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Despite consequential successes . . .
Offer a geometrical explanation of gravitational process [elegant]
Allow to explain many phenomena :

1 Mercury perihelion problem
2 Existence and shape of gravitational waves : GW150914 (2016)
3 Gravitational lensing : Event Horizon telescope (2019)

[many experimental checks]
. . . there are unexplained phenomena within General Relativity (GR) :

Origin and value of the cosmological constant
Low intensity of gravitational interaction
Existence of singularities within spacetime
Origin and composition of dark matter and dark energy
Accelerated expansion of the universe

Not all of them reduces to quantum correction problems !
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Introduction : How should we modify general relativity ?

GR presents certain interesting properties among which :

1 4-dimensional spacetime

1 for time + 3 for space

2 All degrees of freedom are encoded in the metric g

(
Differential manifoldM + Lorentzian metric g + associated

Levi-Civita connection Γρµν (g)
)
= Spacetime (M, g)

3 Covariant equations (diffeomorphisms invariance)

Equations between tensorial quantities
↔ equivalence of all physical observers

4 Equations are second order non-linear partial derivative equations

Technical requirement. (N.B. Useful to avoid the presence of ghosts)
� Challenge
� Keep
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Introduction : How should we modify general relativity ?

One interesting way to modify GR is to consider that the unrated
phenomena are due to unknown degrees of freedom (that can be
interpreted as new particles or as a new component in the description of
gravity).
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Also experimentally motivated since the Brout-Englert-Higgs boson’s
discovery (CERN 2012)
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Introduction : Why not considering the simplest case ?

Why not just using LEKG = κ (R− 2Λ)− 1
2∇µφ∇

µφ− V (φ) ?
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Introduction : Why not considering the simplest case ?

No Scalar-Hair Theorem (Schematically)
Consider an asymptotically flat black hole spacetime

Hypothesis 1 : (Symmetries of spacetime)

Hypothesis 2 : (Symmetries of the scalar field)

Hypothesis 3 : (Coupling condition)

Hypothesis 4 : (Energetic condition)

Then, the scalar field must be trivial : φ (xµ) = φ0, ∀xµ.

See [Herdeiro and Radu, 2015] for a review.
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Introduction : Why not considering the simplest case ?
No Scalar-Hair Theorem (Example; due to Bekenstein)
Consider an asymptotically flat black hole spacetime

Hypothesis 1 : (Symmetries of spacetime)
The spacetime is stationary
Hypothesis 2 : (Symmetries of the scalar field)
The scalar field shares the spacetime symmetries.
Hypothesis 3 : (Coupling condition)

S =
∫
M

[
F (gµν , ∂αgµν , . . . )−

1
2∇µφ∇

µφ− V (φ)
]√
−g dnx

Hypothesis 4 : (Energetic condition)
Ex : φV ′ (φ) ≥ 0 ∀φ, with V ′ (φ) = dV/dφ, & φV ′ (φ) = 0 for some
discrete values of φ, say φi.

Then, the scalar field must be trivial : φ (xµ) = φ0, ∀xµ.

Note : In general, the proof makes no use of the Einstein’s equations.
It just uses the scalar field equation defined thanks to hypothesis 3.
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Horndeski

“What is the most general theory (arising from a variational principle)
including a single real scalar field, a single metric tensor with its

Levi-Civita connection and giving second order Euler-Lagrange equation ?”

Gregory Walter Horndeski (1970s)
m

(Generalised) Galileon Theory (2000s)

S =
∫
M

L
√
−g d4x
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Horndeski

L =K(φ, ρ)−G3(φ, ρ)�φ+G4(φ, ρ)R+G4,ρ(φ, ρ)
[
(�φ)2 − (∇µ∇νφ)2

]
+G5(φ, ρ)Gµν∇µ∇νφ

− 1
6G5,ρ(φ, ρ)

[
(�φ)3 − 3�φ (∇µ∇νφ)2 + 2 (∇µ∇νφ)3

]
,

where
ρ = ∇µφ∇µφ,

and where the functions Gi(φ, ρ) (i ∈ {3, 4, 5}) & K(φ, ρ) are arbitrary
functions.
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Examples

