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Abstract

In this paper, we focus on the resource perspective of process mining and

more precisely on the clustering of resources sharing the same behaviors.

This problematic was addressed through the use of a well-known facility

layout method: cell formation. We propose an algorithm combining the

resource perspective and cell formation approach to make the best use of their

respective features. We wish to identify both subgroups of resources that

perform similar activities and subgroups of activities performed by common

resources. This new hierarchical approach provides new insights into the

clustering problematic because of its bi-dimensional clustering. Experiments

are considered on synthetic and real data.
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1. Introduction1

Process mining is the science developed to model, analyze and enhance

[1],[2] processes, from their real execution, through particular perspectives.

The case perspective and the organizational perspective are two of the most

commonly used. The first focuses on the actions performed (the activities)

through the process from the case viewpoint, i.e. the point of view of its

purpose. This perspective represents, for example, all the medical examina-

tions undergone by a patient, all the forms filled out by a customer or all

the steps required in the manufacturing of a product. The second focuses

on a more human-centered point of view [3],[4] which aims to consider the

resources, i.e. to describe what happens behind the process itself by consid-

ering all those who are involved in the actions. This perspective highlights

how the organization that harbors the processes is structured and what the

relationship between the actors is.

One of the main questions related to process mining concerns the clus-

tering in the broadest sense of the term. The case perspective handles this

through the extraction of sub-processes and the mining of activity clusters.

These sub-processes are frequent groups of activities, ordered similarly, ap-

pearing frequently in the process. They can be discovered using trees combin-

ing activities and operators [5] or heat maps based on intervals of activities

called sessions [6]. Activity clusters [7] are closer to common clustering ap-

1This version of the article has been accepted for publication, after peer review and is

subject to Springer Nature’s AM terms of use, but is not the Version of Record and does

not reflect post-acceptance improvements, or any corrections. The Version of Record is

available online at: http://dx.doi.org/10.1007/s10489-022-03457-9
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proaches, grouping together activities using a metric based on the proximity

between them. The purpose of these approaches is to aggregate activities

sharing common features (intrinsic features, relationship between them, per-

formed by common resources, etc) to provide modeling with a higher level

of granularity. This allows for a better understanding and an easier visu-

alization of complex processes. The organizational perspective focuses on

highlighting social networks of resources by identifying the links between the

resources and grouping these with common links.The key point of these ap-

proaches is to define appropriately what a link is. This link can be a metric

[4], such as handover-of-work counting the successions between the resources

in executions of the process, or a more complex approach [8] combining the

successions between the resources (being applicable in the optimization of

flows between staff members in an emergency room), the frequency of these

successions and the distance between these successions. Such a network

provides relevant information about the key resources and the interactions

between them. Another focus of this perspective is trace clustering where

resources, represented by a set of features (frequency of the activities [9],

sub-processes [10], time, etc), are grouped into homogeneous clusters, that

could be build iteratively [11], with the purpose of identifying different com-

munities of resources. Trace clustering has many applications in the medical

field, for example to highlight treatments by grouping patients performing

the same process [9] or to optimize the organization of services by grouping

together personnel acting in the same way [10].

The first perspective focuses on the activities whereas the second focuses

on the resources, two distinct elements of process mining. However, cluster-
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ing, whether focused on the activities or on the resources, is part of the main

question related to both perspectives. The clustering is used to group people

acting similarly or activities performed by the same people with the purpose

to save resources (money, space, energy,...). Those clusterings allow to op-

timize the people related to the process or the process itself. A choice has

to be made between the human optimization and the production optimiza-

tion. Activities are similar if they are performed by similar resources and

resources are similar if they perform similar activities. The purpose of this

paper is to propose an approach combining the two perspectives by simul-

taneously clustering the activities and the resources. The main idea being

that activities are similar if they are performed by the same resources and

that resources performing the same activities are similar too. By combin-

ing both clustering, our approach allows a human-based optimization and a

production-based optimization of the process simultaneously.

