to our hypothesis, the RMAC layer must be placed at the end of the block,
joining the two sides of the one in question after the additional layer.
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For the ResNet50 network, the new location considered for the RMAC layer is the
conv5_block3_add layer which is at the end of the last block of the network. The new
position of the RMAC layer improves the results, which can be seen in Table 5.

Table 5. MaP with RMAC layer after new position (%) in complex architectures.

Architectures Layers MaP
Xception Add_11 0

Block_14 90.32

ResNet50 Add 85.89

DenseNet169 Concatenate 99.94

Alternative Position in DenseNet169

DenseNet169 connects several layers to a single concatenation layer, as shown in Fig-
ure 10. We then tried the same approach as ResNet50, i.e., by placing the RMAC layer at
the end of the block at the concatenated layer. This also gave better results, which are
shown in Table 5.

BatchNormalization
|
Activation
|
Conv2D
|
BatchNormalization
|
Activation
[
Conv2D

|

Concatenate

l

BatchNormalization ]
|
Activation ]
|
Conv2D ]
|
BatchNormaIlzatlon ]

\——)

Activation

|
Conv2D

T T ) ) () ) ) ) ) ) ) ) )

I [ Concatenate ]

Figure 10. Partial illustration of the DenseNet169 architecture.

Alternative Position in Xception

In the structure of the blocks, the Xception architecture strongly resembles the Res-
Net50architecture. An alternative position for the RMAC layer is at the end of the last
block of the network, like for ResNet 50, which corresponds to the add_11 layer, which
corresponds to the end of the block where the last convolutional layer is located. As can
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be seen in Table 5, which contains the results of the changes in the location of the RMAC
layer, placing the RMAC layer after add_11 does not improve the result for Xception.
There are the main differences between the Xception and ResNet50 architectures: in
ResNet50, after the additional layer, there is no more “convolution” layer, which is con-
trary to Xception, which contains, after this additional layer, two separable convolution
layers, as illustrated in Figure 11. Based on these analyses, the RMAC layer is placed after
the last separable convolution layer, block14_sepconv2, which is outside the blocks of the
network. This gave better results by reaching a MaP of 90.32%, as shown in Table 5.

[ Add ]

Activation
I

SeparableConvZD

[ )

[ )

[ BatChNO"I“ahzatlon ] Conlvzo

| )
[ )
| )

|
SeparableConvZD

BatchNormallzatlon

MaxPooIngD

|

Add
I

SeparableConvZD ]

BatchNormallzatlon

Actlvatlon

 sepconao

BatchNormalization
|
Activation
I

Figure 11. Partial illustration of Xception architecture.

G R G (G

Performance of the Proposed Approach for the RMAC Method

The synthesis of the results obtained with the RMAC method can be found in Table
6. According to this table, we can see that the best performances are obtained based on
MaP by DenseNet169, and based on the search time by VGG16. The differences in time
can be explained by the size of the different vectors. The size of the RMAC descriptor
depends on the depth of the layer on which it can be applied.
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Table 6. Synthesis of RMAC methods results.
Simple Architectures Complex Architectures
. . Dense-
MODELS VGG16  MobileNet ResNet50 Xception Net169
MaP 95.78 77.32 67.45 78.27 99.86
CLASSIC  Search Time 0.58 1.04 2.08 4.29 1.67
Size 25,088 50,176 100,352 100,352 81,536
MaP 99.64 97.75 85.89 90.32 99.94
RMAC * Search Time 0.06 0.07 0.08 0.08 0.07
Size 512 1024 2048 2048 1664
MaP 92.72 59.93 39.31 28.85 51.00
RMAC+ Search Time 741 7.91 9.52 9.57 9.10
Size 512 1024 2048 2048 1664
MaP 99.64 98.09 89.31 91.40 99.94
MS-RMAC*  Search Time 0.06 0.08 0.14 0.10 0.14
Size 1472 3584 8192 3584 8000

* Those results are which with best layer found.

Comparing the search times between the classical version and the RMAC method,
we conclude that the dimensionality reduction RMAC method speeds up the search for
all models. Nevertheless, we argue that the acceleration is stronger for “complex architec-
tures”. We can therefore deduce that the RMAC method is suitable for all models, but
offers even better performance on networks giving large feature vectors.

Compared to the dimension reduction, the results obtained confirm the efficiency of
the RMAC method. The RMAC method can therefore improve the MAP and reduce the
search time.

3.4.2. Analysis of RMAC+ Results

As areminder, the RMAC+ method extracts features at the end of the network, before
the fully connected layers, as illustrated in Figure 12.

RMAC+

Legend: @ :conv2D layer

: Maxpooling

Figure 12. [llustration of RMAC+ position on VGG16 architecture.