L =K(φ, ρ)−G3(φ, ρ)�φ+G4(φ, ρ)R+G4,ρ(φ, ρ)
[
(�φ)2 − (∇µ∇νφ)2

]
+G5(φ, ρ)Gµν∇µ∇νφ

− 1
6G5,ρ(φ, ρ)

[
(�φ)3 − 3�φ (∇µ∇νφ)2 + 2 (∇µ∇νφ)3

]
,

With G3 = 0 = G5, G4 = κ = c4/16πG and
K(φ, ρ) = −1

2ρ− V (φ)− 2κΛ, one gets

LEKG = κ (R− 2Λ)− 1
2∇µφ∇

µφ− V (φ)

Ludovic Ducobu A thesis with Yves. . . June 02 & 03 12 / 36



Introduction Horndeski gravity Paper 1 Teleparallel gravity Paper 2 Conclusion

Horndeski
Examples

L =K(φ, ρ)−G3(φ, ρ)�φ+G4(φ, ρ)R+G4,ρ(φ, ρ)
[
(�φ)2 − (∇µ∇νφ)2

]
+G5(φ, ρ)Gµν∇µ∇νφ

− 1
6G5,ρ(φ, ρ)

[
(�φ)3 − 3�φ (∇µ∇νφ)2 + 2 (∇µ∇νφ)3

]
,

With G3 = 0 = G5, G4 = κ = c4/16πG and
K(φ, ρ) = −1

2ρ− V (φ)− 2κΛ, one gets

LEKG = κ (R− 2Λ)− 1
2∇µφ∇

µφ− V (φ)

Ludovic Ducobu A thesis with Yves. . . June 02 & 03 12 / 36



Introduction Horndeski gravity Paper 1 Teleparallel gravity Paper 2 Conclusion

Horndeski
Examples

L =K(φ, ρ)−G3(φ, ρ)�φ+G4(φ, ρ)R+G4,ρ(φ, ρ)
[
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]
+G5(φ, ρ)Gµν∇µ∇νφ

− 1
6G5,ρ(φ, ρ)

[
(�φ)3 − 3�φ (∇µ∇νφ)2 + 2 (∇µ∇νφ)3

]
,

If Gi (φ, ρ) = Gi (ρ) ,∀i ∈ {3, 4, 5} and K (φ, ρ) = K (ρ), the system
possesses an invariance under φ→ φ+ c (shift-symmetry), with c ∈ R,
and the field equation for φ reduces to a conservation law (Nœther) :

∇µJµ = 0.
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Coupling to the Gauss-Bonnet invariant

A first interesting subclass of the Horndeski Lagrangian is given by

L = R− 1
2 gµν∇µφ∇νφ+ F(φ)LGB, (1)

where
LGB = R2 − 4RµνRµν +RµνλσR

µνλσ

is the Gauss-Bonnet invariant.

Note

s

:
(1) can be obtained from the Horndeski Lagrangian via specific choice
of the arbitrary functions and some integration by parts. This has
been established in [Kobayashi et al., 2011].
In 4D, it is well known that LGB = ∇µGµ.
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Coupling to the Gauss-Bonnet invariant

→ An interesting feature of this model is that the curvature of spacetime
will source the scalar field and (almost certainly) force it to be
non-trivial :

�φ = −F ′(φ)LGB.

This mechanism is known as “curvature induced scalarization”.

→ In the specific case F(φ) = γ1φ, the model enjoys a shift-symmetry
for the scalar field φ→ φ+ c for c ∈ R.

→ In the following, we will focus our review on asymptotically flat
spherically symmetric black hole solutions.
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Ansatz

Since we will focus on spherically symmetric spacetime, we will assume to
work within a coordinate system {xµ } = { t, r, θ, ϕ } in which the metric
takes the form

ds2 = −N(r)σ2(r)dt2 + 1
N(r)dr2 + r2(dθ2 + sin2 θdϕ2) .

