
On the rise and fall of CI services in GitHub
Mehdi Golzadeh

Software Engineering Lab
University of Mons

Mons, Belgium
mehdi.golzadeh@umons.ac.be

Alexandre Decan
Software Engineering Lab

University of Mons
Mons, Belgium

alexandre.decan@umons.ac.be

Tom Mens
Software Engineering Lab

University of Mons
Mons, Belgium

tom.mens@umons.ac.be

Abstract—Continuous integration (CI) services are used in
collaborative open source projects to automate parts of the
development workflow. Such services have been in widespread use
for over a decade, with new CIs being introduced over the years,
sometimes overtaking other CIs in popularity. We conducted a
longitudinal empirical study over a period of nine years, aiming
to better understand this rapidly evolving CI landscape. By
analysing the development history of 91,810 GitHub repositories
of active npm packages having used at least one CI service,
we quantitatively studied the evolution of seven popular CIs,
specifically focusing on their co-usage and migration in the
considered repositories. We provide statistical evidence of the rise
of GitHub Actions, that has become the dominant CI service in
less than 18 months time. This coincides with the fall of Travis
that has seen an important decrease in usage, likely due to a
combination of policy changes and migrations to GitHub Actions.

Index Terms—Continuous integration, distributed software
development, software repositories, GitHub

I. INTRODUCTION

Continuous integration (CI), deployment and delivery have
become the cornerstone of collaborative software development
and DevOps practices. CI automates the integration of code
changes from multiple contributors into a central repository
where automated builds, tests and code quality checks run.
Well-known examples of CI services are Jenkins, Travis,
CircleCI and AppVeyor. CI services can also be built-in in
social coding platforms such as GitHub and GitLab [1]. GitLab
already featured CI capabilities since November 2012. Based
on popular demand, and in response to CI support integrated
in GitLab, GitHub publicly announced the beta version of
GitHub Actions (abbreviated to GHA in the remainder of
this article) in October 2018. In August 2019, they officially
began supporting Continuous Integration through GHA, and
the product was released publicly in November 2019.

GHA [2] allows to automate a wide range of tasks based
on a variety of triggers such as commits, issues, pull requests,
comments and many more. GHA can be used to facilitate code
reviews, code quality analysis, communication, dependency
and security monitoring and management, testing, etc. GHA
facilitates the integration with external services, and can even
obviate the need of using such external services altogether.

GitHub is by far the largest social coding platform, hosting
the development history of millions of collaborative software
repositories, and accommodating over 56 million users in
September 2020 [3]. Given its popularity and the ease with

which GHA allows to automate the CI workflow, we hypoth-
esise that GHA has had a significant impact on today’s CI
landscape. More particularly, we believe that it has increased
the awareness of the need for CI, it has reduced the entry
barrier for projects to start using CI, and it may have lead
projects to migrate from other CI services towards GHA.

This article aims to quantitatively and objectively verify
these hypotheses, and discusses their consequences, through a
longitudinal analysis of how different CIs have been used over
a nine-year period in 91,810 GitHub repositories correspond-
ing to the software development history of reusable Node.JS
packages distributed through the npm package registry. This
empirical study focuses on four research questions:
RQ1 How did the CI landscape evolve? We identified 20
different CIs being used in the considered set of repositories,
some of which were considerably more prevalent than others.
Together with Travis, GHA covers more than 80% of all
usages. Moreover, in only 18 months GHA has overtaken all
other CIs in popularity.
RQ2 What are the most frequent combinations of CIs? We
observed that many repositories have used multiple CIs during
their lifetime. AppVeyor is nearly always used in combination
with some other CI. If a repository uses a CI simultaneously
with another one, it is mostly in combination with Travis,
GHA or CircleCI.
RQ3 How frequently are CIs being replaced by an alternative?
We observed a non-negligible amount of CI migrations. GHA
attracted most of these migrations. The majority of migrations
were moving away from Travis and towards GHA.
RQ4 How has the CI landscape changed since GHA was
introduced? Based on a regression discontinuity design, we
found that the usage of Travis, Azure and CircleCI has been
negatively affected by the introduction of GHA.

This article is structured as follows. Section II motivates the
selected dataset and discusses the data extraction and cleaning
steps that were carried out. Sections III to VI provide answers
to each research question. Section VII discusses the ramifi-
cations of these answers. Section VIII presents the threats to
validity of the conducted research. Section IX presents the
related work. Finally, Section X concludes.

