

[Table ronde #1]

« Plates-formes numériques de collaboration autour des projets open hardware »

(Projet « *FabricAr3v* » – Module de travail MT6)

Dr Ir Robert Viseur Chargé de cours

Journée conférence et de networking « Les technologies d'impression 3D métaux low cost »

Centrale Lille (Amphithéâtre Goubet) - 12 mai 2022

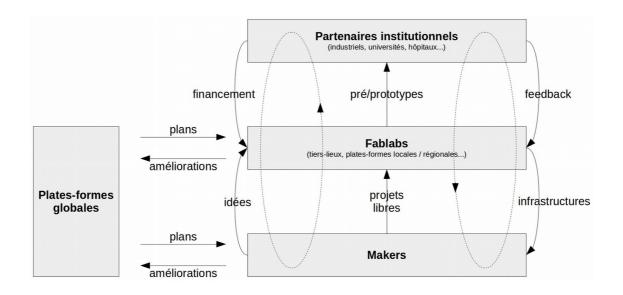
Avec le soutien du Fonds Européen de développement régional – Met steun van het Europees Fonds voor Regionale Ontwikkeling.

Contexte

Historique de recherche en matière de gestion et de gouvernance de projets libres et open source (Viseur et Charleux, 2019 ; Viseur, 2013 ; Viseur, 2007).

Potentiel lié à l'observation des innovations *makers* sur base *open hardware* durant la pandémie : les visières, les respirateurs, les accessoires...

Apprentissages sur :

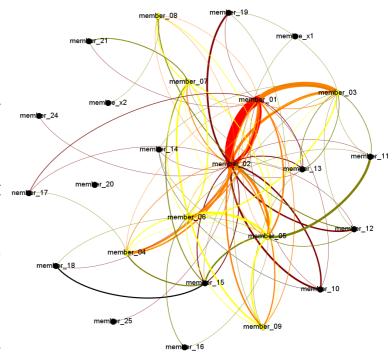

- la dynamique des projets de type open hardware,
- la coordination entre *makers*,
- les profils des *makers*,
- la gestion de la complexité (technologie, métier),
- l'organisation des écosystèmes innovants.

Objectif : proposer une organisation pour un écosystème d'innovation centré sur une technologie FAM *open hardware* (FabricAr3v).

Production de visières (S1 2020) #1

Rôle central des *fablabs* dans la réponse à la situation de crise (résilience territoriale).

Recours à des plates-formes numériques (p. ex. Riot ou Slack) comme lieu virtuel de rencontre (« *place* ») et comme espace de structuration des connaissances (« *space* ») (Simon, 2009 ; Viseur et Charleux, 2021 ; Viseur et al., 2021).

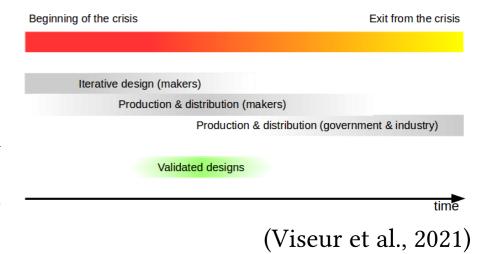

Production de visières (S1 2020) #2

Phénomène (éphémère) centré sur quelques contributeurs importants.

Importance du *leadership* pour la stimulation de la communauté ainsi que pour la gestion des projets.

Identification de profils *makers* distincts incluant les *makers* au sens strict, les *makers* institutionnels, les *makers*-entrepreneurs et les *makers* industriels.

Contributions distinctes en matière de conception ou de passage à l'échelle lors de la mise en production.

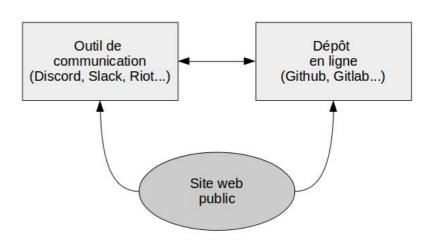

(Viseur et al., 2021)

Diffusion des innovations

La diffusion suit trois phases :

- la conception itérative au sein des plates-formes numériques,
- l'optimalisation de la production en réseau,
- la production en masse par les entreprises.

Parallèle avec Abernathy et Utterback (1978) : basculement de l'innovation de produit vers l'innovation de processus une fois un design dominant validé.


Passage progressif des *makers* (au sens strict et institutionnels) vers les *makers* actifs en entreprise.