For simplicity, we will further assume our real scalar field to also respect
spherical symmetry; that is

φ (xµ) = φ(r).
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Results previously known
Linear coupling (F(φ) = γ1φ)

The first explicit construction of asymptotically flat, spherically symmetric
black hole solutions presenting a shift-symmetry in the context of
Horndeski gravity has been provided in
[Sotiriou and Zhou, 2014a, Sotiriou and Zhou, 2014b].

In this case,

Regularity of the scalar field derivative at the event horizon, φ′(rh),
require to fix φ′(rh) as the solution of a quadratic polynomial
equation.
⇒ φ′(rh) ∈ R can only be ensured if the discriminant of the equation
∆ ≥ 0.
This fixes a maximal value for the coupling constant γ1 ≤ γ1,max.
Scalarized solutions can be numerically constructed for all
γ1 ∈ [0, γ1,max].
There are no excited solutions.
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Results previously known
Quadratic coupling (F(φ) = γ2φ

2)

Asymptotically flat, spherically symmetric black hole solutions have also
been studied in [Silva et al., 2018] under the assumption of a quadratic
non-minimal coupling to the Gauss-Bonnet invariant.

In this case, the spectrum of solutions is drastically different from the
former case :

Regularity of φ′(rh) still require to fix φ′(rh) as the solution of a
quadratic polynomial equation. ⇒ φ′(rh) ∈ R can only be ensured if
the discriminant of the equation ∆ ≥ 0.
But this time, one should also have that φ(rh) 6= 0 and γ2 6= 0.
Solutions can only be found if γ2 lies in a band γ2 ∈ [γ2,c, γ2,max] with
γ2,c > 0.
This is because ∆ −→

γ2→γ2,c
0 and φ(rh) −→

γ2→γ2,max
0.

Excited solutions exist.
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Results previously known
Quadratic coupling (F(φ) = γ2φ

2)

Schematically, the existence of solutions is then limited by the following
pattern
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Generic linear + quadratic coupling (F(φ) = γ1φ + γ2φ
2)

Black holes

To understand the difference of pattern between the shift-symmetric and
spontaneously scalarized black holes, my collaborator Yves and I looked at
F(φ) = γ1φ+ γ2φ

2 in [Brihaye and Ducobu, 2019].

This can be seen as the most general quadratic expansion of a generic
F(φ) = F(0) + F ′(0)φ+ F ′′(0)

2 φ2 +O
(
φ3).

(Remember that we can assume F(0) = 0 without loss of generality
since LGB = ∇µGµ).
We obtained a pattern of spherically symmetric hairy black holes
extrapolating between the shift-symmetric and spontaneously
scalarized black holes.
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A fresh look at General Relativity
Geometric layers

In GR, the geometry of the spacetime structure (M, g) is given by the
metric since we use the Levi-Civita connection.

Nevertheless, from the point of view of differential geometry, connection
and metric serve (a priori) independent purposes.
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A fresh look at General Relativity
Geometric layers

→ Differential structure : M ↔ Local coordinates {xµ }

↪→ Functions f :M→ R, Curves C : R→M, Derivation of functions in
a given direction at a point (f ◦ C )′(0) =: ∇~vf |p.

↪→ Tangent vectors TpM, Cotangent vectors T ∗pM, Generic tensors
TpM(m,r), Vector fields Γ(TM), Coordinate basis { ∂µ } & {dxµ }, · · ·

→ Linear connection : ωab = ωabµdxµ
↪→ Covariant derivative of vector-, covector- and tensor fields

∇~e(c)~e(a) = ωbac~e(b), ∇∂µ~e(a) = ωbaµ~e(b), ∇∂µ∂ν = Γρνµ∂ρ

↪→ Geodesics
↪→ Curvature R and Torsion T

→ Metric with Lorentzian signature : g
↪→ Causal structure : time-, space-, light-like vectors
↪→ Ability to lower and raise indices (musical isomorphisms), Tetrads

g
(
~e(a), ~e(b)

)
= ηab with (ηab) = diag (+,−,−,−), Line element, · · ·

↪→ Local Lorentz transformations Λ(p) ∈ O(1, 3).
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A fresh look at General Relativity
“Interactions” between the geometric layers

If we have both a linear connection ωab and a metric g defined on our
manifoldM, we can characterise their compatibility by means of the
non-metricity tensor

Q := ∇g.

