Looking at Mean-Payoff and Total-Payoff through Windows

K. Chatterjee (IST Austria) L. Doyen (ENS Cachan) M. Randour (UMONS) J.-F. Raskin (ULB)

12.04.2013

Cassting kick-off meeting

Aim of this talk

1 Overview of the situation for (multi) MP and TP games
\triangleright No P algorithm known in one dimension
\triangleright In multi dimensions, MP is coNP-complete
\triangleright First contribution: TP is undecidable in multi dimensions

Aim of this talk

1 Overview of the situation for (multi) MP and TP games
\triangleright No P algorithm known in one dimension
\triangleright In multi dimensions, MP is coNP-complete
\triangleright First contribution: TP is undecidable in multi dimensions

2 Introduction of window objectives
\triangleright Conservative approximation of MP/TP
\triangleright Break the complexity barriers
\triangleright Algorithms, complexity and memory requirements
\triangleright Several flavors of the objective

1 Mean-Payoff and Total-Payoff Games

2 Total-Payoff Games in Multi Dimensions

3 Window Objectives

4 One-Dimension Fixed Window Problem

5 Multi-Dimension Bounded Window Problem

6 Conclusion

1 Mean-Payoff and Total-Payoff Games

2 Total-Payoff Games in Multi Dimensions

3 Window Objectives

4 One-Dimension Fixed Window Problem

5 Multi-Dimension Bounded Window Problem

6 Conclusion

Turn-based games

- $G=\left(S_{1}, S_{2}, E\right)$
$\square S=S_{1} \cup S_{2}, S_{1} \cap S_{2}=\emptyset, E \subseteq S \times S$
- \mathcal{P}_{1} states $=\bigcirc$
- \mathcal{P}_{2} states $=\square$

■ Plays, prefixes, pure strategies.

Integer k-dim. payoff function

- $G=\left(S_{1}, S_{2}, E, \underline{k}, \underline{w}\right)$
- $w: E \rightarrow \mathbb{Z}^{k}$

■ Play $\pi=s_{0} s_{1} s_{2} \ldots$
■ Total-payoff

$$
\underline{\mathrm{TP}}(\pi)=\liminf _{n \rightarrow \infty} \sum_{i=0}^{i=n-1} w\left(s_{i}, s_{i-1}\right)
$$

- Mean-payoff

$$
\underline{\mathrm{MP}}(\pi)=\liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{i=n-1} w\left(s_{i}, s_{i-1}\right)
$$

TP and MP threshold problems

- TP (MP) threshold problem

Given $v \in \mathbb{Q}^{k}$ and $s_{\text {init }} \in S$, \exists ? $\lambda_{1} \in \Lambda_{1}$ s.t. $\forall \lambda_{2} \in \Lambda_{2}$, $\underline{\operatorname{TP}}\left(\right.$ Outcome $\left._{G}\left(s_{\text {init }}, \lambda_{1}, \lambda_{2}\right)\right) \geq v$

Known results

	one-dimension			k-dimension		
	complexity	$\mathcal{P}_{1} \mathrm{mem}$.	\mathcal{P}_{2} mem.	complexity	\mathcal{P}_{1} mem.	\mathcal{P}_{2} mem.
MP / MP	$N P \cap$ coNP	mem-less		coNP-c. / NP \cap coNP	infinite	mem-less
$\underline{T P} / \overline{T P}$	$N P \cap$ coNP	mem-less		??	??	??

\triangleright See [EM79, Jur98, ZP96, GS09, CDHR10, VR11]
\triangleright No known polynomial time algorithm for one-dimension
\triangleright No result on multi-dimension total-payoff

1 Mean-Payoff and Total-Payoff Games

2 Total-Payoff Games in Multi Dimensions

3 Window Objectives

4 One-Dimension Fixed Window Problem

5 Multi-Dimension Bounded Window Problem

6 Conclusion

Multi-dimension TP games are undecidable

> Theorem
> The threshold problem for infimum and supremum total-payoff objectives is undecidable in multi-dimension games, for five dimensions.