Let’s assume an example considering a sales process representing the ac-

tivities performed by sales assistants. There are two kinds of salespeople

characterized by different sales techniques and, obviously, two final outputs:

the sale is or is not completed. To be more efficient, the process owner would

like to know, as soon as possible in the execution of the process, if the out-

put will be positive and what the most effective sales technique is. Based

on a half execution of the process, current approaches are able to differen-

tiate processes with positive outputs from processes with negative outputs

based on the sequence of activities performed. However, those approaches

do not allow a direct conclusion of which kind of sales technique is linked

to the outputs. Our proposal provides a bi-dimensional cluster linking the
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outputs of the process and the different kinds of salespeople. In addition to

the results provided by current approaches or classical classifying methods,

our proposal provides a better understanding of these results by linking them

to their cause.

Our contribution, through this paper, is to:

1. Adapt the theoretical concepts of Cell Formation methods into a new

methodology designed to link the case perspective with the resource

perspective in process mining. The proposed methodology allows a

new and improved understanding of the process more suited than other

bi-dimensional clustering approaches based mainly on attributes and

features.

2. Present how to implement the methodology and how to optimize it.

3. Validate the methodology using both synthetic and real-life datasets

by comparing obtained results to a ground-truth.

The remainder of the paper is organized as follows. The next section

explains the proposed approach and its key points through a running exam-

ple. Section 3 presents the results of the approach on three datasets and

analyzes the key parameters. Finally, last section concludes the paper by

talking about future perspectives.

2. Hierarchical Cell Formation Clustering Approach

The proposed approach and the concepts used will be explained using

a running example. The running example is described in Subsection 2.1.

Subsection 2.2 describes our proposal based on a cell formation algorithm.

This Subsection explains our approach and is divided into a first part on the
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normalization of the input data, a second part on the cell formation algorithm

itself and a last part describing the hierarchical process of our method.

It is expected that our algorithm can create two-dimensional clusters

efficiently and quickly. To meet these expectations, the algorithm have to:

• be robust to heterogeneous frequency distributions.

• be able to distinguish resources with similar but different behaviors.

• offer the possibility to provide different levels of granularity.

To fulfill all these criteria, we have based ourselves on recognized al-

gorithms and methods that are widely used and have a strong theoretical

foundation. As we will describe in more detail in this section:

• the DCA algorithm is efficient and fast.

• the hierarchical approach allows to control the granularity of the results.

• its combination with a normalization at each step allows to be both

robust and sensitive to the frequency distribution.

The use of these confers a theoretical legitimacy to our algorithm which will

be proven through the experiments presented in this section.

There are other approaches allowing bi-clustering with solid theoretical

foundations based on other techniques and presenting high performances

[12],[13],[14]. But in the context of process mining, with the expected speci-

ficities described above, the proposed approach is the only one offering the

desired flexibility and quality.
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2.1. Running Example

This section is based on a process representing a repair procedure, com-

posed of eight activities, for which the logs are provided by ProM Tutorial

[15]. Three kinds of resources (solver, tester and system) are involved in

this process. It represents the repair of a defective product. After the reg-

istration of the product, it is analyzed. A repair sequence is then applied

consisting of a choice between a simple or a complex repair. Whatever the

kind of repair, the product is again tested, if this test fails, the repair has

to be re-performed by going back to the analysis of the defect. In parallel

of this repair procedure, the user is informed and both this information and

the good completion of the repair has to be performed before archiving it.

This process model the three main situations represented by Petri nets: the

choice (between the kinds of repair), the concurrency (between the repair

procedure and the information procedure) and the loop (if the repair pro-

cedure is restarted). The whole process is represented on Figure 1 using a

Petri net. Through this example, we will show how our approach is able to

identify the three different kinds of resources and the activities that make

them different from each other.

2.2. Hierarchical Cell Formation Algorithm

This Subsection shows an overview of our proposal followed by a more

detailed description of its parts as our approach is a combination of three

elements: an adapted normalization, a cell formation algorithm and a hier-

archical clustering approach. Figure 2 describes the global conduct of the

algorithm.
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Figure 1: Running example process (A: register, B: analyze defect, C: repair simple, D:

repair complex, E: inform user, F: test repair, G: restart repair, H: archive repair). The

grey activities are performed by testers, the white activities are performed by solver and

the activities in bold are performed by systems.

