
Learning Realtime One-Counter Automata
TACAS 2022

Véronique Bruyère Guillermo A. Pérez Gaëtan Staquet

Theoretical computer science Formal Techniques in Software Engineering
Computer Science Department Computer Science Department

Science Faculty Science Faculty
University of Mons University of Antwerp

April 5, 2022

1. Motivation: model checking

2. Learning a DFA

3. Realtime one-counter automata

4. Learning a realtime one-counter automaton

5. Implementation and future work

V. Bruyère, G. A. Pérez, G. Staquet Learning ROCAs 2 / 19

Checking that a computer system works as intended is “hard”.

↪→ We must abstract the system into a model.

Constructing the abstraction by hand can lead to more bugs.

↪→ We want a model that is complex enough to correctly abstract
the system and simple enough to be learned, i.e., automatically

constructed from the system.
↪→ The family of deterministic finite automata (DFAs) which can be

learned by an active learning algorithm, such as L∗.1

1Angluin, “Learning Regular Sets from Queries and Counterexamples”, 1987.
V. Bruyère, G. A. Pérez, G. Staquet Motivation Learning ROCAs 3 / 19

Checking that a computer system works as intended is “hard”.

↪→ We must abstract the system into a model.

Constructing the abstraction by hand can lead to more bugs.

↪→ We want a model that is complex enough to correctly abstract
the system and simple enough to be learned, i.e., automatically

constructed from the system.
↪→ The family of deterministic finite automata (DFAs) which can be

learned by an active learning algorithm, such as L∗.1

1Angluin, “Learning Regular Sets from Queries and Counterexamples”, 1987.
V. Bruyère, G. A. Pérez, G. Staquet Motivation Learning ROCAs 3 / 19

Checking that a computer system works as intended is “hard”.

↪→ We must abstract the system into a model.

Constructing the abstraction by hand can lead to more bugs.

↪→ We want a model that is complex enough to correctly abstract
the system and simple enough to be learned, i.e., automatically

constructed from the system.
↪→ The family of deterministic finite automata (DFAs) which can be

learned by an active learning algorithm, such as L∗.1

1Angluin, “Learning Regular Sets from Queries and Counterexamples”, 1987.
V. Bruyère, G. A. Pérez, G. Staquet Motivation Learning ROCAs 3 / 19

Checking that a computer system works as intended is “hard”.

↪→ We must abstract the system into a model.

Constructing the abstraction by hand can lead to more bugs.

↪→ We want a model that is complex enough to correctly abstract
the system and simple enough to be learned, i.e., automatically

constructed from the system.

↪→ The family of deterministic finite automata (DFAs) which can be
learned by an active learning algorithm, such as L∗.1

1Angluin, “Learning Regular Sets from Queries and Counterexamples”, 1987.
V. Bruyère, G. A. Pérez, G. Staquet Motivation Learning ROCAs 3 / 19

Checking that a computer system works as intended is “hard”.

↪→ We must abstract the system into a model.

Constructing the abstraction by hand can lead to more bugs.

↪→ We want a model that is complex enough to correctly abstract
the system and simple enough to be learned, i.e., automatically

constructed from the system.
↪→ The family of deterministic finite automata (DFAs) which can be

learned by an active learning algorithm, such as L∗.1

1Angluin, “Learning Regular Sets from Queries and Counterexamples”, 1987.
V. Bruyère, G. A. Pérez, G. Staquet Motivation Learning ROCAs 3 / 19

Learner Teacher
Knows L

Membership query w ∈ L?

true or false

Equivalence query L(H) = L?

true or a counterexample

Figure 1: Angluin’s framework [Angluin, “Learning Regular Sets from
Queries and Counterexamples”, 1987].

V. Bruyère, G. A. Pérez, G. Staquet Learning a DFA Learning ROCAs 4 / 19

Learner Teacher
Knows L

Membership query w ∈ L?

true or false

Equivalence query L(H) = L?

true or a counterexample

Figure 1: Angluin’s framework [Angluin, “Learning Regular Sets from
Queries and Counterexamples”, 1987].

V. Bruyère, G. A. Pérez, G. Staquet Learning a DFA Learning ROCAs 4 / 19

Learner Teacher
Knows L

Membership query w ∈ L?

true or false

Equivalence query L(H) = L?

true or a counterexample

Figure 1: Angluin’s framework [Angluin, “Learning Regular Sets from
Queries and Counterexamples”, 1987].