Given a metric g, there is a unique torsion-free (T ≡ 0) and
metric-compatible (Q ≡ 0) connection :
It is the Levi-Civita connection Γρµν (g) =:

◦
Γρµν .

Actually, any linear connection can be related to the Levi-Civita connection
via its disformation tensor D [Q, g] and contorsion tensor K [T, g],

ωbac = ◦
ωbac +Db

ac +Kb
ac,
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A fresh look at General Relativity
Trinity of gravity

From this relation, one can get (for the Ricci scalar)
◦
R = R− 2

(
Da

k[a|K
kb
|b] +Ka

k[a|D
kb
|b]

)
− 2

(
Da

k[a|D
kb
|b] +

◦
∇[a|D

ab
|b]

)
− 2

(
Ka

k[a|K
kb
|b] +

◦
∇[a|K

ab
|b]

).

This relation suggests interesting special cases :
→ Torsion-free (T ≡ 0) + metric compatible (Q ≡ 0) connection :

GR

◦
R = R

∼ LGR

→ Flat (R ≡ 0) + metric compatible (Q ≡ 0) connection :

TEGR

◦
R = −2Ka

k[a|K
kb
|b] − 2

◦
∇[a|K

ab
|b]

∼ LTEGR

→ Flat (R ≡ 0) + torsion-free (T ≡ 0) connection :

STEGR

◦
R = −2Da

k[a|D
kb
|b] − 2

◦
∇[a|D

ab
|b]

∼ LSTEGR
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|b] − 2

◦
∇[a|K

ab
|b]

∼ LTEGR

→ Flat (R ≡ 0) + torsion-free (T ≡ 0) connection :

STEGR

◦
R = −2Da

k[a|D
kb
|b] − 2

◦
∇[a|D

ab
|b]

∼ LSTEGR
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Teleparallel Equivalent of General Relativity

In the following, we will focus our discussion on TEGR (and its extensions
by a scalar field).
In this case the connection – called a Weitzenböck connection – is such
that R ≡ 0 and Q ≡ 0.

A manifoldM equipped with a Lorentzian metric g and a Weitzenböck
connection ωab is called a Weitzenböck spacetime.
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Teleparallel Equivalent of General Relativity
A word on Weitzenböck geometry

On a Weitzenböck spacetime, the geometry can be entirely specified
(locally) by means of a couple

(
{~e(a) } ,Λ(p)

)
, where

1 {~e(a) } is a tetrad, i.e. a basis of vector fields such that

g
(
~e(a), ~e(b)

)
= ηab,

⇔ e µ
a gµν e

ν
b = ηab,

⇔ gµν = eaµ ηab e
b
ν ,

where the tetrad {~e(a) } is written as ~e(a) = e µ
a ∂µ and e µ

a e
a
ν = δµν ,

e µ
a e

b
µ = δba and (ηab) = diag(+,−,−,−).

2 Λ(p) =
(
Λ b
a (p)

)
∈ O(1, 3) is a local Lorentz transformation which

gives the connection coefficients (related to the tetrad {~e(a) }) via

ωbaµ = −Λ l
a ∂µΛbl.
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Teleparallel Equivalent of General Relativity

For a Weitzenböck connection, we thus had that

◦
R = −T +B,

where

T := 2 Ka
k[a|K

kb
|b] = 1

4TabcT
abc + 1

2TabcT
cba − T aakT bbk

and
B := −2

◦
∇[a|K

ab
|b] = 2

◦
∇a

(
T bbc g

ca
)
.

The theory with LTEGR = −T/(2κ) is called the Teleparallel Equivalent of
General Relativity.
This theory provides a theory of gravity dynamically equivalent to GR but
formulated in terms of the torsion of a Weitzenböck connection. See
[Bahamonde et al., 2021] for a review.
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Action
Such a “reformulation” of GR suggests new types of couplings. See
[Hohmann, 2018a, Hohmann and Pfeifer, 2018, Hohmann, 2018b].