The input data are a set of activities performed by a set of resources

extracted directly from the logs. The first step of our approach provides

a two-dimensional matrix where the rows represent the resources and the

columns the activities performed. The cells of this matrix are the frequencies

of occurrence of a particular activity by a particular resource i.e. the cell (i,j )

indicates how many times the resource i performs the activity j. The cell

formation algorithms are designed to deal with binary matrices, therefore

a normalization has to be used. The second step is then to normalize the

frequencies by ensuring the best representation of the difference between

them. The third step performs the cell formation itself. Thereupon, the

clusters are extracted and the original frequencies are restored. The last step

is to apply a top-down hierarchical procedure and go back the normalization

step. This procedure consists of extracting clusters which are the results of

the previous steps and reapplying all the steps to these clusters. This allows

more accurate clusters to be obtained at each iteration.
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Figure 2: Flow chart of the proposed approach

2.2.1. Normalization

Classical cell formation algorithms [16, 17] are designed to be used in

manufacturing layout. Their original purpose is to identify which machines

are involved in the production of which parts to regroup them and create

efficient production units. They are only focused on the presence or not of

the parts/machines in a particular production process. As such, they take as

input a binary matrix where the columns represent the parts and the rows

the machines. The value 1 is placed in the cell (i,j ) if machine i is in the

production process of part j, otherwise, the cell takes the value 0. Here,

as exposed on Table 1, a cell represents not only if a resource performs an

activity but how many times the activity is performed. Accordingly, our

approach has to propose a normalization allowing it to take into account the
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Table 1: Frequency matrix of the running example

Resource A B C D E F G H

System 1 20 0 0 0 15 0 10 11

Tester 1 0 5 0 0 0 4 0 0

Solver 1 0 0 4 6 0 0 0 0

System 2 12 0 0 0 30 0 20 15

Tester 2 0 7 0 0 0 3 0 0

Solver 2 0 0 1 2 0 0 0 0

different frequencies.

The distribution of frequencies is highly biased by the large number of

zeros representing the non-completion of activities, meaning that a normal-

ization using the mean of all the frequencies is then irrelevant. The chosen

normalization is based on a proportion of 1 to ensure the best trade-off be-

tween a fast convergence and a minimization of the loss of information. Our

approach transforms a percentile of the values into 0 and all the others in

1 as depicted in Table 2. In this table, the eight highest values were trans-

formed into 1 and the forty remaining into 0, this corresponds to the 5/6 th

percentile. Subsection 3.3 explains how to determine the optimal value of

this percentile.

2.2.2. Cell Formation

Because of the hierarchical top-down approach used, the algorithm is

performed multiple times. Indeed, as detailed in the next Subsection, at
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Table 2: Normalized frequency matrix of the running example

Resource A B C D E F G H

System 1 1 0 0 0 1 0 1 1

Tester 1 0 0 0 0 0 0 0 0

Solver 1 0 0 0 0 0 0 0 0

System 2 1 0 0 0 1 0 1 1

Tester 2 0 0 0 0 0 0 0 0

Solver 2 0 0 0 0 0 0 0 0

each iteration, the frequency matrices are divided into two and then the

number of executions of the cell-formation algorithm is doubled. Therefore,

a simple and time/memory not-consuming algorithm is more suitable than

a complex and more accurate algorithm. The chosen algorithm is the Direct

Clustering Algorithm (DCA) [16]. This algorithm is based on a succession of

permutations of the rows and columns to create sub-matrices of 1.

The steps of the DCA are as follows:

1. Computing the rank (RR) of each row by summing all the positive

entries of this row.

2. Rearranging the rows of the matrix (top to bottom) in descending order

of the RR.

3. Computing the rank (RC) of each column by summing all the positive

entries of this column.