V. Bruyère, G. A. Pérez, G. Staquet Learning a DFA Learning ROCAs 4 / 19

Main ideas for L∗:

I A data structure is built through membership queries.
I Once it satisfies some properties, we build a DFA H from it.
I We ask an equivalence query over H.
I If the answer is true, we are done. Otherwise, we update the

data structure and repeat.

While DFAs can be used in practice, they lack expressivity. For
instance, a DFA cannot count the number of times a state is seen.

↪→ We add a natural counter.

V. Bruyère, G. A. Pérez, G. Staquet Learning a DFA Learning ROCAs 5 / 19

Main ideas for L∗:
I A data structure is built through membership queries.

I Once it satisfies some properties, we build a DFA H from it.
I We ask an equivalence query over H.
I If the answer is true, we are done. Otherwise, we update the

data structure and repeat.

While DFAs can be used in practice, they lack expressivity. For
instance, a DFA cannot count the number of times a state is seen.

↪→ We add a natural counter.

V. Bruyère, G. A. Pérez, G. Staquet Learning a DFA Learning ROCAs 5 / 19

Main ideas for L∗:
I A data structure is built through membership queries.
I Once it satisfies some properties, we build a DFA H from it.

I We ask an equivalence query over H.
I If the answer is true, we are done. Otherwise, we update the

data structure and repeat.

While DFAs can be used in practice, they lack expressivity. For
instance, a DFA cannot count the number of times a state is seen.

↪→ We add a natural counter.

V. Bruyère, G. A. Pérez, G. Staquet Learning a DFA Learning ROCAs 5 / 19

Main ideas for L∗:
I A data structure is built through membership queries.
I Once it satisfies some properties, we build a DFA H from it.
I We ask an equivalence query over H.

I If the answer is true, we are done. Otherwise, we update the
data structure and repeat.

While DFAs can be used in practice, they lack expressivity. For
instance, a DFA cannot count the number of times a state is seen.

↪→ We add a natural counter.

V. Bruyère, G. A. Pérez, G. Staquet Learning a DFA Learning ROCAs 5 / 19

Main ideas for L∗:
I A data structure is built through membership queries.
I Once it satisfies some properties, we build a DFA H from it.
I We ask an equivalence query over H.
I If the answer is true, we are done. Otherwise, we update the

data structure and repeat.

While DFAs can be used in practice, they lack expressivity. For
instance, a DFA cannot count the number of times a state is seen.

↪→ We add a natural counter.

V. Bruyère, G. A. Pérez, G. Staquet Learning a DFA Learning ROCAs 5 / 19

Main ideas for L∗:
I A data structure is built through membership queries.
I Once it satisfies some properties, we build a DFA H from it.
I We ask an equivalence query over H.
I If the answer is true, we are done. Otherwise, we update the

data structure and repeat.

While DFAs can be used in practice, they lack expressivity. For
instance, a DFA cannot count the number of times a state is seen.

↪→ We add a natural counter.

V. Bruyère, G. A. Pérez, G. Staquet Learning a DFA Learning ROCAs 5 / 19

Main ideas for L∗:
I A data structure is built through membership queries.
I Once it satisfies some properties, we build a DFA H from it.
I We ask an equivalence query over H.
I If the answer is true, we are done. Otherwise, we update the

data structure and repeat.

While DFAs can be used in practice, they lack expressivity. For
instance, a DFA cannot count the number of times a state is seen.

↪→ We add a natural counter.

V. Bruyère, G. A. Pérez, G. Staquet Learning a DFA Learning ROCAs 5 / 19

A realtime one-counter automaton (ROCA)
is a tuple A = (Q,Σ, δ=0, δ>0, q0,F) with:
I Q is the set of states,
I Σ is the alphabet,
I δ=0 and δ>0 are the transition

functions:

δ=0 : Q × Σ → Q × {0,+1}
δ>0 : Q × Σ → Q × {−1, 0,+1}

I q0 is the initial state, and
I F ⊆ Q is the set of accepting states.

q0

q1

a,= 0,+1

b,= 0, 0

a,= 0, 0
b,= 0, 0

a, > 0,+1

b, > 0, 0

a, > 0,−1
b, > 0, 0

Figure 2: A realtime one-counter
automaton.

V. Bruyère, G. A. Pérez, G. Staquet ROCA Learning ROCAs 6 / 19

An ROCA defines a configuration graph
where states are Q × N.

