Looking at Mean-Payoff and Total-Payoff through Windows

K. Chatterjee (IST Austria) L. Doyen (ENS Cachan) M. Randour (UMONS) J.-F. Raskin (ULB)

12.04.2013

Cassting kick-off meeting

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000	000000	00

Aim of this talk

1 Overview of the situation for (multi) MP and TP games

- $\,\triangleright\,$ No P algorithm known in one dimension
- ▷ In multi dimensions, MP is coNP-complete
- > First contribution: TP is undecidable in multi dimensions

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000		00

Aim of this talk

1 Overview of the situation for (multi) MP and TP games

- \triangleright No P algorithm known in one dimension
- ▷ In multi dimensions, MP is coNP-complete
- ▷ First contribution: **TP is undecidable in multi dimensions**

2 Introduction of window objectives

- ▷ Conservative approximation of MP/TP
- Break the complexity barriers
- > Algorithms, complexity and memory requirements
- ▷ Several flavors of the objective

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000	000000	00

1 Mean-Payoff and Total-Payoff Games

- 2 Total-Payoff Games in Multi Dimensions
- 3 Window Objectives
- 4 One-Dimension Fixed Window Problem
- 5 Multi-Dimension Bounded Window Problem

6 Conclusion

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000	000000	00

1 Mean-Payoff and Total-Payoff Games

- 2 Total-Payoff Games in Multi Dimensions
- 3 Window Objectives
- 4 One-Dimension Fixed Window Problem
- 5 Multi-Dimension Bounded Window Problem

6 Conclusion

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
0.00	00000000		0000	000000	00

Turn-based games

- $\bullet G = (S_1, S_2, E)$
- $\bullet S = S_1 \cup S_2, S_1 \cap S_2 = \emptyset, E \subseteq S \times S$
- \mathcal{P}_1 states = \bigcirc
- \mathcal{P}_2 states =
- Plays, prefixes, **pure** strategies.

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	000000	0000	000000	00

Integer k-dim. payoff function

000	000000000	0000000	0000	000000	00
000	00000000	0000000	0000	000000	00
MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion

TP and MP threshold problems

• **TP (MP) threshold problem** Given $v \in \mathbb{Q}^k$ and $s_{init} \in S$, $\exists ? \lambda_1 \in \Lambda_1 \text{ s.t. } \forall \lambda_2 \in \Lambda_2,$ $\underline{TP}(Outcome_G(s_{init}, \lambda_1, \lambda_2)) > v$

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
○○●	000000000	0000000	0000		00

Known results

	one-dimension			k-d	imension	
	complexity	\mathcal{P}_1 mem.	\mathcal{P}_2 mem.	complexity	\mathcal{P}_1 mem.	\mathcal{P}_2 mem.
<u>MP</u> / MP	$NP\capcoNP$	men	1-less	coNP-c. / NP \cap coNP	infinite	mem-less
<u>TP</u> / TP	$NP\capcoNP$	men	1-less	??	??	??

- ▷ See [EM79, Jur98, ZP96, GS09, CDHR10, VR11]
- \triangleright No known polynomial time algorithm for one-dimension
- ▷ No result on multi-dimension total-payoff

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	●00000000	0000000	0000	000000	00

1 Mean-Payoff and Total-Payoff Games

- 2 Total-Payoff Games in Multi Dimensions
- 3 Window Objectives
- 4 One-Dimension Fixed Window Problem
- 5 Multi-Dimension Bounded Window Problem

6 Conclusion

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	○●0000000	0000000	0000	000000	00

Multi-dimension TP games are undecidable

Theorem

The threshold problem for infimum and supremum total-payoff objectives is **undecidable** in multi-dimension games, for five dimensions.

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	○●0000000	0000000	0000	000000	00

Multi-dimension TP games are undecidable

Theorem

The threshold problem for infimum and supremum total-payoff objectives is **undecidable** in multi-dimension games, for five dimensions.

▷ Reduction from the halting problem for 2CMs [Min61]

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	00000000	000000	0000	000000	00

Two-counter machines

- Finite set of instructions
- Two counters C_1 and C_2 taking values $(v_1, v_2) \in \mathbb{N}^2$
- Instructions:
 - ▷ Increment

$$C_i + +$$

▷ Decrement

$$C_i - -$$

Zero test and branch accordingly

If
$$C_i == 0$$
 do this else do that

 W.I.o.g. if the machine stops, it stops with both counters to zero

Encoding a 2CM in a 5-dim. TP game

- \triangleright TP objective (inf or sup) of threshold (0, 0, 0, 0, 0)
- $\triangleright \mathcal{P}_1$ must simulate faithfully
- $\triangleright \mathcal{P}_2$ retaliates if \mathcal{P}_1 cheats
- $\,\triangleright\,$ At the end, \mathcal{P}_1 wins the TP game iff the 2CM stops

Key idea: after *m* steps, the TP has value $(v_1, -v_1, v_2, -v_2, -m)$ iff the 2CM counters have value (v_1, v_2)

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000	000000	00

Instructions

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	00000●000	0000000	0000	000000	00

Instructions

• Checking counter C_1 is non-negative

▷ If P₁ cheats, he is doomed!
▷ Otherwise, P₂ has no interest in retaliating.