4. Rearranging the columns of the matrix (left to right) in ascending order
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Resource A E G H B C D F

System 1 1 1 1 1 0 0 0 0

System 2 1 1 1 1 0 0 0 0

Tester 1 0 0 0 0 0 0 0 0

Tester 2 0 0 0 0 0 0 0 0

Solver 1 0 0 0 0 0 0 0 0

Solver 2 0 0 0 0 0 0 0 0

Figure 3: Normalized frequency matrix of the running example

of RC.

5. Starting with the first column, transferring to the top the rows which

have a positive entry for this column. Repeating this for the next

column until all the rows are rearranged.

6. Starting with the first row, transferring to the left-most position the

columns which have a positive entry for this row. Repeating this for

the next row until all the columns are rearranged.

7. If there are no changes between step 5 and step 6: STOP otherwise go

to step 4.

Figure 3 presents the results of the algorithm based on the normalized

frequency matrix. It highlights a sub-matrix containing the activities A, E,

G and H and the resources System 1 and System 2. It may be inferred that

both of these resources mainly perform these four activities.
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2.2.3. Hierarchical Approach

The last step is the hierarchical top-down procedure where the clusters

created by the cell formation algorithm are extracted from the initial matrix

and each of them goes back to the normalization step as described in Figure

4. This Figure represents the first iteration of the hierarchical approach.

The key point of this approach is to determine how to extract the sub-

matrices from the outputs of the cell-formation algorithm. A cut is performed

to divide the results of the cell formation in two. At each iteration of the

algorithm, the cell-formation is then performed 2iteration−1 times.

This cut is again a trade-off between a fast convergence and a minimiza-

tion of the loss of information which, will be discussed in Subsection 3.4.

2.3. Complexity

Each of the previously exposed step of the approach has its own complex-

ity. The complexity of the normalization, regardless the hierarchical step, for

an initial input matrix composed of R rows and C columns, is O(C*R). The

complexity of the direct clustering algorithm itself is O(RC2+R2C). The

complexity of the hierarchical step is related to C and R. The algorithm can

be performed at most min(R,C), the global complexity of the algorithm is

then O(R2C2).

The experiments were carried out on a processor Intel Core i7-7600U CPU

2.80GHz and the following results are the mean times after 20 runs of the

algorithm for each dataset:

• Hospital Dataset: 112 seconds

• Review Dataset: 33 seconds
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Resource A E G H B C D F

System 1 1 1 1 1 0 0 0 0

System 2 1 1 1 1 0 0 0 0

Tester 1 0 0 0 0 0 0 0 0

Tester 2 0 0 0 0 0 0 0 0

Solver 1 0 0 0 0 0 0 0 0

Solver 2 0 0 0 0 0 0 0 0

Resource A E G H

System 1 1 1 1 1

System 2 1 1 1 1

Resource B C D F

Tester 1 0 0 0 0

Tester 2 0 0 0 0

Solver 1 0 0 0 0

Solver 2 0 0 0 0

Resource B C D F

Tester 1 5 0 0 4

Tester 2 7 0 0 3

Solver 1 0 4 6 0

Solver 2 0 1 2 0

Resource A E G H

System 1 20 15 10 11

System 2 12 30 20 15

Figure 4: First iteration of the hierarchical ordered normalized frequency matrix of the

running example

• Repair Dataset: 38 seconds

As expected, the execution times are are not related to the size of the datasets

but to the number of resources/activities.
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3. Experiments and Discussions

This section exposes the results of our approach and the setup of its key

parameters. The next subsection describes the three datasets used. Sub-

section 3.2 presents how the results are evaluated. Subsections 3.3 and 3.4

discuss the impact of two key parameters and how to determine their opti-

mal values. Finally, Subsection 3.5 presents a qualitative and quantitative

analysis of the results.

3.1. Presentation of the datasets

To validate our approach, three datasets will be used. The first is a real-

life medical dataset whereas the two last are synthetic datasets [15] which

were not designed to be used in the organizational perspective.

The three datasets describe the following processes:

• Hospital Dataset: this dataset comes from the radiation oncology de-

partment of a Belgian hospital over two years. The dataset consists

of 3,058 treatments containing 29,019 activities performed by 30 re-

sources. There are three kinds of resources performing different activi-

ties: 15 nurses, 9 physicists and 6 doctors. The process of this radiation

oncology department has clear procedures and well-defined activities.