→ Minimal coupling

In GR [(M, g)]

L = 1
2κ
◦
R

− 1
2g

µν∇µψ∇νψ − V(ψ)

In TEGR [(M, g, ωab)]

L = − 1
2κT + 1

2κB

− 1
2g

µν∇µψ∇νψ − V(ψ)

→ Possible non-minimal couplings

In GR [(M, g)]

L = A(ψ)
◦
R

− B(ψ)gµν∇µψ∇νψ − V(ψ)

In TEGR [(M, g, ωab)]

L = −A(ψ)T − C̃(ψ)B
− B(ψ)gµν∇µψ∇νψ − V(ψ)
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Ansatz

In the following, we will consider solutions obtained within this ansatz for
the theory whose Lagrangian density is given by

L = −A(ψ)T − C̃(ψ)B − B(ψ)gµν∇µψ∇νψ − V(ψ),

with B(ψ) = β.

In this case, the choice of an ansatz requires to fix the form of the scalar
field ψ and of a tetrad {~e(a) } by means of the components eaµ. In
spherical symmetry two forms are possible for the tetrad.
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Ansatz
The first tetrad is real and it is described by

e
(1)a

µ =


A 0 0 0
0 CA−1 cosφ sin θ r cosφ cos θ −r sinφ sin θ
0 CA−1 sinφ sin θ r sinφ cos θ r cosφ sin θ
0 CA−1 cos θ −r sin θ 0

 ,

whereas the second one is complex and is given by

e
(2)a

µ =


0 iC

A 0 0
iA sin θ cosφ 0 −r sinφ −r sin θ cos θ cosφ
iA sin θ sinφ 0 r cosφ −r sin θ cos θ sinφ
iA cos θ 0 0 r sin2 θ

 ,

where A = A(r) and C = C(r). In both cases, the metric takes the usual
form

ds2 = A(r)2dt2 − C(r)2

A(r)2 dr2 − r2
(
dθ2 + sin(θ)2dϕ2

)
.
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Ansatz

For the scalar field, we simply chose ψ(t, r, θ, ϕ) = ψ(r).
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Results
Analysing the field equations obtained within this ansatz, we were able to
find exact solutions for

→ A(ψ) = α : only non-min. coupling with the boundary term (C̃(ψ)B)
Solutions for the real and complex tetrad
Solutions fail to be asymptotically flat

→ C̃(ψ) = 0 : only non-min. coupling with the torsion scalar (A(ψ)T )
Solutions for the real and complex tetrad
Two types of asymptotically flat solutions (for the real tetrad)

1 A(ψ) = −βψ2/8 , V(ψ) = 0 ,

ds2 =
(

1− K

r

)2
dt2 −

(
1− K

r

)−2
dr2 − r2dΩ2 , ψ(r) = − 2ψ0

√
r

K
√
r −K

.

2 A(ψ) = 3βψ2/8 , V(ψ) = 0 ,

ds2 =
(

2− r

2K+
√
r(r − 4K)

2K

)2
dt2−

(
2− r

2K+
√
r(r − 4K)

2K

)−2
dr2−r2dΩ2 ,

ψ(r) =
ψ0

(√
r(r − 4K)− 4K + r

)
4
√√

r(r − 4K)− 2K + r

3Kr3/4
√
r − 4K

.
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Introduction Horndeski gravity Paper 1 Teleparallel gravity Paper 2 Conclusion

To complete this analysis, we also derived a no scalar-hair theorem for the
theory under study

No Scalar-Hair Theorem
Consider a scalar-torsion theory of gravity defined by the Lagrangian
density

L = −A(ψ)T − C̃(ψ)B − βgµν∇µψ∇νψ − V(ψ),

the spherically symmetric the tetrads (displayed above) and a scalar field
ψ = ψ(r). There exist no spherically symmetric asymptotically flat
scalarized black holes for the following couplings and potentials :