MP/TP 000	Multi TP ○00000●00	Window MP 0000000	One-Dim. Fixed 0000	Multi-Dim. Bounded	Conclusion 00

Instructions

▷ If P₁ cheats, he is doomed! ▷ Otherwise, P₂ has no interest in retaliating.

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	○000000●○	0000000	0000	000000	00
Halting					

If the 2CM halts (with counters to zero w.l.o.g.)

 \triangleright Thanks to the fifth dim., \mathcal{P}_1 wins only if the machine halts.

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	00000000	0000000	0000	000000	00

The case is closed

	one-dimension		<i>k</i> -d	imension		
	complexity	\mathcal{P}_1 mem.	\mathcal{P}_2 mem.	complexity	\mathcal{P}_1 mem.	\mathcal{P}_2 mem.
$\underline{MP} \ / \ \overline{MP}$	$NP\capcoNP$	men	1-less	coNP-c. / NP \cap coNP	infinite	mem-less
<u>TP</u> / TP	$NP\capcoNP$	men	1-less	Undec.	-	-

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	000000	0000	000000	00

1 Mean-Payoff and Total-Payoff Games

- 2 Total-Payoff Games in Multi Dimensions
- 3 Window Objectives
- 4 One-Dimension Fixed Window Problem
- 5 Multi-Dimension Bounded Window Problem

6 Conclusion

MP/TP 000	Multi TP 000000000	Window MP	One-Dim. Fixed 0000	Multi-Dim. Bounded	Conclusion 00

Motivations

Classical MP and TP objectives have some drawbacks

- Complexity issues
- Infimum vs. supremum
- Describe what happens at the limit: no guarantee about a time frame

MP/TP 000	Multi TP 000000000	Window MP	One-Dim. Fixed 0000	Multi-Dim. Bounded	Conclusion 00

Motivations

Classical MP and TP objectives have some drawbacks

- Complexity issues
- Infimum vs. supremum
- Describe what happens at the limit: no guarantee about a time frame

• Window objectives consider what happens inside a *finite* window sliding along a play

- ▷ Conservative approximation of MP/TP
- \vartriangleright Intuition: local deviations from the threshold must be compensated in a parametrized # of steps
- \triangleright Variety of results and algorithms

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	000000	0000	000000	00

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	000000	0000	000000	00

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	000000	0000	000000	00

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	000000	0000	000000	00

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	000000	0000	000000	00

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	000000	0000	000000	00

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	000000	0000	000000	00

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	000000	0000	000000	00

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	000000	0000	000000	00

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	000000	0000	000000	00

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	000000	0000	000000	00

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	000000	0000	000000	00

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	000000	0000	000000	00

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	000000	0000	000000	00

MP/TP 000	Multi TP 000000000	Window MP	One-Dim. Fixed 0000	Multi-Dim. Bounded	Conclusion 00
Definiti	ons				

- Given I_{max} ∈ N₀, good window GW(I_{max}) asks for a positive sum in at most I_{max} steps (one window, from the first state)
- Direct Fixed Window: $DFW(I_{max}) \equiv \Box GW(I_{max})$
- Fixed Window: $FW(I_{max}) \equiv \Diamond DFW(I_{max})$
- Direct Bounded Window: $DBW \equiv \exists I_{max}, DFW(I_{max})$
- Bounded Window: $\mathbf{BW} \equiv \Diamond \mathbf{DBW} \equiv \exists I_{\max}, \mathbf{FW}(I_{\max})$

MP/TP 000	Multi TP 000000000	Window MP	One-Dim. Fixed 0000	Multi-Dim. Bounded	Conclusion 00
D.C. IV					

- Definitions
 - Given I_{max} ∈ N₀, good window GW(I_{max}) asks for a positive sum in at most I_{max} steps (one window, from the first state)
 - Direct Fixed Window: $DFW(I_{max}) \equiv \Box GW(I_{max})$
 - Fixed Window: $FW(I_{max}) \equiv \diamondsuit DFW(I_{max})$
 - Direct Bounded Window: $DBW \equiv \exists I_{max}, DFW(I_{max})$
 - Bounded Window: $\mathbf{BW} \equiv \Diamond \mathbf{DBW} \equiv \exists I_{\max}, \mathbf{FW}(I_{\max})$
 - A window *closes* when the sum becomes positive
 A window is *open* if not yet closed

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	○○○○●○○	0000		00

Examples

 \triangleright **FW**(2) is satisfied, **DBW** is not, MP is satisfied.