There are 11 activities describing the preparation of the radiotherapy

itself. There is a simulation stage followed by a computation stage

for the parameters and several activities concerning the coordination

between the resources.

• Review Dataset [15]: this dataset comes from a scientific paper review

process. The dataset consists of 100 submission containing 2297 activ-
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ities performed by 11 resources. The resources can be separated into

four classes of 2, 7, 1 and 1 people.

• Repair Dataset [15]: this dataset comes from the process of the running

example. The dataset consists of 1,104 instances containing 11,855 ac-

tivities performed by 13 resources. There are 3 main kinds of resources:

6 testers, 6 solvers and 1 system. The solvers can be divided into two

different subgroups of 3 solvers performing close but different kinds of

activities.

3.2. Metrics

The results of the algorithm have to be evaluated in terms of correctness

and efficiency. The algorithm has to be efficient and converge as soon as

possible to allow a clear representation of the results. On the other hand, the

algorithm has to be able to distinguish close clusters of resources/activities

and provide results as correct as possible.

Contrary to resources, the ground-truth on the activities is not available.

As a consequence, only the precision and recall concerning the resources (r-

precision and r-recall) could be computed. The r-precision related to a class

of resource i is defined as:

r − precision(i) = nii

n.i

where nij is the number of resources coming from the class i in cluster j.

n.i represents all the resources in cluster i. The r-recall related to a class of

resources i is defined as:

r − recall(i) = nii

ni.
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where ni. represents all the resources coming from class i. The global value

for a particular clustering is obtained by averaging all the class values. Based

on these two values, the F-measure is computed by:

F −Measure = 2∗r−precision∗r−recall
r−precision+r−recall

.

To be independent of the efficiency, the F-Measure is calculated for each step

(F-Measures) and the best value is kept as final result. This value represents

an indicator of the correctness of the resources regardless to the efficiency of

the algorithm. The correctness of the clustering of the activities can only be

evaluated qualitatively, the ground-truth not being available.

To evaluate the efficiency of the algorithm, the number of steps to reach

the best correctness will be computed (ncorr) i.e. the number of steps at

which the F-Measure is computed. This number allows us to measure how

fast the algorithm reaches the best result from a correctness point of view.

The global number of steps (nsteps) before the completion of the algorithm is

also computed.

3.3. Normalization Parameter

The normalization of occurrences consists of replacing a percentile (percnorm)

of the values by 0 and the others by 1. To determine the best value of

percnorm, the algorithm was performed multiple times on all the datasets

with different values of the parameter while keeping the other parameters

unchanged.

Figure 5 shows the evolution of the global F-Measure and of the F-

Measure1 at the first step regarding to the percnorm for the hospital dataset.

We see that under a percentile, the values are constant due to the fact that
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there are a lot of zeros in the matrix. If percnorm is lower than the percentage

of zero cells of the matrix, all the positive cells are set to 1 and percnorm is

no longer relevant.

A high value of percnorm induces a decrease of the correctness of the

results. This can be explained by the fact that two completely different

resources or activities cannot be differentiated because the normalization is

too strong and almost all the frequencies are set to 0.

90th75th50th25th10th

0.2

0.4

0.6

0.8

1

percnorm

F-Measure

F-Measure
F-Measure1

Figure 5: F-Measure and F-Measure1 for the hospital dataset

Figure 6 presents the number of steps performed before reaching the best

F-Measure and the total number of performed steps for the hospital. ncorr

and nsteps decrease with the increase of percnorm, indeed, a higher percnorm

reduces the differentiation between the frequencies which are, in most cases,

equal to zero. Once more, under a percentile, the results are equal.