We have the following run for aba:

(q0, 0)
a−→
A

(q0, 1)
b−→
A

(q1, 1)
a−→
A

(q1, 0)

The counter value of ab according to A is 1,
noted cA(ab) = 1.
Since q1 ∈ F and cA(aba) = 0, aba is ac-
cepted by A.
We can show that the language of A is

L(A) = {anb(b∗a)n{a, b}∗ | n ∈ N}.

q0

q1

a,= 0,+1

b,= 0, 0

a,= 0, 0
b,= 0, 0

a, > 0,+1

b, > 0, 0

a, > 0,−1
b, > 0, 0

Figure 2: A realtime one-counter
automaton.

V. Bruyère, G. A. Pérez, G. Staquet ROCA Learning ROCAs 7 / 19

An ROCA defines a configuration graph
where states are Q × N.
We have the following run for aba:

(q0, 0)
a−→
A

(q0, 1)
b−→
A

(q1, 1)
a−→
A

(q1, 0)

The counter value of ab according to A is 1,
noted cA(ab) = 1.
Since q1 ∈ F and cA(aba) = 0, aba is ac-
cepted by A.
We can show that the language of A is

L(A) = {anb(b∗a)n{a, b}∗ | n ∈ N}.

q0

q1

a,= 0,+1

b,= 0, 0

a,= 0, 0
b,= 0, 0

a, > 0,+1

b, > 0, 0

a, > 0,−1
b, > 0, 0

Figure 2: A realtime one-counter
automaton.

V. Bruyère, G. A. Pérez, G. Staquet ROCA Learning ROCAs 7 / 19

An ROCA defines a configuration graph
where states are Q × N.
We have the following run for aba:

(q0, 0)
a−→
A

(q0, 1)
b−→
A

(q1, 1)
a−→
A

(q1, 0)

The counter value of ab according to A is 1,
noted cA(ab) = 1.

Since q1 ∈ F and cA(aba) = 0, aba is ac-
cepted by A.
We can show that the language of A is

L(A) = {anb(b∗a)n{a, b}∗ | n ∈ N}.

q0

q1

a,= 0,+1

b,= 0, 0

a,= 0, 0
b,= 0, 0

a, > 0,+1

b, > 0, 0

a, > 0,−1
b, > 0, 0

Figure 2: A realtime one-counter
automaton.

V. Bruyère, G. A. Pérez, G. Staquet ROCA Learning ROCAs 7 / 19

An ROCA defines a configuration graph
where states are Q × N.
We have the following run for aba:

(q0, 0)
a−→
A

(q0, 1)
b−→
A

(q1, 1)
a−→
A

(q1, 0)

The counter value of ab according to A is 1,
noted cA(ab) = 1.
Since q1 ∈ F and cA(aba) = 0, aba is ac-
cepted by A.

We can show that the language of A is

L(A) = {anb(b∗a)n{a, b}∗ | n ∈ N}.

q0

q1

a,= 0,+1

b,= 0, 0

a,= 0, 0
b,= 0, 0

a, > 0,+1

b, > 0, 0

a, > 0,−1
b, > 0, 0

Figure 2: A realtime one-counter
automaton.

V. Bruyère, G. A. Pérez, G. Staquet ROCA Learning ROCAs 7 / 19

An ROCA defines a configuration graph
where states are Q × N.
We have the following run for aba:

(q0, 0)
a−→
A

(q0, 1)
b−→
A

(q1, 1)
a−→
A

(q1, 0)

The counter value of ab according to A is 1,
noted cA(ab) = 1.
Since q1 ∈ F and cA(aba) = 0, aba is ac-
cepted by A.
We can show that the language of A is

L(A) = {anb(b∗a)n{a, b}∗ | n ∈ N}.

q0

q1

a,= 0,+1

b,= 0, 0

a,= 0, 0
b,= 0, 0

a, > 0,+1

b, > 0, 0

a, > 0,−1
b, > 0, 0

Figure 2: A realtime one-counter
automaton.

V. Bruyère, G. A. Pérez, G. Staquet ROCA Learning ROCAs 7 / 19

Theorem 1
Let L be the language of some ROCA A. It is possible to learn an
ROCA accepting L in an exponential time and space complexities in
|Q| and |Σ|.

V. Bruyère, G. A. Pérez, G. Staquet Learning an ROCA — Main theorem Learning ROCAs 8 / 19

What do we want to learn exactly?