Multi-dimension TP games are undecidable

Theorem

The threshold problem for infimum and supremum total-payoff objectives is undecidable in multi-dimension games, for five dimensions.
\triangleright Reduction from the halting problem for 2CMs [Min61]

Two-counter machines

- Finite set of instructions
- Two counters C_{1} and C_{2} taking values $\left(v_{1}, v_{2}\right) \in \mathbb{N}^{2}$

■ Instructions:
\triangleright Increment

$$
C_{i}++
$$

\triangleright Decrement

$$
C_{i}--
$$

\triangleright Zero test and branch accordingly

$$
\text { If } C_{i}==0 \text { do this else do that }
$$

■ W.I.o.g. if the machine stops, it stops with both counters to zero

Encoding a 2CM in a 5-dim. TP game

\triangleright TP objective (inf or sup) of threshold ($0,0,0,0,0$)
$\triangleright \mathcal{P}_{1}$ must simulate faithfully
$\triangleright \mathcal{P}_{2}$ retaliates if \mathcal{P}_{1} cheats
\triangleright At the end, \mathcal{P}_{1} wins the TP game iff the 2 CM stops

Key idea: after m steps, the TP has value $\left(v_{1},-v_{1}, v_{2},-v_{2},-m\right)$ iff the 2 CM counters have value (v_{1}, v_{2})

Instructions

- Increment C_{1}

- Decrement C_{1}

Instructions

■ Checking counter C_{1} is non-negative

$(0,1,1,1,1)$
\triangleright If \mathcal{P}_{1} cheats, he is doomed!
\triangleright Otherwise, \mathcal{P}_{2} has no interest in retaliating.

Instructions

- Checking a zero test on C_{1}

(1, $0,1,1,1$)
\triangleright If \mathcal{P}_{1} cheats, he is doomed!
\triangleright Otherwise, \mathcal{P}_{2} has no interest in retaliating.

Halting

■ If the 2 CM halts (with counters to zero w.l.o.g.)

\triangleright Thanks to the fifth dim., \mathcal{P}_{1} wins only if the machine halts.

The case is closed

				k-dimension		
	one-dimension	complexity	\mathcal{P}_{1} mem.	\mathcal{P}_{2} mem.		
$\underline{M P} / \overline{\mathrm{MP}}$	$\mathrm{NP} \cap$ coNP	mem-less	coNP-c. $/ \mathrm{NP} \cap \operatorname{coNP}$	infinite	mem-less	
$\mathrm{TP} / \overline{\mathrm{TP}}$	$\mathrm{NP} \cap \operatorname{coNP}$	mem-less	Undec.	-	-	

1 Mean-Payoff and Total-Payoff Games

3 Window Objectives

4 One-Dimension Fixed Window Problem

5 Multi-Dimension Bounded Window Problem

6 Conclusion

Motivations

- Classical MP and TP objectives have some drawbacks
\triangleright Complexity issues
\triangleright Infimum vs. supremum
\triangleright Describe what happens at the limit: no guarantee about a time frame

Motivations

■ Classical MP and TP objectives have some drawbacks
\triangleright Complexity issues
\triangleright Infimum vs. supremum
\triangleright Describe what happens at the limit: no guarantee about a time frame

■ Window objectives consider what happens inside a finite window sliding along a play
\triangleright Conservative approximation of MP/TP
\triangleright Intuition: local deviations from the threshold must be compensated in a parametrized \# of steps
\triangleright Variety of results and algorithms

Illustration: WMP, threshold zero, maximal window $=4$

Illustration: WMP, threshold zero, maximal window $=4$

Illustration: WMP, threshold zero, maximal window $=4$

Illustration: WMP, threshold zero, maximal window $=4$

Illustration: WMP, threshold zero, maximal window $=4$

Illustration: WMP, threshold zero, maximal window $=4$

Illustration: WMP, threshold zero, maximal window $=4$

Illustration: WMP, threshold zero, maximal window $=4$

Illustration: WMP, threshold zero, maximal window $=4$

Illustration: WMP, threshold zero, maximal window $=4$

Illustration: WMP, threshold zero, maximal window $=4$

Illustration: WMP, threshold zero, maximal window $=4$

Illustration: WMP, threshold zero, maximal window $=4$

Illustration: WMP, threshold zero, maximal window $=4$

Definitions

■ Given $I_{\max } \in \mathbb{N}_{0}$, good window $\mathbf{G W}\left(I_{\text {max }}\right)$ asks for a positive sum in at most $I_{\text {max }}$ steps (one window, from the first state)

- Direct Fixed Window: DFW $\left(I_{\max }\right) \equiv \square \mathbf{G W}\left(I_{\max }\right)$
- Fixed Window: $\mathbf{F W}\left(I_{\max }\right) \equiv \diamond \mathbf{D F W}\left(I_{\max }\right)$
- Direct Bounded Window: DBW $\equiv \exists I_{\text {max }}$, DFW $\left(I_{\max }\right)$