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000		0000	000000	00

Examples

 \triangleright **FW**(2) is satisfied, **DBW** is not, MP is satisfied.

▷ MP is satisfied but none of the window objectives is.

Looking at MP and TP through Windows

Chatterjee, Doyen, Randour, Raskin

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000	000000	00

Conservative approximation of MP ? (one-dim.)

The following are true

$$\begin{array}{l} \mbox{Any window obj.} \Rightarrow \mbox{BW} \Rightarrow \mbox{MP} \geq 0 \\ \mbox{BW} \Leftarrow \mbox{MP} > 0 \end{array}$$

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	000000	0000	000000	00

Results overview

		one-dimension	ision k-dimension			
	complexity	\mathcal{P}_1 mem.	\mathcal{P}_2 mem.	complexity	\mathcal{P}_1 mem.	\mathcal{P}_2 mem.
<u>MP</u> / MP	$NP\capcoNP$	mem-less		coNP-c. / NP \cap coNP	infinite	mem-less
<u>TP</u> / TP	$NP\capcoNP$	mem-less		undec.	-	-
WMP: fixed	De			PSPACE-h.		
polynomial window	F-U.	mem	. req.	EXP-easy	ovn.on	ontial
WMP: fixed		\leq linear($ S \cdot I_{max}$)			ential
arbitrary window	$F(S , V, I_{max})$			EAF-C.		
WMP: bounded		mom loss	infinito			
window problem		111-1655	mmille	NF N-II.	-	-

 \triangleright |S| the # of states, V the length of the binary encoding of weights, and I_{max} the window size.

 \triangleright For one-dim. games with poly. windows, we are in P.

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	000000	0000	000000	00

Results overview

		one-dimension		<i>k</i> -dimension		
	complexity	\mathcal{P}_1 mem.	\mathcal{P}_2 mem.	complexity	\mathcal{P}_1 mem.	\mathcal{P}_2 mem.
<u>MP</u> / <u>MP</u>	$NP\capcoNP$	mem-less		coNP-c. / NP \cap coNP	infinite	mem-less
<u>TP</u> / TP	$NP\capcoNP$	mem-less		undec.	-	-
WMP: fixed	De			PSPACE-h.		
polynomial window	F-C.	mem	. req.	EXP-easy	ov	ontial
WMP: fixed		\leq linear($ S \cdot I_{max}$)			ential
arbitrary window	$\Gamma(\mathcal{S} , \mathbf{v}, \mathbf{max})$			EAF-U.		
WMP: bounded		mom loss	infinito			
window problem		ment-less	minite	INF IX-II.	-	-

- \triangleright |S| the # of states, V the length of the binary encoding of weights, and I_{max} the window size.
- \triangleright For one-dim. games with poly. windows, we are in P.
- ▷ No time to discuss everything. Focus.

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000	000000	00

1 Mean-Payoff and Total-Payoff Games

- 2 Total-Payoff Games in Multi Dimensions
- 3 Window Objectives
- 4 One-Dimension Fixed Window Problem
- 5 Multi-Dimension Bounded Window Problem

6 Conclusion

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	000000	○●○○	000000	00

- $FW(I_{max}) \equiv \Diamond DFW(I_{max})$
- ▷ Assume we can compute $\mathbf{DFW}(I_{max})$,
- > Compute attractor, declare winning and recurse on subgame.

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	000000	○●○○	000000	00

- $FW(I_{max}) \equiv \Diamond DFW(I_{max})$
- ▷ Assume we can compute $DFW(I_{max})$,
- ▷ Compute attractor, declare winning and recurse on subgame.

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	000000	○●○○	000000	00

•
$$FW(I_{max}) \equiv \Diamond DFW(I_{max})$$

- ▷ Assume we can compute $DFW(I_{max})$,
- > Compute attractor, declare winning and recurse on subgame.

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	000000	○●○○	000000	00

- $FW(I_{max}) \equiv \Diamond DFW(I_{max})$
- ▷ Assume we can compute $\mathbf{DFW}(I_{max})$,
- > Compute attractor, declare winning and recurse on subgame.