The synthesis of the results obtained with the RMAC+ method in terms of the MaP
for each architecture is presented in Table 6. In view of these results, only VGG16 main-
tains a MaP higher than 90%, while the other models see their performance deteriorate.
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Plotting these results as a graph of average precision versus vector size, we conclude
that the RMAC+ method is more appropriate for small vectors, as shown in Figure 13.

100%
90% @ vGGie
MobileNet
80% @
- DenseNet169
70% ~ ResNet50
_ Xception
@ 60%
o
'i/ 50%
S
= 40%
30%
20%
10%
O% =
512 1024 1664 2048 2048
Vector size

Figure 13. Results MaP in the function of RMAC+ vector size.

This can be explained by the fact that when the feature vectors are larger, as the re-
gions are fixed, more features are merged into one region. We lose a lot of information
about large vectors. In order to confirm this hypothesis, we trained the MobileNet model
with a layer, reducing the size of the output vector to 512 instead of 1024. The MaP then
goes from 59.93% to 62.97%.

In the RMAC+ algorithm, there is an operation to compute the square root of the
image feature matrix in which there are negative values. It was therefore impossible to
calculate this root. We therefore opted for a solution with complex numbers in order to
keep the complete information. This has a negative impact on the search time compared
to the classical search. The authors of the article [31] already pointed out this increase in
the search time compared to the RMAC method and their research focused on images
concerning landscapes which are very different from the images used in our case.

3.4.3. Analysis of MS-RMAC Results

As a reminder, this method involves inserting several RMAC layers at different
places in the network, as illustrated in Figure 14. To do this, we rely on the best layers
found using our approach for the RMAC method.
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| RMACS | RMAC 4 | RMAC 3 RMAC 2 RMAC 1

Legend : ﬁ : conv2D layer

: Maxpooling

Figure 14. Illustration of localization RMAC layers to form MS-RMAC in VGGI16.

For the VGG16 network, the different RMAC layers were inserted at the last convo-
lutional layer of each block, as the author did in [32]. For the VGGl6network, which con-
tains five blocks, five RMAC layers were applied. We can deduce that the RMAC layers
are to be applied at each end of the block for the MS-RMAC method.

Nevertheless, for some networks, such as DenseNet169, this would correspond to
adding 83 RMAC layers and would give a feature vector size of 10,560, which requires a
lot of time for the indexing. We therefore decided to limit the number of added layers to
a maximum of five, which already corresponds to a feature vector size of 8000 for the
DenseNet169 network, which corresponds to 75.75% of the size of the vector initially
thought. For the ResNet50 and DenseNet169 networks, we added the five RMAC layers
at the end of the last five blocks of the network. For the MobileNet architecture, we applied
the same principle as for VGG16, i.e., we applied the RMAC layers to the last convolution
layers of the last blocks, limiting their number to five.

On the other hand, for the Xception network, our research led us to add the RMAC
layer to the separable convolution layer. There are only two at the end of the network. We
will therefore apply only RMAC to these two layers to form the MS-RMAC vector. The
corresponding results can be found in Table 6.

We have highlighted that “simple architectures”, such as VGG16 and MobileNet, lose
slightly in MaP, while “complex architectures”, such as Xception, ResNet50, and Dense-
Net169, see their MaP increase with our proposition. Regarding the time, it remains stable
compared to RMAC for simple architectures, while it increases for complex architectures.
It increases to a lesser extent for Xception because we have added only two layers com-
pared to the other models where we have added five layers. For these complex architec-
tures, the search time doubled. MS-RMAC does not achieve a higher score in terms of
MAP on straight architectures compared to RMAC. On the other hand, it increases the
quality of the search compared to the RMAC method for complex architectures.

To complete our research, we also tried to combine architectures and descriptors to
improve accuracy. In view of the previous results, we applied only the RMAC method to
these combinations. For the combination of descriptors (of features), we applied the
RMAC layer in each CNN independently and then concatenated the descriptor vector.
For the combination of architectures, we merged the architectures through an added layer
and applied RMAC after this layer. Our experiments showed that merging the features
provided better performance in terms of accuracy than merging the architectures.
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Nevertheless, the results of this combination were, in terms of accuracy, comparable to
the RMAC method on a unique CNN but increased the search time significantly.

4. Discussion

Table 7 and Figure 15 take up the improvements of mean average precision (MaP),
the reduction in time, and in vector size compared to the classical method. These varia-
tions are calculated according to Equation (2):

Method to evaluate — Method classic
- .100
Method classic

)

Variation (%) =

Table 7. Comparison of improvements based on the increase in MaP, reduction in search time, and
vector size (in%).