1 A = αψm, C̃ = 0 and 2
β(m−2) (2mV − ψV ′) ≤ 0;

2 A = αψ2, C̃ = c1
2 ψ

2 + c2 and either ψV ′ > 4V or ψV ′ < 4V;
3 A = α, C̃ = c1 ln(ψ) + c2 and ψV ′

β ≤ 0;
4 A = α, C̃ = γ

m+1ψ
m+1 and 1

β (ψV ′ − (m+ 1)γψmT rψ′) ≤ 0 or
(m+1)
m−1

1
β

(
α
◦
R+ κ2(ψV ′ − 4V)

)
≤ 0.
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Introduction Horndeski gravity Paper 1 Teleparallel gravity Paper 2 Conclusion

Take-home message

→ Going beyond GR is a hard (but necessary) task.
→ Classical modifications of GR provide a useful playground.
→ The study of black hole solutions in scalar-tensor gravity reveals a

vast range of scalarized solutions from the numerical and analytical
point of view.

Outlooks

Compact objects (black holes, boson stars, neutron stars) have been
extensively studied within the metric formulation of general relativity. In
comparison, there is some significant amount of work left to do in this
direction for alternative formulations of gravity.
→ The present developments of both black hole and gravitational wave

astronomy raise the need for as many models as possible to compare
with experimental data.

→ For instance, unifying the two directions presented in this talk, it
would be interesting to further investigate the formulation of
non-minimal couplings to the Gauss-Bonnet invariant in the
context of teleparallel theories of gravity.
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Conclusion

Thank you Yves
for this incredible experience !!!

I hope that we will continue on this track. . .
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Thank you for your attention !
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(No-scalar-hair theorem) Skeleton of the proof.

1 Construct a positively defined integral.∫
E
F (φ,∇µφ)

√
−g d4x ≥ 0,

where E denotes the black-hole exterior spacetime region.
2 Prove that, on-shell, this integral should vanish.

Eφ ≈ 0 =⇒
∫
E
F (φ,∇µφ)

√
−g d4x ≈ 0.

(where ≈ denotes an on-shell equality)
3 Use the form of the integrand to conclude that the scalar field must

be trivial.∫
E
F (φ,∇µφ)

√
−g d4x = 0 =⇒ φ(xµ) = φ0,∀xµ ∈ E.
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Horndeski
Construction : schematically

Let us briefly discuss the steps in the discovery/construction of this
Lagrangian density from the (more recent) point of view of Galileon theory.

“What is the most general theory including a single real scalar field, and
giving second order equation ?”

→ First, consider the study of a scalar field on flat spacetime (fixed
Minkowski background), see [Nicolis et al., 2009] :

0 Realise that the most general Lagrangian density giving second-order
derivatives in the equations contains ∂µ∂νφ terms.

1 Figure out how one can avoid higher-order derivatives in the EEL for a
Lagrangian density polynomial in the ∂µ∂νφ’s.

2 Carefully construct the most general expression satisfying the condition.
One then gets the Lagrangian density for the (generalised) Galileon.
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Horndeski
Construction : schematically

“What is the most general theory including a single real scalar field, and
giving second order equation ?”

→ First, consider the study of a scalar field on flat spacetime (fixed
Minkowski background) :
One then gets the Lagrangian density for the (generalised) Galileon.

→ To introduce gravity in the picture, one should allow the metric to be
dynamical, see [Deffayet et al., 2011] :

1 The first attempt/step consist in performing the replacement
η → g and ∂µ → ∇µ.

2 Since covariant derivatives do not commute, this leads to higher
order EEL. One should then kill them by adding the (unique)
appropriate counter terms built with the curvature tensor.

One then gets the Lagrangian density for the covariant (generalised)
Galileon.
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Horndeski
Construction : schematically

Horndeski had “cracked” the problem from a completely different starting
point
(He directly asked the question of the most general Lagrangian density [in
4D] presenting at most second-order equations for gµν and φ)

but it can be proved that the covariant generalised Galileon theory is
equivalent to Horndeski’s result, see [Kobayashi et al., 2011].