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000	000000	00

- $FW(I_{max}) \equiv \Diamond DFW(I_{max})$
- ▷ Assume we can compute $\mathbf{DFW}(I_{max})$,
- > Compute attractor, declare winning and recurse on subgame.

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000	000000	00

- $FW(I_{max}) \equiv \Diamond DFW(I_{max})$
- ▷ Assume we can compute $\mathbf{DFW}(I_{max})$,
- ▷ Compute attractor, declare winning and recurse on subgame.

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000	000000	00

- **DFW**(I_{max}) $\equiv \Box$ **GW**(I_{max})
- ▷ Assume we can compute $GW(I_{max})$,
- \triangleright Compute the stable set s.t. \mathcal{P}_1 can satisfy it repeatedly.

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000	000000	00

- **DFW**(I_{max}) $\equiv \Box$ **GW**(I_{max})
- ▷ Assume we can compute $GW(I_{max})$,
- \triangleright Compute the stable set s.t. \mathcal{P}_1 can satisfy it repeatedly.

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000	000000	00

- **DFW**(I_{max}) $\equiv \Box$ **GW**(I_{max})
- ▷ Assume we can compute $GW(I_{max})$,
- \triangleright Compute the stable set s.t. \mathcal{P}_1 can satisfy it repeatedly.

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000	000000	00

- **DFW**(I_{max}) $\equiv \Box$ **GW**(I_{max})
- ▷ Assume we can compute $GW(I_{max})$,
- \triangleright Compute the stable set s.t. \mathcal{P}_1 can satisfy it repeatedly.

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000	000000	00

- **DFW**(I_{max}) $\equiv \Box$ **GW**(I_{max})
- ▷ Assume we can compute $GW(I_{max})$,
- \triangleright Compute the stable set s.t. \mathcal{P}_1 can satisfy it repeatedly.

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000	000000	00

■ **GW**(*I*_{max})

 \triangleright Simply compute the best sum achievable in at most I_{\max} steps and check if positive.

■ **GW**(*I*_{max})

- \triangleright Simply compute the best sum achievable in at most I_{\max} steps and check if positive.
- Finally,

Theorem

In two-player one-dimension games,

(a) the fixed arbitrary window MP problem is decidable in time polynomial in the size of the game and the window size,
(b) the fixed polynomial window MP problem is P-complete,
(c) both players require memory, and memory of size linear in the size of the game and the window size is sufficient.

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000	00000	00

1 Mean-Payoff and Total-Payoff Games

- 2 Total-Payoff Games in Multi Dimensions
- 3 Window Objectives
- 4 One-Dimension Fixed Window Problem
- 5 Multi-Dimension Bounded Window Problem

6 Conclusion

MP/TP 000	Multi TP 000000000	Window MP 0000000	One-Dim. Fixed 0000	Multi-Dim. Bounded	Conclusion 00

Approach

- ▷ We prove **non-primitive recursive**¹ (NPR) hardness
- Reduction from the termination problem in reset nets (Petri nets with reset arcs) [Sch02]

¹Cf. Ackermann function

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000	○○●○○○	00
Reset n	ets				

 Classic Petri net (places, tokens, transitions) with added reset arcs

▷ Transitions may empty a place from all its tokens

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000	○0●000	00
Reset n	nets				

 Classic Petri net (places, tokens, transitions) with added reset arcs

- > Transitions may empty a place from all its tokens
- ▷ Given an initial marking, the *termination problem* asks if there exists an infinite sequence of transitions that can be fired

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000	000000	00

From reset nets to **direct** bounded window games

Crux of the construction: encoding the markings

- \triangleright We use one dimension for each place
- ▷ If a place p contains m tokens, then there will be an open window on dimension p with sum value -m - 1
- ▷ Hence during a faithful simulation, all windows remain open (you cannot consume tokens that do not exist)

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000	000000	00

From reset nets to **direct** bounded window games

- Crux of the construction: encoding the markings
 - \triangleright We use one dimension for each place
 - ▷ If a place p contains m tokens, then there will be an open window on dimension p with sum value -m - 1
 - ▷ Hence during a faithful simulation, all windows remain open (you cannot consume tokens that do not exist)
- \mathcal{P}_2 simulates the net
- \mathcal{P}_1 checks if he is faithful
- \mathcal{P}_1 wants to win the direct bounded window MP obj.
 - $\,\triangleright\,$ only able to do so if \mathcal{P}_2 cheats, i.e., if all runs terminate

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000	000000	00

The construction in a nutshell

- The initial marking open corresponding windows in all places
- $\triangleright \mathcal{P}_2$ chooses transitions to fire, which consume tokens
- $\triangleright \mathcal{P}_1$ can branch or continue (and apply reset, then output)