II. DATA EXTRACTION

In order to analyse the use of CIs in software development
repositories on GitHub, we need a large dataset containing

TABLE I: Most popular CI services, number and (cumulative) proportion of repositories using them,
and (cumulative) proportion of usages, in decreasing order.

repositories usages
CI URL first observed on # % cum. % % cum. %

Travis http://travis-ci.org Jun 10, 2011 53,401 58.2% 58.2% 44.9% 44.9%
GHA http://github.com/features/actions Jan 23, 2019 46,416 50.6% 90.9% 39.0% 83.9%
CircleCI http://circleci.com Jan 15, 2014 11,431 12.4% 98.1% 9.6% 93.5%
AppVeyor http://www.appveyor.com Apr 04, 2014 3,553 3.9% 98.3% 3.0% 96.5%
Azure http://azure.microsoft.com Sep 11, 2018 1,045 1.1% 98.7% 0.9% 97.3%
GitLab CI http://docs.gitlab.com/ee/ci Sep 02, 2015 1,018 1.1% 99.1% 0.9% 98.2%
Jenkins http://www.jenkins.io Mar 30, 2016 1,008 1.1% 99.6% 0.8% 99.0%
Others N/A Oct 23, 2013 1,138 1.2% 100.0% 1.0% 100.0%

thousands of GitHub repositories for a wide range of software
programming projects serving different purposes and exhibit-
ing variations in longevity and size. The dataset should exclude
repositories that have been created merely for experimental or
personal reasons, or that only show sporadic traces of commit
activity [4]. Registries of reusable software packages (e.g.,
npm for JavaScript or Maven for Java) are good candidates
to find such large datasets, as they typically host thousands
of software packages at different levels of maturity and popu-
larity. However, not all packages belonging to such registries
have an associated git repository on GitHub.

According to the libraries.io open-source monitoring ser-
vice, npm is by far the largest of all listed package reg-
istries [5]. We used the public API of npm to list all 1.6M+
scoped packages. We downloaded the metadata of each pack-
age on 23 May 2021 and found that 803K packages mention
an associated git repository hosted on GitHub. We cloned
676K of these repositories, the remaining ones corresponding
to repositories that were no longer available. Since one of our
goals is to study how the CI landscape has evolved these recent
years, we excluded repositories that were not active during the
last year of the observation period (i.e., they had no commit
between 24 May 2020 and 23 May 2021). We also excluded
11,557 forks, since part of their history duplicates the one of
the forked repository. This left us with 201,403 repositories.

CI usage in a repository is typically visible through the
presence of some specific CI-related configuration files. For
example, the presence of a .travis.y(a)ml file indicates that
Travis CI has been configured for this repository while a
.y(a)ml file in the .github/workflow/ folder triggers GHA.
Based on an exploration of scientific publications, blog posts
and developer websites, we established an initial list of 28
candidate CI tools and services to consider. We carefully went
through their documentation to determine the file paths that
must be considered to detect the presence of each CI. We
excluded CIs that are mostly configured through a dedicated
UI and not a configuration file, or CIs whose configuration
file cannot be detected (e.g., because the file path and file
name can be freely chosen by the users). The threats related
to this approach are discussed in Section VIII. After such
exclusion 20 CIs remained: Travis, GHA, CircleCI, AppVeyor,
Azure, Jenkins, GitLab CI, Drone CI, Hound CI, Bitbucket CI,
Wercker, Golang CI, CodeBuild, Buildkite, Semaphore, Cirrus,
CloudBees, Amplify, Buddy and Bitrise.

We then checked every commit of all 201,403 cloned
repositories for the presence of CI-related configuration files.
We found 179,535 distinct CI-related file paths in 95,035
repositories. We relied on these file paths as a proxy to detect
if and when a CI was used by a repository.

Working with git histories can be quite challenging [6]
and leads to a range of data quality issues that need to be
dealt with. A first issue is that git is revisionist, allowing
one to rewrite the history of a repository. Unfortunately, there
is no way to detect such rewritings, except when it leads
to inconsistencies (e.g., commits referring to files that were
not yet created or that were already removed, commits with
invalid dates, etc.). We identified and removed 60 repositories
for which we found such inconsistencies for CI-related files.
We contacted the maintainers of two of such repositories,
who confirmed the inconsistencies, explaining that it was the
consequence of an earlier migration to git and a merge of
different repositories into a single one.

Another issue stems from the presence of implicit branches
and the fact that the history of a git repository is represented
by a directed acyclic graph, as opposed to a tree-like structure
in svn. As a result, chronological sequences of commits may
originate from distinct branches, and may contain a priori
contradictory changes (e.g., a file that is added and removed
multiple times over relatively short periods of time). Since we
determine the use of a CI based on the presence of specific
file paths, we are particularly exposed to this issue. We found
several cases of chronological sequences of CI-related files
being added and removed multiple times in a row. Since
such file removals did not correspond to a deliberate intent to
remove the corresponding CI service, we ignored all removals
of CI-related files for which the same file was found to be
reintroduced within 30 days. We empirically found that this
value allows to capture 98.1% of the cases we found, while
preserving actual cases of re-introductions of a CI.