Plateformes numériques

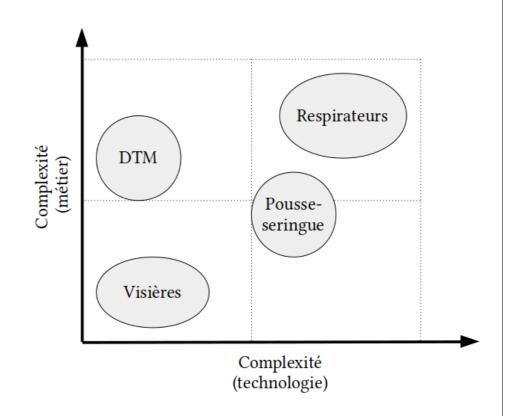
Combinaison (Viseur et Charleux, 2021) de :

- un outil de présentation, (p. ex. site web)
- un outil de communication (messagerie), (p. ex. Riot ou Slack)
- une outil de stockage. (p. ex. GitHub ou GitLab)

(Viseur et Charleux, 2021)

Différenciation au niveau de la gestion :

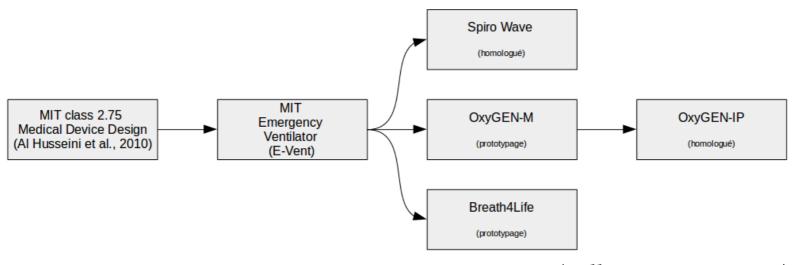
- des échanges (flux),
 (p. ex. discussions et contributions)
- des connaissances (stock).
 (p. ex. designs et documentations)


Gestion de la complexité

Distinction entre la complexité liée à la technologie et la complexité liée au métier (usages).

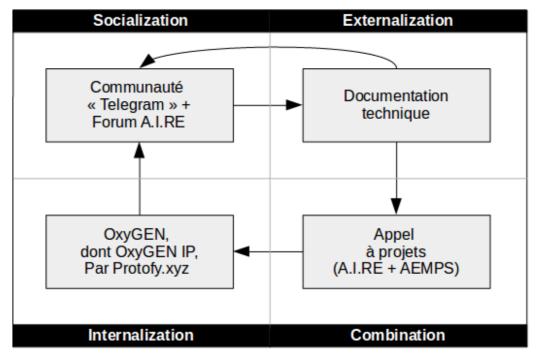
Limites à la conception par essais et erreurs.

Limites à la réutilisation de bases open source populaires.


Nécessité, pour les objets complexes, d'une diversité d'expertises (cahier des charges, choix techniques...).

Gestion des connaissances #1

Développement par itérations successives.


(Fally et Viseur, 2021)

<u>Remarque</u>: termes « *open source* » et « *open hardware* » parfois galvaudés compte tenu des choix de licence, de gouvernance et d'accessibilité des connaissances (Viseur, 2012; Viseur et Charleux, 2021; Fally et Viseur, 2021)!

Gestion des connaissances #2

Développement par enrichissement progressif des connaissances.

(Fally et Viseur, 2021)

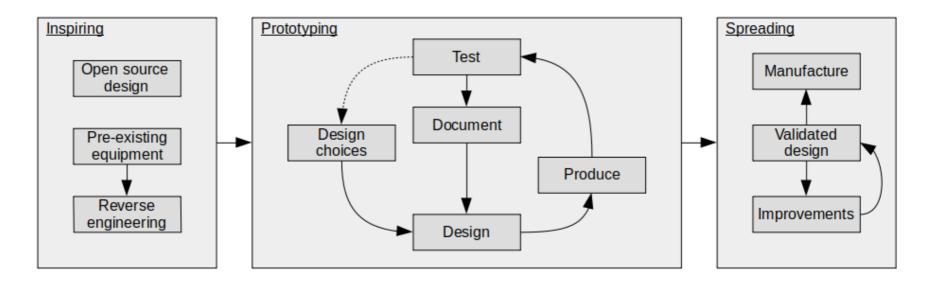
Processus d'innovation #1

Conception souvent inspirée :

- par des objets existants,
- par des projets open source.

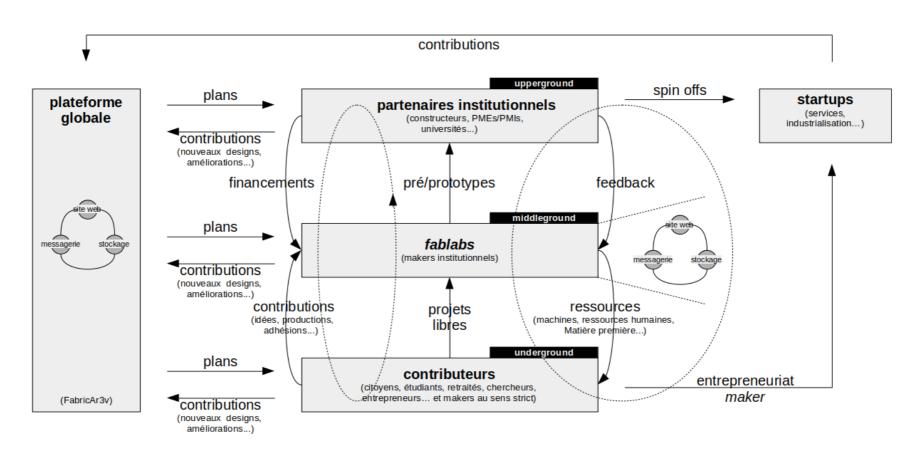
Importance du choix de design initial (cf. complexité)!