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000	000000	00

The construction in a nutshell

- ▷ If no infinite execution exists, at some point, P₂ must choose a transition without the needed tokens on some place p
- \triangleright The window closes on dimension *p*
- ▷ By branching P₁ can close all other windows and ensure winning

 MP/TP
 Multi TP
 Window MP
 One-Dim. Fixed
 Multi-Dim. Bounded
 Conclusion

 000
 0000000
 000000
 0000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

The construction in a nutshell

- $\triangleright \ \ \text{If} \ \mathcal{P}_1 \ \text{branches while} \ \mathcal{P}_2 \ \text{is honest, one} \\ \text{window stays open forever and he loses} \\$
- The additional dimension ensures that
 \$\mathcal{P}_1\$ leaves the reset state

000 0000000 000000 00000 0000 00000 0000	MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
	000	000000000	000000	0000	00000	00

Extension to bounded window objective

▷ More involved construction

Theorem

In two-player multi-dimension games, the bounded window mean-payoff problem is non-primitive recursive hard.

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000	000000	•0

1 Mean-Payoff and Total-Payoff Games

- 2 Total-Payoff Games in Multi Dimensions
- 3 Window Objectives
- 4 One-Dimension Fixed Window Problem
- 5 Multi-Dimension Bounded Window Problem

6 Conclusion

MP/TP	Multi TP	Window MP	One-Dim. Fixed	Multi-Dim. Bounded	Conclusion
000	000000000	0000000	0000	000000	0

A new family of objectives

		one-dimension k-dimension				
	complexity	\mathcal{P}_1 mem.	\mathcal{P}_2 mem.	complexity	\mathcal{P}_1 mem.	\mathcal{P}_2 mem.
<u>MP</u> / <u>MP</u>	$NP\capcoNP$	mem-less		coNP-c. / NP \cap coNP	infinite	mem-less
<u>TP</u> / TP	$NP\capcoNP$	mem-less		undec.	-	-
WMP: fixed	Pc			PSPACE-h.		
polynomial window	F-C.	mem	. req.	EXP-easy	ovnor	ontial
WMP: fixed		\leq linear($ S \cdot I_{max}$)	EXD	expon	entia
arbitrary window	$\Gamma(\mathcal{S} , \mathbf{v}, \mathbf{max})$			LAF-C.		
WMP: bounded		mom loss	infinito			
window problem	INF IT CONF	mem-iess	inninte	NF IX-II.	-	-

- ▷ Conservative approximation of MP/TP
- Provides timing guarantees
- $\,\vartriangleright\,$ Breaks the NP $\cap\, coNP$ barrier in one-dim. poly. window case
- > Decidable approximation of TP in multi-dim. case
- > Open question: is BW decidable in multi-dim. ?

MP/TP 000	Multi TP 000000000	Window MP 0000000	One-Dim. Fixed 0000	Multi-Dim. Bounded	Conclusion
	K. Chatterje Generalized	e, L. Doyen, mean-payoff	T.A. Henzinger	, and JF. Raskin.	

In <u>Proc. of FSTTCS</u>, LIPIcs 8, pages 505–516. Schloss Dagstuhl - LZI, 2010.

- A. Ehrenfeucht and J. Mycielski.
 Positional strategies for mean payoff games.
 Int. Journal of Game Theory, 8(2):109–113, 1979.
- T. Gawlitza and H. Seidl.

Games through nested fixpoints.

In Proc. of CAV, LNCS 5643, pages 291–305. Springer, 2009.

M. Jurdziński.

Deciding the winner in parity games is in UP \cap co-UP. Inf. Process. Lett., 68(3):119–124, 1998.

📔 M.L. Minsky.

MP/TP 000	Multi TP 000000000	Window MP 0000000	One-Dim. Fixed 0000	Multi-Dim. Bounded 000000	Conclusion
	Recursive un topics in the The Annals	nsolvability o eory of Turin of Mathema	f Post's problen g machines. tics, 74(3):437–	n of "tag" and othe 455, 1961.	≥r
	P. Schnoebe Verifying los complexity. Inf. Process.	elen. sy channel s <u>y</u> Lett., 83(5)	ystems has non :251–261, 2002	primitive recursive	
	Y. Velner ar Church synt In Proc. of I 2011.	nd A. Rabino hesis problen FOSSACS, L	vich. n for noisy inpu NCS 6604, page	t. es 275–289. Spring	er,
	U. Zwick an The complex	d M. Paterso xity of mean	on. payoff games o	n graphs.	

Theoretical Computer Science, 158:343-359, 1996.