↑ ↑ ↑ ↑ ↑
This result is non-trivial.

Even though the generalised Galileon provided the most general
Lagrangian density with second order field equation for φ on flat

spacetime there was a priori no reasons why its covariant extension
should still be the most general possibility on curved spacetime !
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Horndeski

Has a final note on this construction, let us come back to the Horndeski
Lagrangian density and emphasise the link between the different terms.

Especially, let us emphasise which terms necessitate the introduction of an
appropriated counter term

L =K(φ, ρ)−G3(φ, ρ)�φ +G4(φ, ρ)R+G4,ρ(φ, ρ)
[
(�φ)2 − (∇µ∇νφ)2

]
+G5(φ, ρ)Gµν∇µ∇νφ

−1
6G5,ρ(φ, ρ)

[
(�φ)3 − 3�φ (∇µ∇νφ)2 + 2 (∇µ∇νφ)3

]
,

where
ρ = ∇µφ∇µφ,

and where the functions Gi(φ, ρ) (i ∈ {3, 4, 5}) & K(φ, ρ) are arbitrary
functions.
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Results previously known
Quadratic coupling (F(φ) = γ2φ

2)

In a nutshell, the reason for this difference of pattern can be seen from the
scalar field equation.

�φ = −2γ2LGB φ

⇔D̂φ = γ2φ.

When studying the perturbative regime (on a fixed Schwarzschild
background), the equation reduces to an eigenvalue equation

D̂|Schδφ = γ2δφ,

where D̂|Sch stands for D̂ formulated on Schwarzschild spacetime and δφ
the scalar field perturbation.
=⇒ In this limit, γ2 corresponds to an eigenvalue of D̂|Sch. This will
correspond to the values of γ2,max.

Ludovic Ducobu A thesis with Yves. . . June 02 & 03



Results previously known
Quadratic coupling (F(φ) = γ2φ

2)

In a nutshell, the reason for this difference of pattern can be seen from the
scalar field equation.

�φ = −2γ2LGB φ

⇔D̂φ = γ2φ.

When studying the perturbative regime (on a fixed Schwarzschild
background), the equation reduces to an eigenvalue equation

D̂|Schδφ = γ2δφ,

where D̂|Sch stands for D̂ formulated on Schwarzschild spacetime and δφ
the scalar field perturbation.
=⇒ In this limit, γ2 corresponds to an eigenvalue of D̂|Sch. This will
correspond to the values of γ2,max.

Ludovic Ducobu A thesis with Yves. . . June 02 & 03



Results previously known
Quadratic coupling (F(φ) = γ2φ

2)

In a nutshell, the reason for this difference of pattern can be seen from the
scalar field equation.

�φ = −2γ2LGB φ

⇔D̂φ = γ2φ.

When studying the perturbative regime (on a fixed Schwarzschild
background), the equation reduces to an eigenvalue equation

D̂|Schδφ = γ2δφ,

where D̂|Sch stands for D̂ formulated on Schwarzschild spacetime and δφ
the scalar field perturbation.

=⇒ In this limit, γ2 corresponds to an eigenvalue of D̂|Sch. This will
correspond to the values of γ2,max.

Ludovic Ducobu A thesis with Yves. . . June 02 & 03



Results previously known
Quadratic coupling (F(φ) = γ2φ

2)

In a nutshell, the reason for this difference of pattern can be seen from the
scalar field equation.

�φ = −2γ2LGB φ

⇔D̂φ = γ2φ.

When studying the perturbative regime (on a fixed Schwarzschild
background), the equation reduces to an eigenvalue equation

D̂|Schδφ = γ2δφ,

where D̂|Sch stands for D̂ formulated on Schwarzschild spacetime and δφ
the scalar field perturbation.
=⇒ In this limit, γ2 corresponds to an eigenvalue of D̂|Sch. This will
correspond to the values of γ2,max.