The results for both the review and repair datasets are not relevant be-
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Figure 6: nsteps and ncorr for the hospital dataset

cause the algorithm provides a perfect F-Measure at the same step regardless

of the percnorm in a range between the 10th and the 90th percentile. The-

ses datasets are not complex enough to provide relevant information on the

percnorm. The conclusion of the previous results is that the chosen percnorm

is the 75th percentile which is a high enough value to avoid all the positive

values being set to 1 and low enough to avoid that completely different re-

sources were represented by the same values. This result is dependent on

the datasets used, therefore one of the purposes of this section is to identify

the way forward to compute percnorm. A more robust way to determine the

percnorm is to consider the 50th percentile of the non-zero value. This allows

us to have results independent of the sparseness of the input matrix.

19



3.4. Separation Parameter

The separation of a matrix into two submatrices is not, in most cases, as

obvious as described on Figure 3. Figure 7 exposes a more complex but real-

istic example where the separation of the initial matrix is harder to achieve

than the case in Figure 3.

Resource A E G H B C

Resource 1 1 1 1 1 0 0

Resource 2 1 1 1 1 0 0

Resource 3 0 0 1 1 1 0

Resource 4 0 0 1 1 1 0

Resource 5 0 0 0 0 1 1

Resource 6 0 0 0 0 1 1

Figure 7: Normalized frequency matrix of a complex example

Our algorithm is based on a separation using a threshold corresponding

to the number of different cells. For each row and for each column, from

the top-left corner to the right-bottom corner of the matrix, the number of

different cells is computed, and when the threshold is reached, the separation

is performed. A threshold of three for the rows and columns in the example

of Figure 7 will extract the resources 1 and 2 and the activities A, E , G

and H. This threshold can also be expressed in terms of percentage applied

to the global number of rows/columns rather than directly as a number of

rows/columns. A threshold on both rows and columns of 50% applied to

the example of Figure 7 will provide the same results as previously. This

formulation allows the algorithm to be scalable.
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Based on our datasets, we have to determine the best value of this thresh-

old. Multiple values of this percsep on the three datasets with percnorm equal

to the 75th percentile were applied. As described in Figure 8, extreme values

provide bad results. When the value of percsep is too low, this does not al-

low the algorithm to differentiate close rows/columns, only perfectly similar

rows/columns are clustered together. When the value of percsep is too high,

this leads to a situation where all the rows/columns look similar and this

makes the algorithm inefficient.

10% 25% 50% 75% 90%

0.6

0.7

0.8

0.9

1

percsep

F-Measure

hospital
review
repair

Figure 8: F-Measure for the three datasets

Percsep also has a logical direct impact on nsteps, as shown in Figure 9.

The decrease of nsteps follows the increase of percnorm because the more the

algorithm detect rows/columns which seem different the higher the number

of iterations to complete the algorithm is.
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Figure 9: nsteps for the three datasets

The chosen value for percsep is 50% which is the best trade-off between

the efficiency of the algorithm and its correctness.

3.5. Results

Considering percnorm = 50th percentile when the non-zero values and

percsep is 50%, this subsection presents the results of the clustering for the

three datasets and analyzes them qualitatively and quantitatively.

3.5.1. Repair Dataset

Figure 10 shows that the final result of our approach is similar to the

theoretical result extracted from the running example. The F-Measure is

equal to 1 after 4 iterations, the first iteration distinguishes the system and

the humans workers. The second iteration is able to separate the solvers from
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the testers. The third iteration identifies, for the solvers, the two different

kinds among the humans workers. The fourth iteration being equal to the

previous one for the four clusters, the algorithm stops.

Resource A E G H B F C D

System 1 X X X X

Tester 1 X

Tester 2 X

Tester 3 X

Tester 4 X

Tester 5 X

Tester 6 X

Solver 1 X

Solver 2 X

Solver 3 X

Solver 4 X

Solver 5 X

Solver 6 X

Figure 10: Final result of the algorithm on the Repair Dataset

Referring to the caption of Figure 1, the validation of the results concern-

ing the clustering of the activities can be carried out. We can extrapolate

that an F-Measure computed using the activities and not the resources will
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also be equal to 1. Although this dataset is relatively simple, our approach

correctly clusters both resources and activities with high efficiency.