Démarche de conception itérative (agile).


Production en plus grande série après validation de la conception.

Frein possible à la diffusion lié aux contraintes de sécurité.

Processus d'innovation #2


Phases d'inspiration, de prototypage et de diffusion mobilisant un réseau d'acteurs aux compétences complémentaires (technologie, métier).

Organisation optimale par la mise en place d'un écosystème d'innovation basé sur des plates-formes numériques dédiées à la collaboration.

Vers la mise en place d'un écosystème d'innovation (FabricAr3v)

Références #1

Abernathy, W. J., & Utterback, J. M. (1978). *Patterns of industrial innovation*. Technology Review, 80, 40-47.

Fally, B. & Viseur, R. (2021). Réponse makers à la pandémie de la COVID-19 : le cas des respirateurs open source. Colloque AGECSO.

Simon, L. (2009). *Underground, upperground et middle-ground: les collectifs créatifs et la capacité créative de la ville*. Management international, 13, 37-51

Viseur, R. (2012). From open source software to open source hardware. In IFIP International Conference on Open Source Systems (pp. 286-291). Springer, Berlin, Heidelberg.

Références #2

Viseur, R., Fally, B., & Charleux, A. (2021). How makers responded to the PPE shortage during the COVID-19 pandemic: an analysis focused on the Hauts-de-France region. International Symposium on Open Collaboration.

Viseur, R., & Charleux, A. (2021). *Contributions et coordination des makers face à la crise du Covid-19*. Terminal. Technologie de l'information, culture & société, (130).

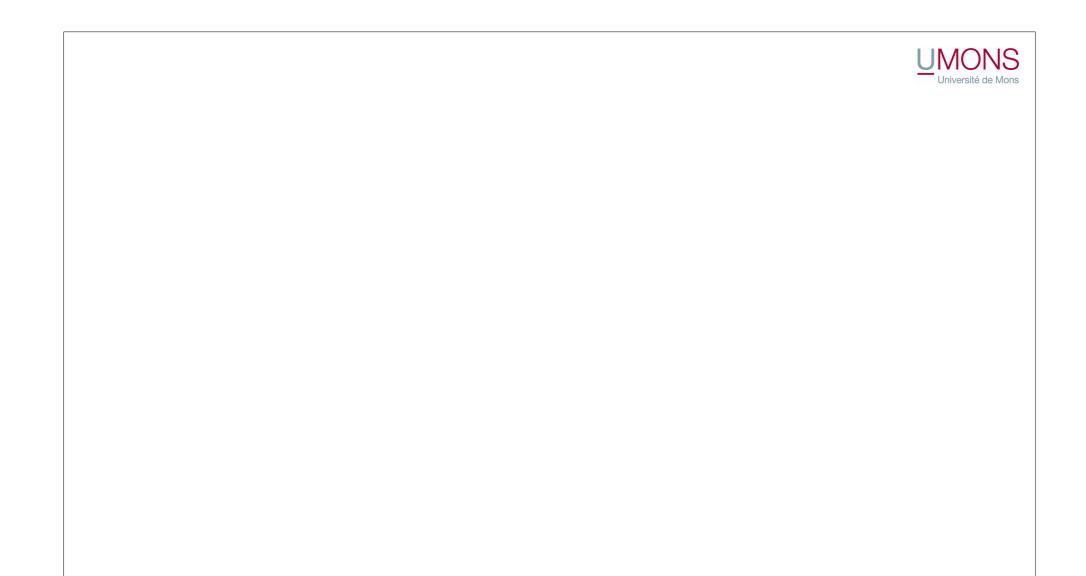
Viseur, R., & Charleux, A. (2019). Changement de gouvernance et communautés open source: le cas du logiciel Claroline. Innovations, (1), 71-104.

Viseur, R. (2013). *Identifying success factors for the mozilla project. In IFIP International Conference on Open Source Systems* (pp. 45-60). Springer, Berlin, Heidelberg.

Viseur, R. (2007). Gestion de communautés Open Source. Actes de la 12^{ème} Conférence de l'Association Information et Management, Lausanne (Suisse).

Partenaires du projet

Projet soutenu par



Wallonie

Avec le soutien du Fonds européen de développement régional

Ce support de présentation est diffusé sous licence CC-BY-ND.

Dr Ir Robert Viseur (robert.viseur@umons.ac.be)

[16/ 17]

Université de Mons Faculté Warocqué d'économie et de gestion - Service TIC Place Warocqué, 17 B-7000 Mons

Tél.: +32.65.373.201

www.umons.ac.be info.warocque@umons.ac.be

Plus d'information...

Dr Ir Robert VISEUR Chargé de cours

Tél.: +32.65.374.054

robert.viseur@umons.ac.be