For DFAs, we learn an equivalence relation called the Myhill-Nerode
congruence, from which we can construct the minimal DFA
accepting the target language.

Let A be an ROCA accepting L, and u, v ∈ Σ∗. We say that u ≡ v
if and only if ∀w ∈ Σ∗, we have2

uw ∈ L ⇔ vw ∈ L,
uw , vw ∈ Pref (L) ⇒ cA(uw) = cA(vw).

2Inspired by Neider and Löding, Learning visibly one-counter automata in
polynomial time, 2010.

V. Bruyère, G. A. Pérez, G. Staquet Learning an ROCA — Equivalence relation Learning ROCAs 9 / 19

What do we want to learn exactly?

For DFAs, we learn an equivalence relation called the Myhill-Nerode
congruence, from which we can construct the minimal DFA
accepting the target language.

Let A be an ROCA accepting L, and u, v ∈ Σ∗. We say that u ≡ v
if and only if ∀w ∈ Σ∗, we have2

uw ∈ L ⇔ vw ∈ L,
uw , vw ∈ Pref (L) ⇒ cA(uw) = cA(vw).

2Inspired by Neider and Löding, Learning visibly one-counter automata in
polynomial time, 2010.

V. Bruyère, G. A. Pérez, G. Staquet Learning an ROCA — Equivalence relation Learning ROCAs 9 / 19

What do we want to learn exactly?

For DFAs, we learn an equivalence relation called the Myhill-Nerode
congruence, from which we can construct the minimal DFA
accepting the target language.

Let A be an ROCA accepting L, and u, v ∈ Σ∗. We say that u ≡ v
if and only if ∀w ∈ Σ∗, we have2

uw ∈ L ⇔ vw ∈ L,
uw , vw ∈ Pref (L) ⇒ cA(uw) = cA(vw).

2Inspired by Neider and Löding, Learning visibly one-counter automata in
polynomial time, 2010.

V. Bruyère, G. A. Pérez, G. Staquet Learning an ROCA — Equivalence relation Learning ROCAs 9 / 19

ε a aa aaa . . .

b ab aab aaab . . .

a

b

a

b

a

b

a

b

a a a a

a, b b b b

Initial part Repeating part

Figure 3: A behavior graph constructed from ≡.

V. Bruyère, G. A. Pérez, G. Staquet Learning an ROCA — Equivalence relation Learning ROCAs 10 / 19

ε a aa aaa . . .

b ab aab aaab . . .

a

b

a

b

a

b

a

b

a a a a

a, b b b b

Initial part Repeating part

Figure 3: A behavior graph constructed from ≡.

V. Bruyère, G. A. Pérez, G. Staquet Learning an ROCA — Equivalence relation Learning ROCAs 10 / 19

Lemma 2
Let A be an ROCA and BG(A) be its behavior graph. Then,
BG(A) has an ultimately periodic structure.

We fix a counter limit ` and we learn the minimal DFA that accepts
L up to `, denoted by L`.3

Lemma 3
Let A be an ROCA accepting L, BG(A) be its behavior graph, ` be
a counter limit, and H be the minimal DFA accepting L`. Then, if `
is large enough, the initial fragments of BG(A) and H are
isomorphic.
Moreover, if ` is large enough, it is possible to construct an ROCA
accepting L from H.

3Inspired by Neider and Löding, Learning visibly one-counter automata in
polynomial time, 2010

V. Bruyère, G. A. Pérez, G. Staquet Learning an ROCA — Equivalence relation Learning ROCAs 11 / 19

Lemma 2
Let A be an ROCA and BG(A) be its behavior graph. Then,
BG(A) has an ultimately periodic structure.

We fix a counter limit ` and we learn the minimal DFA that accepts
L up to `, denoted by L`.3

Lemma 3
Let A be an ROCA accepting L, BG(A) be its behavior graph, ` be
a counter limit, and H be the minimal DFA accepting L`. Then, if `
is large enough, the initial fragments of BG(A) and H are
isomorphic.
Moreover, if ` is large enough, it is possible to construct an ROCA
accepting L from H.

3Inspired by Neider and Löding, Learning visibly one-counter automata in
polynomial time, 2010

V. Bruyère, G. A. Pérez, G. Staquet Learning an ROCA — Equivalence relation Learning ROCAs 11 / 19

Lemma 2
Let A be an ROCA and BG(A) be its behavior graph. Then,
BG(A) has an ultimately periodic structure.