After this data cleaning step, we used the presence of CI-
related files to determine when a CI was added and (possibly)
removed from a project. One should note that a same CI can be
added and removed more than once during a project’s lifetime.
By manually inspecting CI usages in repositories, we noticed
several cases of repositories experimenting with the integration
of a CI for a few days only. We excluded such cases by
removing 6,910 usages (found in 6,586 repositories) whose
duration did not exceed 30 days. We also found and excluded 3

http://travis-ci.org
http://github.com/features/actions
http://circleci.com
http://www.appveyor.com
http://azure.microsoft.com
http://docs.gitlab.com/ee/ci
http://www.jenkins.io

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
100

101

102

103

104

105
nu

m
be

r o
f r

ep
os

ito
rie

s
all repositories
repositories with a CI

Fig. 1: Evolution of the number of repositories (green line)
and number of repositories using a CI (blue line).

cases of repositories making use of a high number of different
CIs at the same time. We manually inspected these repositories
and found that their purpose was to showcase integration of
an app with various CIs. An example of such a repository is
cypress-io/cypress-example-kitchensink.

The final dataset contains 119,033 CI usages spread across
91,810 repositories. The higher number of usages than reposi-
tories signals that there are many repositories that use multiple
CIs. Table I provides an overview of the CIs found in repos-
itories, along with the number of usages and the number of
repositories in which they were found at least once through
time. Travis and GHA are by far the most popular CIs, being
used each by more than half of the repositories with a CI and
together covering more than 90% of all repositories with a
CI. This may be expected for Travis, since it has existed since
2011 and thus repositories have had more time to use this
service. It is surprising to find GHA as the secondmost popular
CI, given that its first usage is observed in 2019 only, making
it the most recent of the considered CIs. The five next popular
CIs, following at quite a distance, are CircleCI, AppVeyor,
Azure, GitLab CI and Jenkins. The remainder of this article
exclusively focuses on these seven CIs since, together, they
represent 99% of all CI usages, and cover 99.6% (91,426) of
all repositories having used a CI.

The data and code to replicate the analysis in this article
are available on https://doi.org/10.5281/zenodo.5815352.

III. RQ1: HOW DID THE CI LANDSCAPE EVOLVE?

RQ1 is exploratory in nature, aiming to obtain a better
understanding of which CIs are found in the repositories of
our dataset, how prevalent these CIs are, and how this has been
changing over time. This will provide the necessary context
to interpret the results of the subsequent research questions.

Obviously, not all repositories make use of a CI. Fig. 1
shows the evolution of the number of repositories in our
dataset that use a CI compared against the total number
of repositories we considered at that time. We observe that
the number of repositories using a CI has a tendency to
increase over time. Proportionally to the number of considered
repositories, it went from 56.7% in January 2015 to 63% in
January 2020. At the end of the observation period (i.e., in
May 2021), the proportion of repositories with a CI is 53.6%.
This lower proportion is likely to be a consequence of the fact

20000
30000
40000 Travis

GHA
CircleCI
AppVeyor

Azure
GitLabCI
Jenkins

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
0

2500

5000

7500

10000

 n
um

be
r o

f r
ep

os
ito

rie
s

Fig. 2: Number of repositories using a specific CI.

that recent repositories did not have enough time yet to adopt
a CI. According to Hilton et al. [7], the median time to adopt
a CI is one year.

More than half of all repositories in the dataset are using a
CI, suggesting that CI usage is prevalent and has become
an inseparable aspect of software development for many
projects.

These observations are in line with the ones of Hilton et
al. [7], and confirm that CIs are widely used in practice
nowadays. However, that does not mean that all CIs are equally
used. Fig. 2 breaks down the blue curve of Fig. 1 for the seven
most popular CIs, showing the evolution of the number of
repositories using each CI. Since the number of repositories
using Travis and GHA has a different order of magnitude than
for the other CIs, we used a different y-axis scale starting from
10,000 repositories (illustrated by the horizontal dashed line).

We observe that the oldest CI (Travis) has dominated the
landscape since its introduction in 2011. This is not surprising
since Travis was the only available CI for the first two years of
the observation period (at least in our dataset). This explains
why Travis accounts for the highest number and proportion
of repositories in Table I. Other popular CIs have entered
the CI landscape only more recently: CircleCI and AppVeyor
emerged in 2014, GitLab CI in 2015, and Jenkins in 2018.
Since their introduction in the first half of 2014, CircleCI
and AppVeyor were successful in attracting developers and
obtained a good share of repositories using these CIs. Even
GitLab CI, originally introduced as an integrated CI service for
GitLab, started to attract a small share of GitHub repositories
since September 2015. Although Jenkins was one of the earlier
CI tools for Java applications, it only shows up in our data
as of April 2016, and it has a small share of repositories
using it. This can be explained by two phenomena. First of
all, our dataset focuses on npm packages, hence they are less
likely to contain Java development. Secondly, the pipelines-
as-code feature1 only became available in Jenkins in April
2016, implying that we were only able to track repositories
using this feature as of that date. Finally, we found evidence
of a rapid growth of repositories using Azure following its
introduction in 2018, but after a short period of time the