■ Bounded Window: BW $\equiv \diamond \mathbf{D B W} \equiv \exists I_{\max }, \mathbf{F W}\left(I_{\max }\right)$

Definitions

■ Given $I_{\max } \in \mathbb{N}_{0}$, good window $\mathbf{G W}\left(I_{\text {max }}\right)$ asks for a positive sum in at most $I_{\text {max }}$ steps (one window, from the first state)

- Direct Fixed Window: DFW $\left(I_{\max }\right) \equiv \square \mathbf{G W}\left(I_{\max }\right)$
- Fixed Window: $\mathbf{F W}\left(I_{\max }\right) \equiv \diamond \mathbf{D F W}\left(I_{\max }\right)$
- Direct Bounded Window: DBW $\equiv \exists I_{\max }$, DFW $\left(I_{\max }\right)$

■ Bounded Window: BW $\equiv \diamond \mathbf{D B W} \equiv \exists I_{\text {max }}, \mathbf{F W}\left(I_{\max }\right)$
\triangleright A window closes when the sum becomes positive
\triangleright A window is open if not yet closed

Examples

FW(2) is satisfied, DBW is not, MP is satisfied.

Examples

FW(2) is satisfied, DBW is not, MP is satisfied.

\triangleright MP is satisfied but none of the window objectives is.

Conservative approximation of MP ? (one-dim.)

The following are true

> Any window obj. $\Rightarrow \mathrm{BW} \Rightarrow \mathrm{MP} \geq 0$ $\mathrm{BW} \Leftarrow \mathrm{MP}>0$

Results overview

$\triangleright|S|$ the \# of states, V the length of the binary encoding of weights, and $I_{\text {max }}$ the window size.
\triangleright For one-dim. games with poly. windows, we are in P .

Results overview

	one-dimension			k-dimension		
	complexity	$\mathcal{P}_{1} \mathrm{mem}$.	\mathcal{P}_{2} mem.	complexity	\mathcal{P}_{1} mem.	$\mathcal{P}_{2} \mathrm{mem}$.
MP / $\overline{\mathrm{MP}}$	$N P \cap$ coNP	mem-less		coNP-c. / NP \cap coNP	infinite	mem-less
TP / TP	$N P \cap$ coNP	mem-less		undec.	-	-
WMP: fixed polynomial window	P-c.	mem. req.$\leq \operatorname{linear}\left(\|S\| \cdot I_{\max }\right)$		PSPACE-h. EXP-easy	exponential	
WMP: fixed arbitrary window	$\mathbf{P}\left(\|S\|, V, I_{\text {max }}\right)$			EXP-c.		
WMP: bounded window problem	NP \cap coNP	mem-less	infinite	NPR-h.	-	-

$\triangleright|S|$ the \# of states, V the length of the binary encoding of weights, and $I_{\text {max }}$ the window size.
\triangleright For one-dim. games with poly. windows, we are in P .
\triangleright No time to discuss everything. Focus.

1 Mean-Payoff and Total-Payoff Games

2 Total-Payoff Games in Multi Dimensions

3 Window Objectives

4 One-Dimension Fixed Window Problem

5 Multi-Dimension Bounded Window Problem

6 Conclusion

High level sketch: top-down approach

- $\boldsymbol{F W}\left(I_{\text {max }}\right) \equiv \diamond \mathbf{D F W}\left(I_{\text {max }}\right)$
\triangleright Assume we can compute DFW ($I_{\text {max }}$),
\triangleright Compute attractor, declare winning and recurse on subgame.

High level sketch: top-down approach

- $\boldsymbol{F W}\left(I_{\max }\right) \equiv \diamond$ DFW $\left(I_{\max }\right)$
\triangleright Assume we can compute DFW($I_{\text {max }}$),
\triangleright Compute attractor, declare winning and recurse on subgame.

High level sketch: top-down approach

- $\boldsymbol{F W}\left(I_{\text {max }}\right) \equiv \diamond \mathbf{D F W}\left(I_{\text {max }}\right)$
\triangleright Assume we can compute DFW($/_{\text {max }}$),
\triangleright Compute attractor, declare winning and recurse on subgame.

High level sketch: top-down approach

- $\boldsymbol{F W}\left(I_{\text {max }}\right) \equiv \diamond$ DFW $\left(I_{\text {max }}\right)$
\triangleright Assume we can compute DFW($/$ max $)$,
\triangleright Compute attractor, declare winning and recurse on subgame.

