Journey planning in uncertain environments, the multi-objective way

Mickael Randour
UMONS - Université de Mons \& F.R.S.-FNRS, Belgium

January 15, 2019

Think tank "Systèmes complexes"

Aim of this talk

Flavor of \neq types of useful strategies in stochastic environments.
\triangleright Loosely based on [RRS15] (on arXiv: abs/1411.0835).

Aim of this talk

Flavor of \neq types of useful strategies in stochastic environments.
\triangleright Loosely based on [RRS15] (on arXiv: abs/1411.0835).
Applications to the shortest path problem.

\hookrightarrow Find a path of minimal length in a weighted graph (Dijkstra, Bellman-Ford, etc) [CGR96].

Aim of this talk

Flavor of \neq types of useful strategies in stochastic environments.
\triangleright Loosely based on [RRS15] (on arXiv: abs/1411.0835).
Applications to the shortest path problem.

What if the environment is uncertain? E.g., in case of heavy traffic, some roads may be crowded.

Planning a journey in an uncertain environment

Each action takes time, target $=$ work.
\triangleright What kind of strategies are we looking for when the environment is stochastic (Markov decision process)?

Solution 1: minimize the expected time to work

\triangleright "Average" performance: meaningful when you journey often.
\triangleright Simple strategies suffice: no memory, no randomness.
\triangleright Taking the car is optimal: $\mathbb{E}_{D}^{\sigma}\left(\mathrm{TS}^{\text {work }}\right)=33$.

Solution 2: traveling without taking too many risks

Minimizing the expected time to destination makes sense if we travel often and it is not a problem to be late.
With car, in 10% of the cases, the journey takes 71 minutes.

Solution 2: traveling without taking too many risks

Most bosses will not be happy if we are late too often. . .
\sim what if we are risk-averse and want to avoid that?

Solution 2: maximize the probability to be on time

Specification: reach work within 40 minutes with 0.95 probability

Solution 2: maximize the probability to be on time

Specification: reach work within 40 minutes with 0.95 probability Sample strategy: take the train $\sim \mathbb{P}_{D}^{\sigma}\left[\mathrm{TS}^{\text {work }} \leq 40\right]=0.99$ Bad choices: car (0.9) and bike (0.0)

Solution 3: strict worst-case guarantees

Specification: guarantee that work is reached within 60 minutes (to avoid missing an important meeting)

Solution 3: strict worst-case guarantees

Specification: guarantee that work is reached within 60 minutes (to avoid missing an important meeting)
Sample strategy: bike \sim worst-case reaching time $=45$ minutes.
Bad choices: train $(w c=\infty)$ and car $(w c=71)$

Solution 3: strict worst-case guarantees

Worst-case analysis \sim two-player game against an antagonistic adversary (bad guy)
\triangleright forget about probabilities and give the choice of transitions to the adversary

Solution 4: minimize the expected time under strict worst-case guarantees

■ Expected time: car $\sim \mathbb{E}=33$ but wc $=71>60$
■ Worst-case: bike $\sim w c=45<60$ but $\mathbb{E}=45 \ggg 33$

Solution 4: minimize the expected time under strict

 worst-case guarantees

In practice, we want both! Can we do better?
\triangleright Beyond worst-case synthesis [BFRR17]: minimize the expected time under the worst-case constraint.

Solution 4: minimize the expected time under strict

 worst-case guarantees

Sample strategy: try train up to 3 delays then switch to bike.
$\sim w c=58<60$ and $\mathbb{E} \approx 37.34 \ll 45$
\leadsto Strategies need memory \leadsto more complex!

Solution 5: multiple objectives \Rightarrow trade-offs

Two-dimensional weights on actions: time and cost.
Often necessary to consider trade-offs: e.g., between the probability to reach work in due time and the risks of an expensive journey.

Solution 5: multiple objectives \Rightarrow trade-offs

Solution 2 (probability) can only ensure a single constraint.
■ C1: 80% of runs reach work in at most 40 minutes.
\triangleright Taxi $\leadsto \leq 10$ minutes with probability $0.99>0.8$.

Solution 5: multiple objectives \Rightarrow trade-offs

Solution 2 (probability) can only ensure a single constraint.
■ C1: 80% of runs reach work in at most 40 minutes.
\triangleright Taxi $\leadsto \leq 10$ minutes with probability $0.99>0.8$.
■ C2: 50% of them cost at most $10 \$$ to reach work.
\triangleright Bus $\sim \geq 70 \%$ of the runs reach work for $3 \$$.

Solution 5: multiple objectives \Rightarrow trade-offs

Solution 2 (probability) can only ensure a single constraint.
■ C1: 80% of runs reach work in at most 40 minutes.
\triangleright Taxi $\leadsto \leq 10$ minutes with probability $0.99>0.8$.
■ C2: 50% of them cost at most $10 \$$ to reach work.
\triangleright Bus $\sim \geq 70 \%$ of the runs reach work for $3 \$$.
Taxi $\notin \mathrm{C} 2$, bus $\not \vDash \mathrm{C} 1$. What if we want $\mathrm{C} 1 \wedge \mathrm{C} 2$?

Solution 5: multiple objectives \Rightarrow trade-offs

■ C1: 80% of runs reach work in at most 40 minutes.
■ C2: 50% of them cost at most $10 \$$ to reach work.
Study of multi-constraint percentile queries [RRS17].
\triangleright Sample strategy: bus once, then taxi. Requires memory.
\triangleright Another strategy: bus with probability $3 / 5$, taxi with probability $2 / 5$. Requires randomness.

Solution 5: multiple objectives \Rightarrow trade-offs

■ C1: 80% of runs reach work in at most 40 minutes.
■ C2: 50% of them cost at most $10 \$$ to reach work.

Study of multi-constraint percentile queries [RRS17].

In general, both memory and randomness are required.
\neq previous problems \sim more complex!

Conclusion

Our research aims at:
■ defining meaningful strategy concepts and objectives,,

- providing algorithms and tools to compute those strategies,
- classifying the complexity of the different problems from a theoretical standpoint.
\hookrightarrow Is it mathematically possible to obtain efficient algorithms?

Conclusion

Our research aims at:
■ defining meaningful strategy concepts and objectives,,

- providing algorithms and tools to compute those strategies,
- classifying the complexity of the different problems from a theoretical standpoint.
\hookrightarrow Is it mathematically possible to obtain efficient algorithms?

Thank you! Any question?

References I

Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin.
Meet your expectations with guarantees: Beyond worst-case synthesis in quantitative games. Inf. Comput., 254:259-295, 2017.
B. V. Cherkassky, A.V. Goldberg, and T. Radzik.

Shortest paths algorithms: Theory and experimental evaluation.
Math. programming, 73(2):129-174, 1996.
Mickael Randour, Jean-François Raskin, and Ocan Sankur.
Variations on the stochastic shortest path problem.
In Deepak D'Souza, Akash Lal, and Kim Guldstrand Larsen, editors, Verification, Model Checking, and
Abstract Interpretation - 16th International Conference, VMCAI 2015, Mumbai, India, January 12-14, 2015. Proceedings, volume 8931 of Lecture Notes in Computer Science, pages 1-18. Springer, 2015.

Mickael Randour, Jean-François Raskin, and Ocan Sankur.
Percentile queries in multi-dimensional markov decision processes.
Formal Methods in System Design, 50(2-3):207-248, 2017.