1https://developers.redhat.com/blog/2016/08/24/
whats-new-in-jenkins-2-0-2

https://doi.org/10.5281/zenodo.5815352
https://developers.redhat.com/blog/2016/08/24/whats-new-in-jenkins-2-0-2
https://developers.redhat.com/blog/2016/08/24/whats-new-in-jenkins-2-0-2

CI adoptions
CI discontinuations

25
50
75
100

 AppVeyor

500
1000
1500
2000

 Travis

25
50
75
100

 Azure

1250
2500
3750
5000

 GHA

25
50
75
100

 GitLabCI

Jan
2019

Jan
2020

Jan
2021

Jul Jul Jul
0

125
250
375
500

 CircleCI

Jan
2019

Jan
2020

Jan
2021

Jul Jul Jul
0
25
50
75
100

 Jenkins

Fig. 3: Monthly number of repositories adopting and
discontinuing a CI.

number of repositories using Azure stagnated.
Probably the most surprising phenomenon that can be

observed in Fig. 2 is the very rapid growth of GHA usage.
Despite the fact that GHA was only introduced in 2019, it
has become the second most popular CI in our dataset just 18
months after its introduction, even overtaking the dominant
position of Travis! At the end of the observation period,
GHA covers 51.7% of the repositories with a CI, followed
by Travis (42.5%), CircleCI (10.2%) and AppVeyor (2.2%).
The remaining CIs together (Azure, GitLab CI and Jenkins) do
not exceed 2.3%. This suggests that GHA has changed the CI
landscape dramatically, fuelling the need to carry out a deeper
empirical analysis in the remainder of this article.

Together, at the end of the observation period, Travis and
GHA dominate the CI landscape, as they are used by 90.1%
of all repositories with a CI. It took only 18 months for
GHA to overtake Travis in popularity.

From Fig. 2, we observed for most CIs either a slight recent
decrease in the number of repositories using it (Travis and Ap-
pVeyor) or a reduced growth in this number (CircleCI, Azure
and GitLab CI). These observations can be the consequence
of less repositories adopting the CIs, of more repositories
discontinuing them, or a combination of both. Fig. 3 shows
the monthly churn in CI usage for the last three years of
the observation period, computed as the monthly number of
repositories that adopted and discontinued each CI.

We observe that the recent decrease in the number of
repositories using Travis is due to a combination of less
repositories adopting Travis (from July 2020 onwards) and
of many repositories that discontinued using them. This is
especially visible from late 2020 onwards, where the monthly
number of repositories that discontinued using Travis went
from 508 in October to 1,520 in November 2020.

We also observe that the reduced growth of CircleCI, Ap-

pVeyor and Azure is mostly a consequence of less repositories
adopting these CIs. For instance, the number of monthly
adoptions of CircleCI went from an annual average of 308
in 2019 to 253 in 2020, and only 173 in 2021. Similarly, the
number of adoptions of Azure dropped from 90 in May 2019
to only 17 in February 2020, reaching the number of discon-
tinuations. In AppVeyor, there are even more discontinuations
than adoptions since July 2019.

Interestingly, most of the churn we observed for these CIs
started a few months after the introduction of GHA. GHA is
the only considered CI that exhibits a steadily increasing adop-
tion rate, and nearly no discontinuations (only 374 compared
to 46,416 adoptions during the observation period). We will
therefore analyse and discuss the impact of GHA on the CI
landscape in detail in RQ4.

The adoption rate of Travis, CircleCI, AppVeyor and Azure
decreased. The discontinuation rate increased for Travis,
Azure and GitLab CI. GHA has a steadily increasing
adoption rate and very little discontinuations.

IV. RQ2: WHAT ARE THE MOST FREQUENT
COMBINATIONS OF CIS?

Table I revealed that there are more CI usages than reposito-
ries. This implies that some repositories use more than one CI
(either simultaneously or at different points in time). Table II
shows the number of repositories in function of the number
of distinct CIs they have used during their observed lifetime.
While three out of four repositories have only used a single
CI throughout their lifetime, there is still a large proportion
that have used 2 different CIs (21.7%) or even more than two
(3.3%). This confirms that it is not unusual for a repository to
use multiple CIs throughout its lifetime.

One out of four repositories having used a CI has used at
least two different CIs during its observed lifetime.

Fig. 4 shows the proportion of repositories having used
a given pair of CIs A and B. Since we found that most
repositories having used multiple CIs involved Travis (86.2%),
GHA (83.7%) and CircleCI (22.3%), and to avoid the analysis
to be biased by these most frequently used CIs, we computed
the proportions relative to the number of repositories having
used a given CI (this is, the proportion of repositories having
used CIs A and B relative to all repositories having used A).
For example, 30.5% of the repositories with Travis have used
GHA, 5.5% have used AppVeyor and 4.8% CircleCI. Note
that the sum may exceed 100% (e.g., for AppVeyor) since
repositories may have used more than two CIs.