We fix a counter limit ` and we learn the minimal DFA that accepts
L up to `, denoted by L`.3

Lemma 3
Let A be an ROCA accepting L, BG(A) be its behavior graph, ` be
a counter limit, and H be the minimal DFA accepting L`. Then, if `
is large enough, the initial fragments of BG(A) and H are
isomorphic.

Moreover, if ` is large enough, it is possible to construct an ROCA
accepting L from H.

3Inspired by Neider and Löding, Learning visibly one-counter automata in
polynomial time, 2010

V. Bruyère, G. A. Pérez, G. Staquet Learning an ROCA — Equivalence relation Learning ROCAs 11 / 19

Lemma 2
Let A be an ROCA and BG(A) be its behavior graph. Then,
BG(A) has an ultimately periodic structure.

We fix a counter limit ` and we learn the minimal DFA that accepts
L up to `, denoted by L`.3

Lemma 3
Let A be an ROCA accepting L, BG(A) be its behavior graph, ` be
a counter limit, and H be the minimal DFA accepting L`. Then, if `
is large enough, the initial fragments of BG(A) and H are
isomorphic.
Moreover, if ` is large enough, it is possible to construct an ROCA
accepting L from H.

3Inspired by Neider and Löding, Learning visibly one-counter automata in
polynomial time, 2010

V. Bruyère, G. A. Pérez, G. Staquet Learning an ROCA — Equivalence relation Learning ROCAs 11 / 19

Learner Teacher
Knows A

Membership query w ∈ L(A)?

true or false

Counter value query for w

cA(w)

Partial equivalence query L(H) = L`?

true or a counterexample

Equivalence query L(H) = L(A)?

true or a counterexample

Figure 4: Adaptation of Angluin’s framework for ROCAs.

V. Bruyère, G. A. Pérez, G. Staquet Learning an ROCA — Framework Learning ROCAs 12 / 19

Learner Teacher
Knows A

Membership query w ∈ L(A)?

true or false

Counter value query for w

cA(w)

Partial equivalence query L(H) = L`?

true or a counterexample

Equivalence query L(H) = L(A)?

true or a counterexample

Figure 4: Adaptation of Angluin’s framework for ROCAs.

V. Bruyère, G. A. Pérez, G. Staquet Learning an ROCA — Framework Learning ROCAs 12 / 19

Learner Teacher
Knows A

Membership query w ∈ L(A)?

true or false

Counter value query for w

cA(w)

Partial equivalence query L(H) = L`?

true or a counterexample

Equivalence query L(H) = L(A)?

true or a counterexample

Figure 4: Adaptation of Angluin’s framework for ROCAs.

V. Bruyère, G. A. Pérez, G. Staquet Learning an ROCA — Framework Learning ROCAs 12 / 19

Theorem 4
Let A be an ROCA accepting a language L ⊆ Σ∗. Given a teacher
for L, which answers membership, counter value, and (partial)
equivalence queries, an ROCA accepting L can be computed in time
and space exponential in |Q|, |Σ| and t, where t is the length of the
longest counterexample returned by the teacher on (partial)
equivalence queries.

The learner asks

I O(t3) partial equivalence queries,
I O(|Q|t2) equivalence queries, and
I A number of membership (resp. counter value) queries which is

exponential in |Q|, |Σ| and t.

V. Bruyère, G. A. Pérez, G. Staquet Learning an ROCA — Framework Learning ROCAs 13 / 19

Theorem 4
Let A be an ROCA accepting a language L ⊆ Σ∗. Given a teacher
for L, which answers membership, counter value, and (partial)
equivalence queries, an ROCA accepting L can be computed in time
and space exponential in |Q|, |Σ| and t, where t is the length of the
longest counterexample returned by the teacher on (partial)
equivalence queries.
The learner asks
I O(t3) partial equivalence queries,

I O(|Q|t2) equivalence queries, and
I A number of membership (resp. counter value) queries which is

exponential in |Q|, |Σ| and t.

V. Bruyère, G. A. Pérez, G. Staquet Learning an ROCA — Framework Learning ROCAs 13 / 19

Theorem 4
Let A be an ROCA accepting a language L ⊆ Σ∗. Given a teacher
for L, which answers membership, counter value, and (partial)
equivalence queries, an ROCA accepting L can be computed in time
and space exponential in |Q|, |Σ| and t, where t is the length of the
longest counterexample returned by the teacher on (partial)
equivalence queries.
The learner asks
I O(t3) partial equivalence queries,
I O(|Q|t2) equivalence queries, and

I A number of membership (resp. counter value) queries which is
exponential in |Q|, |Σ| and t.