Subgame

High level sketch: top-down approach

- $\boldsymbol{F W}\left(I_{\text {max }}\right) \equiv \diamond$ DFW $\left(I_{\text {max }}\right)$
\triangleright Assume we can compute DFW($/$ max $)$,
\triangleright Compute attractor, declare winning and recurse on subgame.

High level sketch: top-down approach

- $\boldsymbol{F W}\left(I_{\text {max }}\right) \equiv \diamond$ DFW $\left(I_{\text {max }}\right)$
\triangleright Assume we can compute DFW($/$ max $)$,
\triangleright Compute attractor, declare winning and recurse on subgame.

High level sketch: top-down approach

- DFW $\left(I_{\text {max }}\right) \equiv \square \mathbf{G W}\left(I_{\text {max }}\right)$
\triangleright Assume we can compute $\mathbf{G W}\left(I_{\max }\right)$,
\triangleright Compute the stable set s.t. \mathcal{P}_{1} can satisfy it repeatedly.

High level sketch: top-down approach

- DFW $\left(I_{\text {max }}\right) \equiv \square \mathbf{G W}\left(I_{\text {max }}\right)$
\triangleright Assume we can compute $\mathbf{G W}\left(I_{\text {max }}\right)$,
\triangleright Compute the stable set s.t. \mathcal{P}_{1} can satisfy it repeatedly.

High level sketch: top-down approach

- DFW $\left(I_{\text {max }}\right) \equiv \square \mathbf{G W}\left(I_{\text {max }}\right)$
\triangleright Assume we can compute $\mathbf{G W}\left(I_{\text {max }}\right)$,
\triangleright Compute the stable set s.t. \mathcal{P}_{1} can satisfy it repeatedly.

High level sketch: top-down approach

- DFW $\left(I_{\text {max }}\right) \equiv \square \mathbf{G W}\left(I_{\text {max }}\right)$
\triangleright Assume we can compute $\mathbf{G W}\left(I_{\text {max }}\right)$,
\triangleright Compute the stable set s.t. \mathcal{P}_{1} can satisfy it repeatedly.

High level sketch: top-down approach

- DFW $\left(I_{\text {max }}\right) \equiv \square \mathbf{G W}\left(I_{\text {max }}\right)$
\triangleright Assume we can compute $\mathbf{G W}\left(I_{\text {max }}\right)$,
\triangleright Compute the stable set s.t. \mathcal{P}_{1} can satisfy it repeatedly.

High level sketch: top-down approach

- GW($\left.I_{\max }\right)$
\triangleright Simply compute the best sum achievable in at most $I_{\text {max }}$ steps and check if positive.

High level sketch: top-down approach

- GW ($/$ max $)$
\triangleright Simply compute the best sum achievable in at most $I_{\text {max }}$ steps and check if positive.
- Finally,

Theorem

In two-player one-dimension games,
(a) the fixed arbitrary window MP problem is decidable in time polynomial in the size of the game and the window size, (b) the fixed polynomial window MP problem is \mathbf{P}-complete, (c) both players require memory, and memory of size linear in the size of the game and the window size is sufficient.

1 Mean-Payoff and Total-Payoff Games

2 Total-Payoff Games in Multi Dimensions

3 Window Objectives

4 One-Dimension Fixed Window Problem

5 Multi-Dimension Bounded Window Problem

6 Conclusion

Approach

\triangleright We prove non-primitive recursive ${ }^{1}$ (NPR) hardness
\triangleright Reduction from the termination problem in reset nets (Petri nets with reset arcs) [Sch02]
${ }^{1} \mathrm{Cf}$. Ackermann function

Reset nets

- Classic Petri net (places, tokens, transitions) with added reset arcs

\triangleright Transitions may empty a place from all its tokens

Reset nets

■ Classic Petri net (places, tokens, transitions) with added reset arcs

\triangleright Transitions may empty a place from all its tokens
\triangleright Given an initial marking, the termination problem asks if there exists an infinite sequence of transitions that can be fired

From reset nets to direct bounded window games

- Crux of the construction: encoding the markings
\triangleright We use one dimension for each place
\triangleright If a place p contains m tokens, then there will be an open window on dimension p with sum value $-m-1$
\triangleright Hence during a faithful simulation, all windows remain open (you cannot consume tokens that do not exist)