TABLE II: Number and proportion of repositories having
used different CIs during their lifetime.

CIs → 1 2 3 4 5

repos. 68,549 19,799 2,647 371 60
% repos. 75.0% 21.7% 2.9% 0.4% 0.07%

Exclusive Travis GHA CircleCIAppVeyor Azure GitLabCI Jenkins

Travis
53,401

GHA
46,416

CircleCI
11,431

AppVeyor
3,553
Azure
1,045

GitLabCI
1,018

Jenkins
1,008

63.1% 30.5% 4.8% 5.5% 0.8% 0.7% 0.7%

58.7% 35.1% 6.8% 3.6% 1.1% 0.8% 0.6%

55.4% 22.4% 27.8% 7.2% 1.3% 0.6% 1.7%

4.6% 82.4% 47.0% 23.2% 4.6% 0.7% 2.6%

30.5% 43.2% 50.6% 14.7% 15.6% 0.9% 0.8%

38.8% 35.4% 36.2% 6.7% 2.4% 0.9% 3.7%

39.5% 35.0% 28.8% 19.3% 9.0% 0.8% 3.8%
A B

Fig. 4: Proportion of repositories having used CIs A and B
relative to all repositories having used A.

We also report in the first column of Fig. 4 the proportion
of repositories in which a CI has been exclusively used. We
observe that a majority of the repositories have exclusively
used Travis (63.1%), GHA (58.7%) or CircleCI (55.4%). The
opposite can be observed for AppVeyor, Azure, GitLab CI
and Jenkins. Out of the 1,045 repositories having used Azure,
more than half of them (50.6%) also have used GHA. This
is even more pronounced for AppVeyor: only 4.6% of the
3,553 repositories have used it exclusively, while 82.4% of
the repositories have also used Travis, 47.0% have also used
GHA, and 23.2% have also used CircleCI.

The majority of repositories having used multiple CIs
involve Travis, GHA and CircleCI. Those same CIs are also
the ones that are most frequently used exclusively in the
considered repositories. AppVeyor is very rarely present
exclusively in a repository.

So far, we considered pairs of CIs, disregarding whether the
CIs were used simultaneously. Let us therefore consider the
co-usage of CI pairs in a given repository, defined as those
situations where the repository uses both CIs for a common
period of at least 30 days. If a repository would simultaneously
use 3 different CIs A, B and C, this will be counted as 3 co-
usages, namely for each pair (A,B), (B,C) and (A,C).

We found 14,335 co-usages in 11,049 distinct repositories
out of 22,877 repositories having used multiple CIs during
their lifetime. Travis, AppVeyor, GHA and CircleCI are in-
volved in most co-usages, together covering 86.7% of all co-
usages and 92.1% of all repositories with co-usage.

Fig. 5 shows the proportion of co-usages we found for each
pair of CIs A and B, relative to all repositories involving A.
We also report in the first column the proportion of cases
with no co-usage. For all CIs except AppVeyor, more than
half of the repositories using them do not use another CI at
the same time. Travis, GHA and CircleCI are considerably
less frequently used in combination with another CI than the
others CIs. At the other extreme, only 6.2% of the usages of
AppVeyor do not involve another CI at the same time.

Focusing on the actual cases of co-usage (i.e., all but
the first column), AppVeyor is mostly co-used with Travis

no
co-usage

Travis GHA CircleCIAppVeyor Azure GitLabCI Jenkins

Travis
53,401

GHA
46,416

CircleCI
11,431

AppVeyor
3,553
Azure
1,045

GitLabCI
1,018

Jenkins
1,008

83.4% 10.2% 2.1% 5.4% 0.5% 0.5% 0.5%

83.9% 11.7% 3.6% 1.4% 0.6% 0.4% 0.4%

73.8% 9.7% 14.5% 6.0% 1.0% 0.4% 1.4%

6.2% 80.5% 17.9% 19.3% 1.8% 0.5% 2.4%

54.5% 23.8% 26.5% 10.4% 6.1% 0.6% 0.6%

59.5% 25.3% 17.4% 4.4% 1.8% 0.6% 2.9%

54.4% 25.3% 16.6% 15.6% 8.5% 0.6% 3.0%
A B

Fig. 5: Proportion of co-usages of CIs A and B relative to
all repositories using A.

(80.5%), and to a lesser extent with CircleCI (19.3%) and
GHA (17.9%). Travis is the most frequent complementary CI
for GHA, AppVeyor, GitLab CI and Jenkins, and GHA is most
frequently complemented by Travis, CircleCI and Azure.

With the notable exception of AppVeyor, the majority
of the repositories with a CI do not use another CI
simultaneously. The overwhelming majority of repositories
using AppVeyor co-use Travis along with. Travis and GHA
are the most frequent complementary CIs.