V. Bruyère, G. A. Pérez, G. Staquet Learning an ROCA — Framework Learning ROCAs 13 / 19

Theorem 4
Let A be an ROCA accepting a language L ⊆ Σ∗. Given a teacher
for L, which answers membership, counter value, and (partial)
equivalence queries, an ROCA accepting L can be computed in time
and space exponential in |Q|, |Σ| and t, where t is the length of the
longest counterexample returned by the teacher on (partial)
equivalence queries.
The learner asks
I O(t3) partial equivalence queries,
I O(|Q|t2) equivalence queries, and
I A number of membership (resp. counter value) queries which is

exponential in |Q|, |Σ| and t.

V. Bruyère, G. A. Pérez, G. Staquet Learning an ROCA — Framework Learning ROCAs 13 / 19

Main difficulties:

I Counter value queries are required, unlike in [Neider and
Löding, Learning visibly one-counter automata in polynomial
time, 2010].

I Unlike in L∗, the data structure must store the counter values
and requires two sets of separators.

I Obtaining an hypothesis H from the data structure is not
trivial, due to the counter values and the two sets.

I Proving that the structure eventually satisfies the constraints
we want is a hard task.

I For instance, the algorithm never stops if we have a single set of
separators.

V. Bruyère, G. A. Pérez, G. Staquet Learning an ROCA — Difficulties Learning ROCAs 14 / 19

Main difficulties:
I Counter value queries are required, unlike in [Neider and

Löding, Learning visibly one-counter automata in polynomial
time, 2010].

I Unlike in L∗, the data structure must store the counter values
and requires two sets of separators.

I Obtaining an hypothesis H from the data structure is not
trivial, due to the counter values and the two sets.

I Proving that the structure eventually satisfies the constraints
we want is a hard task.

I For instance, the algorithm never stops if we have a single set of
separators.

V. Bruyère, G. A. Pérez, G. Staquet Learning an ROCA — Difficulties Learning ROCAs 14 / 19

Main difficulties:
I Counter value queries are required, unlike in [Neider and

Löding, Learning visibly one-counter automata in polynomial
time, 2010].

I Unlike in L∗, the data structure must store the counter values
and requires two sets of separators.

I Obtaining an hypothesis H from the data structure is not
trivial, due to the counter values and the two sets.

I Proving that the structure eventually satisfies the constraints
we want is a hard task.

I For instance, the algorithm never stops if we have a single set of
separators.

V. Bruyère, G. A. Pérez, G. Staquet Learning an ROCA — Difficulties Learning ROCAs 14 / 19

Main difficulties:
I Counter value queries are required, unlike in [Neider and

Löding, Learning visibly one-counter automata in polynomial
time, 2010].

I Unlike in L∗, the data structure must store the counter values
and requires two sets of separators.

I Obtaining an hypothesis H from the data structure is not
trivial, due to the counter values and the two sets.

I Proving that the structure eventually satisfies the constraints
we want is a hard task.

I For instance, the algorithm never stops if we have a single set of
separators.

V. Bruyère, G. A. Pérez, G. Staquet Learning an ROCA — Difficulties Learning ROCAs 14 / 19

Main difficulties:
I Counter value queries are required, unlike in [Neider and

Löding, Learning visibly one-counter automata in polynomial
time, 2010].

I Unlike in L∗, the data structure must store the counter values
and requires two sets of separators.

I Obtaining an hypothesis H from the data structure is not
trivial, due to the counter values and the two sets.

I Proving that the structure eventually satisfies the constraints
we want is a hard task.

I For instance, the algorithm never stops if we have a single set of
separators.

V. Bruyère, G. A. Pérez, G. Staquet Learning an ROCA — Difficulties Learning ROCAs 14 / 19

Main difficulties:
I Counter value queries are required, unlike in [Neider and

Löding, Learning visibly one-counter automata in polynomial
time, 2010].

I Unlike in L∗, the data structure must store the counter values
and requires two sets of separators.

I Obtaining an hypothesis H from the data structure is not
trivial, due to the counter values and the two sets.

I Proving that the structure eventually satisfies the constraints
we want is a hard task.
I For instance, the algorithm never stops if we have a single set of

separators.