RMAC RMAC+ MS-RMAC
Improv. Red. Time Red. Size ImproV. R,Ed' Red. Size Improv. Red. Time Red. Size
Map Map Time Map
SIMPLE ARCHITECTURES

VGG16 +4.03% —-89.66% —97.96% - - -9796% +340% —89.66% —94.13 %
MobileNet +26.42 % -93.27 % -97.96 % - - -97.96 % +2421% -92.31% —92.86 %

COMPLEX ARCHITECTURES
ResNet50 +2734% -96.17% -97.96 % - - -9796 % +2854% -93.30% —91.84 %
Xception +15.40% -98.14 % -97.96 % - - -97.96% +18.69% —98.14 % —96.43 %
DenseNet169 +0.08% -95.81% -97.96% - - -9796% +010% -91.62% -90.19 %

Pourcentage (%)
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Figure 15. Comparison of methods improvements based on increasing MaP, reduction in search
time, and reduction in size vector (%).
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The size of the vectors of the RMAC and RMAC+ methods is identical. Nevertheless,
the performances are not in time or in MaP. The differences between RMAC and RMAC+
are at two levels. Firstly, the location of feature extraction is not identical, as illustrated in
Figures 8 and 12, and RMAC works on 20 square regions (as illustrated in Figure 3), while
RMAC+ works on 15 square or rectangular regions (as illustrated in Figure 5). Moreover,
the other difference is in the search mode: in RMACH, the comparison is done on the basis
of the feature vectors per region and not on the descriptor vector of the whole image. It
leads 15 regions to be compared three times, i.e., 45 regions for an image in the database.

The results of MS-RMAC are comparable to those of RMAC. In terms of precision,
the MS-RMAC method on simple architectures does not bring any added value according
to our experiments applied to the GHIM-10k dataset, which is contrary to complex archi-
tectures, for which MS-RMAC has a slight positive impact on the MaP. Regarding the size
of the vectors, those of MS-RMAC are more important than RMAC since it is the fusion of
several RMAC layers at different places of the network, but this method still leads to the
size of the classical search vector being reduced by more than 90%. The size of the vector
is defined thanks to the sum of the sizes of the RMAC vectors. In view of the size of the
vector MS-RMAC, the search time increased, as the authors in [32] had announced, par-
ticularly for complex architectures, such as DenseNet169 and ResNet50, which saw their
search time almost double compared to the RMAC method. Nevertheless, MS-RMAC al-
lows the search time to be reduced by a minimum of 90% compared to the classical search.
We can conclude that some methods are more adapted to certain architectures and ac-
cording to the user’s needs.

5. Conclusions

To conclude this paper, we can therefore put forward the following elements for each
method. RMAC extract features based on twenty regions. For the latter, we proposed an
improvement in the location of the RMAC layer.

The most suitable position of an RMAC layer for simple architectures is after the last
convolutional layer. For complex architectures, however, there are two possibilities: either
there is no more convolution (of any kind) after the blocks, in which case the most suitable
position is after the last block, Or, if there are convolutions after the last block, then the
most suitable position is after the last convolution. This improvement led to an increase
in the mean average precision (MaP) ranging from 4% to 27%, except for DenseNet169.
Regarding time, the gains have a reduction in time ranging from 89.66% to 98%. The vec-
tor size reduction has a reduction of 97%.

The RMAC+ approach uses 15 regions to extract features from three images of differ-
ent scales. Our approach led to the size being reduced by the 97% vector, concluding that
this method maintained a better precision on small vectors: the smaller the vector initially,
the more the precision will be maintained.

MS-RMAC is an extension of RMAC that applies several layers of RMAC at different
locations of the network. Using the more suitable locations found in our analyses of the
RMAC method and limiting the number of layers added to five maximum resulted in an
improvement for the MAP, ranging from 3% to 28% except for DenseNet169. For the re-
duction in search time and vector size, the results are a reduction in time ranging from
92% to 98% and a decrease in vector size ranging from 90% to 96%.



Electronics 2022, 11, 1422 19 of 20

6. Perspectives and Future Work

For future work, we plan to exploit new architectures within different positions of
the RMAC layer. The transformers will be also studied as alternatives or complement to
CNN architectures with a customized method of dimensionality reduction. We share our
code on: https://github.com/ACOOLS/Reduction-dimension-RMAC.git. (accessed on 28
April 2022)
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional neural network

CBIR Content-based image retrieval search engines

RMAC Regional maximum activation of convolutions

PCA Principal component analysis

SIFT Scale-invariant feature transform

SURF Speeded up robust features

VLAD Vector of Locally Aggregated Descriptors

MS-RMAC Multi-scale regional maximum activation of convolutions
MaP Mean average precision

aP Average precision
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