V. RQ3: HOW FREQUENTLY ARE CIS BEING REPLACED BY
AN ALTERNATIVE?

The findings of RQ2 revealed a considerable amount of
combinations of multiple CIs within repositories. Part of these
combinations were due to co-usages. Another likely scenario
is that a repository has used multiple CIs during its lifetime,
but not necessarily simultaneously. This could be the case, for
example, when a repository maintainer is unsatisfied with its
current CI and decides to replace it with another CI that offers
solutions that better meet the needs of the team or the project.

We consider that a repository migrated from some CI A
to another CI B if the repository stopped using A and started
using B at “around the same time”, i.e., within a time window
of 30 days either before or after B started to be used by
the repository. The rationale behind this time window is to
accommodate for a possible transition period during which
either both CIs were being used together (i.e., time needed
to remove A after the introduction of B) or where none of
them was being used (i.e., time needed to introduce B after
the removal of A).

We detected 14,219 such cases of migration in 13,083
different repositories. Table III reports on the number of
repositories involved in a migration away from or towards a
given CI. It also reports on their proportion relative to the
total number of repositories using a given CI. We observe
that most migrations (11K+) are due to repositories migrating
away from Travis and, to a lesser extent, from CircleCI. On
the other hand, we see that most migrations (12K+) target
GHA and, to a lesser extent, again CircleCI. For most of the

Travis GHA CircleCI AppVeyor Azure GitLabCI Jenkins

Travis
11,591

GHA
29

CircleCI
1,382

AppVeyor
698

Azure
222

GitLabCI
192

Jenkins
105

87.1% 10.6% 0.2% 1.4% 0.3% 0.3%

37.9% 48.3% 0.0% 0.0% 10.3% 3.4%

8.6% 88.2% 0.1% 2.2% 0.5% 0.4%

1.6% 80.7% 5.6% 12.2% 0.0% 0.0%

1.4% 96.8% 1.8% 0.0% 0.0% 0.0%

22.4% 69.8% 5.7% 0.5% 1.0% 0.5%

29.5% 41.0% 23.8% 0.0% 1.9% 3.8%
A B

Fig. 6: Proportion of migrations from CI A to CI B, relative
to the total number of migrations away from A.

CIs, we observe there are more migrations away from them
than migrations towards them, with the notable exceptions of
GHA that attracted far more repositories, and of CircleCI and
Azure, both having roughly the same number of repositories
that migrated from and to them. Looking at the proportions of
repositories relative to the total number of repositories using a
given CI, we see that around one out of five repositories using
Travis, AppVeyor, Azure or GitLab CI migrated to another CI.
On the other hand, only 29 out of the 46,416 repositories using
GHA migrated away from it. The last column reveals that
migrations explain more than one out of four repositories using
GHA or Azure. In contrast, less than 1% of the repositories
using Travis or AppVeyor are due to a migration.

Most migrations are from Travis and towards GHA. The
number of repositories migrating away from CircleCI and
Azure is balanced with the number of repositories migrat-
ing towards them. Migrations towards GHA and Azure
account for one fourth of the repositories using them.

Going into the details of these migrations between CIs,
Fig. 6 shows the proportion of migrations from CI A to CI B
relative to the total number of migrations away from A. This
allows to see the distributions of the target CIs for migrations
originating from A. We observe that GHA proportionally
represents the vast majority of the targets of a migration,
regardless of the considered source CI. GHA attracted up to
96.8% of all migrations away from Azure. The only notable
exception is Jenkins: even if GHA still accounts for 41.0% of
the migrations from Jenkins, more than half of the migrations
are towards Travis and CircleCI. Travis is also the second most

TABLE III: Number of repositories that migrated away from
and towards a CI, and their relative proportion.

migrated away from migrated towards
CI repo. # % # %

Travis 53,401 11,591 21.7% 218 0.4%
GHA 46,416 29 0.06% 12,269 26.4%

CircleCI 11,431 1,382 12.1% 1,323 11.6%
AppVeyor 3,553 698 19.6% 30 0.8%

Azure 1,045 222 21.2% 282 27.0%
GitLab CI 1,018 192 18.7% 53 5.2%

Jenkins 1,008 105 10.4% 44 4.4%

Travis
218

GHA
12,269

CircleCI
1,323

AppVeyor
30

Azure
282

GitLabCI
53

Jenkins
44

Travis

GHA

CircleCI

AppVeyor

Azure

GitLabCI

Jenkins

82.3% 93.0% 90.0% 57.8% 73.6% 84.1%

5.0% 1.1% 0.0% 0.0% 5.7% 2.3%

54.6% 9.9% 6.7% 10.6% 13.2% 11.4%

5.0% 4.6% 2.9% 30.1% 0.0% 0.0%

1.4% 1.8% 0.3% 0.0% 0.0% 0.0%

19.7% 1.1% 0.8% 3.3% 0.7% 2.3%

14.2% 0.4% 1.9% 0.0% 0.7% 7.5%
A B

Fig. 7: Proportion of migrations from CI A to CI B, relative
to the total number of migrations towards B.

frequent target for migrations originating from CircleCI and
GitLab CI.