V. Bruyère, G. A. Pérez, G. Staquet Learning an ROCA — Difficulties Learning ROCAs 14 / 19

We implemented our algorithm in Java using AutomataLib and
LearnLib.
We evaluated the performance on two types of benchmarks:

1. On randomly generated ROCAs.
2. On JSON documents.

V. Bruyère, G. A. Pérez, G. Staquet Implementation Learning ROCAs 15 / 19

1 2 3 4 1 2 3 4 50
500

1,000

Alphabet size
ROCA size

T
im

e
(s

)

(a) Total time.

1 2 3 4 1 2 3 4 50
20

40

Alphabet size ROCA size

Le
ng

th
t

(b) Length t of the longest
counterexample.

1 2 3 4 1 2 3 4 50

500

Alphabet size
ROCA size

Si
ze

of
R

(c) Final size of R .

1 2 3 4 1 2 3 4 50

500

Alphabet size
ROCA size

Si
ze

of
Ŝ

(d) Final size of Ŝ.

Figure 5: Experimental results for randomly generated ROCAs.

V. Bruyère, G. A. Pérez, G. Staquet Implementation — Random benchmarks Learning ROCAs 16 / 19

For the JSON based benchmarks, the teacher has a JSON schema
which details how a document should be structured.

1 {
2 "type": "object",
3 "properties": {
4 "subList": {
5 "type": "array",
6 "items": {"$ref": "#"}
7 }
8 }
9 }

Listing 1: A JSON schema.

V. Bruyère, G. A. Pérez, G. Staquet Implementation — JSON benchmarks Learning ROCAs 17 / 19

Schema TO
(1h)

Time
(s)

t |R | |Ŝ| |A| |Σ|

1 0 16.39 31.00 55.55 32.00 33.00 19.00
2 27 1045.64 12.99 57.84 33.74 44.29 14.70
3 19 922.19 49.49 171.94 50.49 51.16 9.00

Table 1: Results for JSON documents.

V. Bruyère, G. A. Pérez, G. Staquet Implementation — JSON benchmarks Learning ROCAs 18 / 19

For future work:
I Remove partial equivalence queries by working with more

recent learning algorithms, such as Ttt by Isberner et al.4 or
L# by Vaandrager et al.5

I Lowering the complexity.
Currently, we are working on extending the use-case on JSON
documents to be usable in practice.

4Isberner, Howar, and Steffen, “The TTT Algorithm: A Redundancy-Free
Approach to Active Automata Learning”, 2014.

5Vaandrager et al., “A New Approach for Active Automata Learning Based
on Apartness”, 2021.

V. Bruyère, G. A. Pérez, G. Staquet Implementation — Future work Learning ROCAs 19 / 19

References I

Angluin, Dana. “Learning Regular Sets from Queries and
Counterexamples”. In: Inf. Comput. 75.2 (1987), pp. 87–106.
doi: 10.1016/0890-5401(87)90052-6. url:
https://doi.org/10.1016/0890-5401(87)90052-6.
Isberner, Malte, Falk Howar, and Bernhard Steffen. “The TTT
Algorithm: A Redundancy-Free Approach to Active Automata
Learning”. In: Runtime Verification - 5th International
Conference, RV 2014, Toronto, ON, Canada, September 22-25,
2014. Proceedings. Ed. by Borzoo Bonakdarpour and
Scott A. Smolka. Vol. 8734. Lecture Notes in Computer Science.
Springer, 2014, pp. 307–322. doi:
10.1007/978-3-319-11164-3_26. url:
https://doi.org/10.1007/978-3-319-11164-3%5C_26.
Neider, Daniel and Christof Löding. Learning visibly one-counter
automata in polynomial time. Tech. rep. Technical Report
AIB-2010-02, RWTH Aachen (January 2010), 2010.

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3%5C_26

References II

Vaandrager, Frits W. et al. “A New Approach for Active
Automata Learning Based on Apartness”. In: CoRR
abs/2107.05419 (2021). arXiv: 2107.05419. url:
https://arxiv.org/abs/2107.05419.

https://arxiv.org/abs/2107.05419
https://arxiv.org/abs/2107.05419

	Motivation: model checking
	Learning a DFA
	Realtime one-counter automata
	Learning a realtime one-counter automaton
	Main theorem
	Equivalence relation
	Adaptation of Angluin's framework
	Difficulties

	Implementation and future work
	Random benchmarks
	JSON benchmarks
	Future work

	References

