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Aim of this talk

1 Overview of the situation for (multi) MP and TP games

� No P algorithm known in one dimension
� In multi dimensions, MP is coNP-complete
� First contribution: TP is undecidable in multi dimensions

2 Introduction of window objectives
� Conservative approximation of MP/TP
� Break the complexity barriers
� Algorithms, complexity and memory requirements
� Several flavors of the objective
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Turn-based games

sa

sb sc

sd

se sf

(2, 1) (1,−2)

(0,−2) (−3, 3)

(0, 1) (1,−1)

(0, 0) (1, 0)

G = (S1,S2,E )

S = S1 ∪ S2, S1 ∩ S2 = ∅,E ⊆ S × S

P1 states =

P2 states =

Plays, prefixes, pure strategies.
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Integer k-dim. payoff function

sa

sb sc

sd

se sf

(2, 1) (1,−2)

(0,−2) (−3, 3)

(0, 1) (1,−1)

(0, 0) (1, 0)

G = (S1,S2,E , k ,w)

w : E → Zk

Play π = s0s1s2 . . .

Total-payoff

TP(π) = lim inf
n→∞

i=n−1∑
i=0

w(si , si−1)

Mean-payoff

MP(π) = lim inf
n→∞

1

n

i=n−1∑
i=0

w(si , si−1)
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TP and MP threshold problems

sa

sb sc

sd

se sf

(2, 1) (1,−2)

(0,−2) (−3, 3)

(0, 1) (1,−1)

(0, 0) (1, 0)

TP (MP) threshold problem

Given v ∈ Qk and sinit ∈ S ,

∃?λ1 ∈ Λ1 s.t. ∀λ2 ∈ Λ2,

TP(OutcomeG (sinit, λ1, λ2)) ≥ v
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Known results

one-dimension k-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less ?? ?? ??

� See [EM79, Jur98, ZP96, GS09, CDHR10, VR11]

� No known polynomial time algorithm for one-dimension

� No result on multi-dimension total-payoff
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Multi-dimension TP games are undecidable

Theorem

The threshold problem for infimum and supremum total-payoff
objectives is undecidable in multi-dimension games, for five
dimensions.

� Reduction from the halting problem for 2CMs [Min61]
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Two-counter machines

Finite set of instructions

Two counters C1 and C2 taking values (v1, v2) ∈ N2

Instructions:

� Increment
Ci + +

� Decrement
Ci −−

� Zero test and branch accordingly

If Ci == 0 do this else do that

W.l.o.g. if the machine stops, it stops with both counters to
zero
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Encoding a 2CM in a 5-dim. TP game

� TP objective (inf or sup) of threshold (0, 0, 0, 0, 0)

� P1 must simulate faithfully

� P2 retaliates if P1 cheats

� At the end, P1 wins the TP game iff the 2CM stops

Key idea: after m steps, the TP has value (v1,−v1, v2,−v2,−m)
iff the 2CM counters have value (v1, v2)
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Instructions

Increment C1

(1,−1, 0, 0,−1)

Decrement C1

(−1, 1, 0, 0,−1)

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 10 / 33



MP/TP Multi TP Window MP One-Dim. Fixed Multi-Dim. Bounded Conclusion

Instructions

Checking counter C1 is non-negative

(0, 1, 1, 1, 1)

� If P1 cheats, he is doomed!

� Otherwise, P2 has no interest in retaliating.
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Instructions

Checking a zero test on C1

(1, 0, 1, 1, 1)

� If P1 cheats, he is doomed!

� Otherwise, P2 has no interest in retaliating.
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Halting

If the 2CM halts (with counters to zero w.l.o.g.)

(0, 0, 0, 0, 1)

� Thanks to the fifth dim., P1 wins only if the machine halts.
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The case is closed

one-dimension k-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less Undec. - -
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Motivations

Classical MP and TP objectives have some drawbacks

� Complexity issues
� Infimum vs. supremum
� Describe what happens at the limit: no guarantee about a

time frame

Window objectives consider what happens inside a finite
window sliding along a play

� Conservative approximation of MP/TP
� Intuition: local deviations from the threshold must be

compensated in a parametrized # of steps
� Variety of results and algorithms

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 16 / 33
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Illustration: WMP, threshold zero, maximal window = 4