Ludovic Ducobu A thesis with Yves. . . June 02 & 03



Levi-Civita connection, Disformation and Contorsion tensor

Γρµν = 1
2g

ρα (∂νgαµ + ∂µgνα − ∂αgµν) ,

Da
bc := −1

2g
ak (Qkbc +Qckb −Qbck) ,

Ka
bc := −1

2
(
T abc − gck gal T klb + gbk g

al T kcl

)
.
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Weitzenböck geometry

In the following, we will focus our discussion on TEGR (and its extensions
by a scalar field).
In this case the connection – called a Weitzenböck connection – is such
that R ≡ 0 and Q ≡ 0.

A manifoldM equipped with a Lorentzian metric g and a Weitzenböck
connection ωab is called a Weitzenböck spacetime.

From these two conditions, one can get that there exist bases of vector
fields {~e(a) } such that

1 In that basis ωbac ≡ 0 i.e. ∇~e(c)~e(a) ≡ 0 (Weitzenböck basis)

2 g
(
~e(a), ~e(b)

)
= ηab (tetrad)

Such a basis is called a Weitzenböck tetrad.
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Weitzenböck geometry
Note that :

1 Since two tetrads are always related by a local Lorentz transformation
Λ(p) =

(
Λ b
a (p)

)
∈ O(1, 3), in a generic tetrad one has

ωbaµ = −Λ l
a ∂µΛbl.

2 From the definition of a tetrad, one has that

gµν = eaµ ηab e
b
ν ,

where the tetrad {~e(a) } is written as ~e(a) = e µ
a ∂µ and e µ

a e
a
ν = δµν ,

e µ
a e

b
µ = δba.

Consequently, on a Weitzenböck spacetime, the geometry can be entirely
specified (locally) by means of a couple

(
{~e(a) } ,Λ(p)

)
.

It is then also possible to work with Weitzenböck tetrads.
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Digression : Motion of pointwise particle
In GR : [Spacetime :

(
M, g,

◦
ωab

)
]

Particles move along geodesic

ẍρ +
◦
Γρµν ẋµẋν = 0.

Remark that (for the Levi-Civita connection) :
geodesic = curve of extremal length δ

(∫ b
a

√
gµν (xα) ẋµẋν dλ

)
= 0.

In Teleparallel Gravity : [Spacetime : (M, g, ωab)]

Particles move along curves of extremal length (Γρµν =
◦
Γρµν +Kρ

µν)

ẍρ +
◦
Γρµν ẋµẋν = 0⇔

ẍρ + Γρµν ẋµẋν = Kρ
µν ẋ

µẋν .

Particle motion 6= geodesic. Gravity acts as a (universal) force.
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)
= 0.

In Teleparallel Gravity : [Spacetime : (M, g, ωab)]
Particles move along curves of extremal length (Γρµν =

◦
Γρµν +Kρ

µν)

ẍρ +
◦
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Field equations in teleparallel gravity
See [Bahamonde et al., 2021] for a review.

[Note : ≈ ↔ on-shell equality]

Action of the form S = Sg[θ(a), ωab] + Sm[θ(a), ψ].

Variation

δSg = −
∫
V

(
E µ
a δeaµ + Y bµ

a δωabµ

)
θ d4x

δSm =
∫
V

(
Θ µ
a δeaµ + Ψ(K) δψ

(K)
)
θ d4x

Field equations for the tetrad

E µ
a ≈ Θ µ

a ⇔
{
E(µν) ≈ Θ(µν)

E[µν] ≈ Θ[µν]
.

Field equations for the connection
W[µν] ≈ 0.

Field equations for matter fields
Ψ(K) ≈ 0.
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Field equations in teleparallel gravity

Local Lorentz invariance

↔ action built from tensorial quantities

W[µν] = E[µν],

Θ[µν] = 0.

⇒ The field equations for the connection become redundant with the
antisymmetric part of the tetrad equations.

+ Diffeomorphism invariance

↔ invariance under coordinate changes
◦
∇µE(µν) = 0,
◦
∇νE[µν] = E[ρν]K µ

ρν ,
◦
∇µΘµν ≈ 0.
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