3.5.2. Review Dataset

The F-Measure of the results of this dataset, is also equal to 1 which

means that, from the resource point of view, the ground-truth is correctly

identified. There are four clusters and, from the activities point of view, they

regroup:

• for the 1st cluster: get reviews 1, get reviews 2 , get reviews 3 and get

reviews X.

• for the 2nd cluster: time-out 1, time-out 2, time-out 3 and time-out X.

• for the 3nd cluster: invite reviewers, invite additional reviewers, collect,

accept and reject.

• for the 4nd cluster: decide

Although the ground-truth is not available for the activities, this list

indicates that the clusters are consistent. This dataset highlights the im-

provement brought by our proposal. The 11 resources are identified only by

their names (Mike, Ann, Pete, etc). The classical approaches described in

the introduction are able to identify the four clusters of resources and the

four clusters of activities, but our method is able to conclude that Wil de-

cides or that Mike and Anne invite the reviewers, collect, accept and reject.

It was possible to identify that Mike and Ann work on the same activities

but now, among all the activities they perform, it is possible to extract who
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in particular and to identify which activities distinguish them from other

resources.

3.5.3. Hospital Dataset

This dataset is the most complex because, even though the resources are

correctly identified, several activities are performed by resources coming from

different kinds of resources. For example, if an activity A is performed equally

by nurses and doctors, even if the algorithm is able to correctly identify

the cluster of the doctors and the cluster of the nurses, activity A will be

attributed to one of them and will decrease the quality of the results. Another

possibility is that the created cluster regroups all the resources performing

activity A, this situation leads to a decrease in the F-Measure and explains

why it is equal to 0.8.

This F-Measure is slightly lower than the results of the classical ap-

proaches considering the identification of resource clusters but, again, our

approach proposes additional information by summing clustering as well as

the relevant activities linked to these resources.

3.6. Discussion

The previous paragraphs highlight the key points of our method and

attest is efficiency from a quantitative point of view on multiple complex

datasets.

Based on these paragraphs, we can conclude that our method :

• allows to cluster resources and activities simultaneously providing re-

sults close to the ground-truth.
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• is robust to outliers (infrequent performed activities) being based on

multiple normalization of the inputs.

• provides an interpretation of the results improved by using different

levels of granularity allowed by the hierarchical approach.

In addition to this, one of our main purpose is to improve the effectiveness

of the information obtained from a qualitative point of view. Even if the

know-how of an expert domain is required for each different datasets, several

trivial improvements could be observed as for the review dataset where our

approach identifies clearly and simultaneously the different roles and tasks

of the process.

Table 3: Comparison between several clusterings for the hospital dataset

Clustering F-Measure

DCA hierarchical approach 0.8

Euclidean distance 0.52

Manhattan distance 0.5

Pearson distance 0.53

Chebyshev distance 0.4

Table 3 is comparing our approach to four well-known distances used for

the clustering with a classical algorithm (K-Means), using the F-Measure.

This comparison is based on the ground-truth concerning the activities, the

only available, of the hospital dataset. Moreover to improve the effectiveness
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of the information obtained by a two dimensional clustering, the quality of

the clustering in a single way is also clearly improved.

4. Conclusion

The purpose of this paper was to be able to connect the organizational

perspective and the case perspective through the clustering issue by develop-

ing an approach simultaneously clustering the resources and the activities.

Based on a realistic example, the key points of the developed algorithm

were introduced: the extraction of the frequencies from the logs, the nor-

malization of the data, the cell formation algorithm and the top-down hier-

archical procedure. Each of these concepts being commonly frequently used

and with multiple variants, a major contribution of this paper was to com-

bine them, to choose and motivate the most suitable implementation and to

effectively set them up.

The results show that from a single point of view (the resources or the

activities) our approach is equal or relatively close to the existing approaches

but, combining both points of view provides a significantly higher explana-

tory power.

Combining two perspectives enhances the analysis of the processes, there-

fore, future research taking into account additional perspectives in the clus-

tering will be envisaged.

Applying our proposal to three datasets coming from different fields, with

different features and with different levels of complexity confirms than our

approach highly improves the understanding of the considered processes.
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