Sum

Time

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 17 / 33



MP/TP Multi TP Window MP One-Dim. Fixed Multi-Dim. Bounded Conclusion

Illustration: WMP, threshold zero, maximal window = 4

Sum

Time

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 17 / 33



MP/TP Multi TP Window MP One-Dim. Fixed Multi-Dim. Bounded Conclusion

Illustration: WMP, threshold zero, maximal window = 4

Sum

Time

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 17 / 33



MP/TP Multi TP Window MP One-Dim. Fixed Multi-Dim. Bounded Conclusion

Illustration: WMP, threshold zero, maximal window = 4

Sum

Time

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 17 / 33



MP/TP Multi TP Window MP One-Dim. Fixed Multi-Dim. Bounded Conclusion

Illustration: WMP, threshold zero, maximal window = 4

Sum

Time

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 17 / 33



MP/TP Multi TP Window MP One-Dim. Fixed Multi-Dim. Bounded Conclusion

Illustration: WMP, threshold zero, maximal window = 4

Sum

Time

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 17 / 33



MP/TP Multi TP Window MP One-Dim. Fixed Multi-Dim. Bounded Conclusion

Illustration: WMP, threshold zero, maximal window = 4

Sum

Time

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 17 / 33



MP/TP Multi TP Window MP One-Dim. Fixed Multi-Dim. Bounded Conclusion

Illustration: WMP, threshold zero, maximal window = 4

Sum

Time

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 17 / 33



MP/TP Multi TP Window MP One-Dim. Fixed Multi-Dim. Bounded Conclusion

Illustration: WMP, threshold zero, maximal window = 4

Sum

Time

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 17 / 33



MP/TP Multi TP Window MP One-Dim. Fixed Multi-Dim. Bounded Conclusion

Illustration: WMP, threshold zero, maximal window = 4

Sum

Time

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 17 / 33



MP/TP Multi TP Window MP One-Dim. Fixed Multi-Dim. Bounded Conclusion

Illustration: WMP, threshold zero, maximal window = 4

Sum

Time

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 17 / 33



MP/TP Multi TP Window MP One-Dim. Fixed Multi-Dim. Bounded Conclusion

Illustration: WMP, threshold zero, maximal window = 4

Sum

Time

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 17 / 33



MP/TP Multi TP Window MP One-Dim. Fixed Multi-Dim. Bounded Conclusion

Illustration: WMP, threshold zero, maximal window = 4

Sum

Time

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 17 / 33



MP/TP Multi TP Window MP One-Dim. Fixed Multi-Dim. Bounded Conclusion

Illustration: WMP, threshold zero, maximal window = 4

Sum

Time

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 17 / 33



MP/TP Multi TP Window MP One-Dim. Fixed Multi-Dim. Bounded Conclusion

Definitions

Given lmax ∈ N0, good window GW(lmax) asks for a positive
sum in at most lmax steps (one window, from the first state)

Direct Fixed Window : DFW(lmax) ≡ �GW(lmax)

Fixed Window : FW(lmax) ≡ ♦DFW(lmax)

Direct Bounded Window : DBW ≡ ∃ lmax, DFW(lmax)

Bounded Window : BW ≡ ♦DBW ≡ ∃ lmax, FW(lmax)

� A window closes when the sum becomes positive

� A window is open if not yet closed

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 18 / 33
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Examples

s1 s2 s3 s4
1 −1

−1

1

� FW(2) is satisfied, DBW is not, MP is satisfied.

s1 s2 0

−1

1

� MP is satisfied but none of the window objectives is.
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Conservative approximation of MP ? (one-dim.)

The following are true

Any window obj. ⇒ BW ⇒ MP ≥ 0
BW ⇐ MP > 0
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Results overview

one-dimension k-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less undec. - -

WMP: fixed
P-c.

mem. req.

≤ linear(|S | · lmax)

PSPACE-h.

polynomial window EXP-easy
exponential

WMP: fixed
P(|S |,V , lmax) EXP-c.

arbitrary window

WMP: bounded
NP ∩ coNP mem-less infinite NPR-h. - -

window problem

� |S | the # of states, V the length of the binary encoding of
weights, and lmax the window size.

� For one-dim. games with poly. windows, we are in P.

� No time to discuss everything. Focus.
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High level sketch: top-down approach

FW(lmax) ≡ ♦DFW(lmax)

� Assume we can compute DFW(lmax),

� Compute attractor, declare winning and recurse on subgame.