GHA attracted most of the migrations, regardless of the
source CI. Travis is the second most frequent target for
migrations from CircleCI, GitLab CI and Jenkins.

Fig. 6 provided insights about the target of CI migrations.
To provide insights about the source of CI migrations, Fig. 7
reports on the proportion of migrations from CI A to CI B,
this time relative to the total number of migrations towards B.
We observe that Travis provided the overwhelming majority
of the repositories that migrated to another CI, regardless of
the target CI. It represents up to 93.0% of all migrations
towards CircleCI, accounting for 1,230 migrations. On the
other hand, even if CircleCI accounts for more than half of the
migrations towards Travis, this corresponds to 119 migrations
only. CircleCI is also the secondmost frequent source of
migrations for all CIs, except for Azure whose secondmost
frequent source of migrations is AppVeyor. Nearly one third
of all migrations towards Azure originate from AppVeyor.

Travis provided the vast majority of the repositories that
migrated, regardless of the target CI. CircleCI is the second
most frequent source of migrations towards Travis, GHA,
AppVeyor, GitLab CI and Jenkins.

VI. RQ4: HOW HAS THE CI LANDSCAPE CHANGED SINCE
GHA WAS INTRODUCED?

RQ1 revealed that, since the public release of GHA in
November 2019, its market share has been increasing very
fast, becoming the dominating CI in less than 18 months time!
GHA hence seems to have played a major role in how the CI
landscape had changed, with many repositories co-using GHA
with some other CI (RQ2), or even migrating towards GHA
(RQ3). The increase in popularity of GHA seems to have had a
diminishing effect on the share of repositories using Travis and
other CIs. RQ4 therefore aims to scrutinise to which extent
GHA has altered the CI landscape.

To study the effect of the introduction of GHA on the usage
of other CIs, we use the statistical technique of (linear) Re-
gression Discontinuity Design (RDD) [8], [9]. This technique

allows to model the effect of a particular important event by
comparing the situation during a given time window before
and after the event. In our case, we intend to use RDD to
model the effect of the introduction of GHA on CI usage of
repositories before and after this event. We consider August 8,
2019 as the event date since it corresponds to the day at which
GHA announced the availability of a CI/CD service. RDD
assumes that one would be able to observe a discontinuity in
the data if the event affects the outcome (here, CI usage). Such
a discontinuity would reveal itself as a perceptible difference
in the intercept and/or slope of the (linear) regression model
before and after the event. The RDD model is formulated as:
yi = α+ β × timei + γ × eventi + σ × time afteri + εi

where i corresponds to an observation related to a given
CI before and after the event. In order to incorporate the
passage of time into the model, three parameters are used:
timei, eventi and time afteri. The time parameter is the num-
ber of months that have passed from the beginning of the
observation window. We use two observation windows of 12
months each, respectively until 1 month before and starting
from 1 month after the event. We purposefully ignore what
happened between 30 days before and 30 days after the event
to account for possible instabilities close to the event date.
The binary event parameter specifies whether an observation
is measured before (event = 0) or after the event (event = 1).
The time after parameter indicates elapsed time (expressed in
number of months in our case) since the event and it is set to
0 before the event. εi is the residual error. The two resulting
linear regression lines have a slope of β before the event,
and β + γ after it. The difference between the two regression
values of yi indicates the size of the effect of the event. The
accuracy of the RDD model is estimated using R2, a common
method for assessing the goodness of fit of a regression model.
We implemented the RDD model based on the ordinary least
square method using the statsmodels library in Python.

Given our aim to determine the effect of the public release
of GHA on the usage of other CIs, we computed for each CI
the monthly variation of CI usage, measured as the number of
repositories adopting the CI minus the number of repositories
discontinuing the CI. We fit 7 different RDD models: one for
assessing the global effect of the event on the CI landscape,
and one for the individual effect on each of the 6 most
popular CIs (excluding GHA itself). The results are reported in
Table IV. We provide the R2 goodness of fit of each model,
the coefficients of each model parameter, and the statistical
significance of the coefficients in terms of their p-value. We
consider three levels of significance, reflecting the strength
of the effect induced by the event: p < 0.001 for strongly
significant (***), p < 0.01 for highly significant (**), and
p < 0.05 for moderately significant (*).