From reset nets to direct bounded window games

- Crux of the construction: encoding the markings
\triangleright We use one dimension for each place
\triangleright If a place p contains m tokens, then there will be an open window on dimension p with sum value $-m-1$
\triangleright Hence during a faithful simulation, all windows remain open (you cannot consume tokens that do not exist)
- \mathcal{P}_{2} simulates the net
- \mathcal{P}_{1} checks if he is faithful
- \mathcal{P}_{1} wants to win the direct bounded window MP obj.
\triangleright only able to do so if \mathcal{P}_{2} cheats, i.e., if all runs terminate

The construction in a nutshell

\triangleright The initial marking open corresponding windows in all places
$\triangleright \mathcal{P}_{2}$ chooses transitions to fire, which consume tokens
$\triangleright \mathcal{P}_{1}$ can branch or continue (and apply reset, then output)

The construction in a nutshell

\triangleright If no infinite execution exists, at some point, \mathcal{P}_{2} must choose a transition without the needed tokens on some place p
\triangleright The window closes on dimension p
\triangleright By branching \mathcal{P}_{1} can close all other windows and ensure winning

The construction in a nutshell

\triangleright If \mathcal{P}_{1} branches while \mathcal{P}_{2} is honest, one window stays open forever and he loses
\triangleright The additional dimension ensures that \mathcal{P}_{1} leaves the reset state

Extension to bounded window objective

\triangleright More involved construction

Theorem

In two-player multi-dimension games, the bounded window mean-payoff problem is non-primitive recursive hard.

1 Mean-Payoff and Total-Payoff Games

2 Total-Payoff Games in Multi Dimensions

3 Window Objectives

4 One-Dimension Fixed Window Problem

5 Multi-Dimension Bounded Window Problem

6 Conclusion

A new family of objectives

		e-dimension			ension	
	complexity	\mathcal{P}_{1} mem.	$\mathcal{P}_{2} \mathrm{mem}$.	complexity	\mathcal{P}_{1} mem.	\mathcal{P}_{2} mem.
MP / $\overline{\mathrm{MP}}$	$N P \cap$ coNP	mem-less		coNP-c. / NP \cap coNP	infinite	mem-less
TP / TP	$N P \cap$ coNP			undec.	-	-
WMP: fixed polynomial window	P-c.	$\begin{gathered} \text { mem. req. } \\ \leq \operatorname{linear}\left(\|S\| \cdot I_{\max }\right) \end{gathered}$		PSPACE-h. EXP-easy	exponential	
WMP: fixed arbitrary window	$\mathbf{P}\left(\|S\|, V, I_{\text {max }}\right)$			EXP-c.		
WMP: bounded window problem	NP \cap coNP	mem-less	infinite	NPR-h.	-	-

\triangleright Conservative approximation of MP/TP
\triangleright Provides timing guarantees
\triangleright Breaks the NP \cap coNP barrier in one-dim. poly. window case
\triangleright Decidable approximation of TP in multi-dim. case
\triangleright Open question: is BW decidable in multi-dim. ?

R K. Chatterjee, L. Doyen, T.A. Henzinger, and J.-F. Raskin. Generalized mean-payoff and energy games.

In Proc. of FSTTCS, LIPIcs 8, pages 505-516. Schloss

Dagstuhl - LZI, 2010.
(R. Ehrenfeucht and J. Mycielski.

Positional strategies for mean payoff games.
Int. Journal of Game Theory, 8(2):109-113, 1979.
围 T. Gawlitza and H. Seidl.
Games through nested fixpoints.
In Proc. of CAV, LNCS 5643, pages 291-305. Springer, 2009.
圊 M. Jurdziński.
Deciding the winner in parity games is in UP \cap co-UP.
Inf. Process. Lett., 68(3):119-124, 1998.
(M.L. Minsky.

Recursive unsolvability of Post's problem of "tag" and other topics in theory of Turing machines.
The Annals of Mathematics, 74(3):437-455, 1961.
㨁 P. Schnoebelen.
Verifying lossy channel systems has nonprimitive recursive complexity.
Inf. Process. Lett., 83(5):251-261, 2002.
围 Y. Velner and A. Rabinovich.
Church synthesis problem for noisy input.
In Proc. of FOSSACS, LNCS 6604, pages 275-289. Springer,
2011.
(U. Zwick and M. Paterson.
The complexity of mean payoff games on graphs.
Theoretical Computer Science, 158:343-359, 1996.