G

SubgameDFW(lmax)

Attr
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High level sketch: top-down approach

DFW(lmax) ≡ �GW(lmax)

� Assume we can compute GW(lmax),

� Compute the stable set s.t. P1 can satisfy it repeatedly.

G
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High level sketch: top-down approach

DFW(lmax) ≡ �GW(lmax)

� Assume we can compute GW(lmax),

� Compute the stable set s.t. P1 can satisfy it repeatedly.

G

Stable set
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High level sketch: top-down approach

GW(lmax)

� Simply compute the best sum achievable in at most lmax steps
and check if positive.

Finally,

Theorem

In two-player one-dimension games,
(a) the fixed arbitrary window MP problem is decidable in time
polynomial in the size of the game and the window size,
(b) the fixed polynomial window MP problem is P-complete,
(c) both players require memory, and memory of size linear in the
size of the game and the window size is sufficient.
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Approach

� We prove non-primitive recursive1 (NPR) hardness

� Reduction from the termination problem in reset nets (Petri
nets with reset arcs) [Sch02]

1Cf. Ackermann function
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Reset nets

Classic Petri net (places, tokens, transitions) with added reset
arcs

� Transitions may empty a place from all its tokens

� Given an initial marking, the termination problem asks if there
exists an infinite sequence of transitions that can be fired

Looking at MP and TP through Windows Chatterjee, Doyen, Randour, Raskin 28 / 33
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From reset nets to direct bounded window games

Crux of the construction: encoding the markings

� We use one dimension for each place
� If a place p contains m tokens, then there will be an open

window on dimension p with sum value −m − 1
� Hence during a faithful simulation, all windows remain

open (you cannot consume tokens that do not exist)

P2 simulates the net

P1 checks if he is faithful

P1 wants to win the direct bounded window MP obj.

� only able to do so if P2 cheats, i.e., if all runs terminate
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The construction in a nutshell

fire

testtiresetq

out

closep

. . . . . .

ti
(I(ti ),−1)

(0,−1)

(0
q
→
−

1
,−

1
)

(0q→1,−1)

(1p→0, 1)

(−O(ti ),−1)

place p

(−m0 − 1, 0)
start

t1 t|T |

� The initial marking open
corresponding windows in all places

� P2 chooses transitions to fire, which
consume tokens

� P1 can branch or continue (and apply
reset, then output)
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The construction in a nutshell

fire

testtiresetq

out

closep

. . . . . .

ti
(I(ti ),−1)

(0,−1)

(0
q
→
−

1
,−

1
)

(0q→1,−1)

(1p→0, 1)

(−O(ti ),−1)

place p

(−m0 − 1, 0)
start

t1 t|T |

� If no infinite execution exists, at some
point, P2 must choose a transition
without the needed tokens on some
place p

� The window closes on dimension p

� By branching P1 can close all other
windows and ensure winning
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The construction in a nutshell

fire

testtiresetq
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(0q→1,−1)

(1p→0, 1)

(−O(ti ),−1)

place p

(−m0 − 1, 0)
start

t1 t|T |

� If P1 branches while P2 is honest, one
window stays open forever and he loses

� The additional dimension ensures that
P1 leaves the reset state
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Extension to bounded window objective

� More involved construction

Theorem

In two-player multi-dimension games, the bounded window
mean-payoff problem is non-primitive recursive hard.
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A new family of objectives

one-dimension k-dimension

complexity P1 mem. P2 mem. complexity P1 mem. P2 mem.

MP / MP NP ∩ coNP mem-less coNP-c. / NP ∩ coNP infinite mem-less

TP / TP NP ∩ coNP mem-less undec. - -

WMP: fixed
P-c.

mem. req.

≤ linear(|S | · lmax)

PSPACE-h.

polynomial window EXP-easy
exponential

WMP: fixed
P(|S |,V , lmax) EXP-c.

arbitrary window

WMP: bounded
NP ∩ coNP mem-less infinite NPR-h. - -

window problem

� Conservative approximation of MP/TP

� Provides timing guarantees

� Breaks the NP ∩ coNP barrier in one-dim. poly. window case

� Decidable approximation of TP in multi-dim. case

� Open question: is BW decidable in multi-dim. ?
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