Only 4 out of the 7 computed RDD models provide a
sufficiently high goodness of fit: CI landscape, Travis, Azure
and CircleCI (in decreasing order of goodness of fit, with R2

ranging from 0.94 to 0.57). We will therefore only discuss
these 4 models in more detail. Only for Travis (p < 0.001),
Azure (p < 0.001) and CircleCI (p < 0.01) we observe a

0 0

350 350

700 700

1000 1000Travis

0 0

130 130

260 260

400 400

m
on

th
ly

 v
ar

ia
tio

n
of

 re
po

sit
or

ie
s

CircleCI

-13 -10 -7 -4 -1 +1 +4 +7 +10 +13
number of months relative to 2019/08/08

60 60

0 0

60 60

120 120

slope = 5.9 slope = 4.9

slope = 17.5 slope = 1.8

slope = 4.4 slope = 2.2
Azure

Fig. 8: RDD analysis on the monthly variation of
repositories making use of each CI (= adoptions -

discontinuations) before and after introduction of GHA.

statistically significant effect of the event. The coefficients of
time and time after are significant for CircleCI and Azure.
These coefficients indicate that the introduction of GHA had
a significant impact on Travis, Azure and CircleCI usage.

To observe the effects of the introduction of GHA, Fig. 8
provides a visualisation of the RDD models for Travis, Cir-
cleCI and Azure. The figure confirms the observations of the
statistical analysis, revealing a decline in the monthly variation
of CI usage for each of them. We also observe a change in the
direction of the slope (from positive to negative), suggesting
that after the event the growth rate of CI usage decreases.
Still, for Travis and CircleCI, the number of adoptions remains
higher than the number of discontinuations. For Azure, how-
ever, the monthly CI usage variation start to become negative
after the event, implying that more repositories discontinue
Azure compared to those repositories adopting it.

The introduction of GHA aligns with a decreasing growth
rate of CI usage for Travis, CircleCI and Azure.

VII. DISCUSSION

The rise of GitHub Actions

Perhaps the most surprising result of our empirical analysis
is that GHA has become so popular so quickly. In less than 18
months time, GHA has changed the CI landscape completely,
becoming the dominating CI at the expense of Travis that had
been dominating the landscape for more than nine years. A
deeper quantitative and qualitative analysis might uncover the
reason for the popularity of GHA, but we can already emit a
number of reasons and hypotheses that deserve further study:

• GHA is fully integrated with GitHub, obviating the need
to resort to external CI services;

TABLE IV: RDD analysis of the monthly variation of CI usage, before and after official introduction of GHA.

CI event (error) time (error) time after (error) constant (error) R2

CIs landscape 146.0 (172.4) 25.8 (17.6) 132.1*** (24.8) 943.8*** (129.3) 0.94
Travis -357.1*** (64.5) 5.9 (6.6) -10.8 (9.3) 741.0*** (48.4) 0.86

CircleCI -148.8** (41.4) 17.5*** (4.2) -19.3** (6.0) 128.5*** (31.1) 0.57
AppVeyor -16.5 (20.1) -1.4 (2.1) -0.1 (2.9) 24.2 (15.1) 0.38

Azure -57.8*** (13.6) 4.4* (1.8) -6.6** (2.2) 22.2 (14.1) 0.79
GitLab CI -0.7 (4.6) -0.4 (0.5) -0.4 (0.7) 23.1*** (3.5) 0.46

Jenkins 17.6 (10.8) -2.2 (1.1) 2.4 (1.6) 22.6* (8.1) 0.22

*** p <0.001, ** p <0.01, * p <0.05

• GHA is trendy, very easy to set up and use, and directly
accessible to any GitHub repository through the Actions
tab;

• GitHub comes with a large marketplace, allowing repos-
itory maintainers to select the Actions they need, and
allowing Action developers to easily adapt existing Ac-
tions, or create new ones based on predefined templates;

• GHA provides a generic mechanism for automating any-
thing in the GitHub development workflow, making it
more general than “just” a CI/CD service. GHA is rather
feature-complete, allowing to automate not only commit-
related activities but also activities related to comments,
issues, pull requests and many more.

A parallel line of future work, similar in spirit to the work
of Zampetti et al. [10] on Travis pipelines, would consist of a
fine-grained analysis of how GitHub Actions and their usage
evolve over time. In the same line, we could study the effort
needed to adopt or migrate to a given CI, how easy it is to
modify a given CI usage, and so on. Such analysis would
require analysing the commits touching the CI-related files,
the number of involved contributors, etc.

The fall of Travis

During most of the observation period of our analysis,
Travis was dominating the CI landscape, used by more than
four out of five repositories up to January 2019. Since Novem-
ber 2020, nearly two years after the introduction of GHA, how-
ever, we observed an unexpected and sudden decrease in the
number of usages of Travis (see Fig. 2). This important change
trend coincides with the decision of Travis, on November 2nd
2020, to alter its free plan for public repositories2 coinciding
with a sudden increase in discontinuations of Travis combined
with a progressive decrease of adoptions of Travis (cf. Fig. 3).

According to the announcement, the change in pricing
structure has been decided in order to get shorter build times
and greater flexibility. However, at the same time, Travis
decided to impose some restrictions on the free plan. First,
they dropped support for MacOS builds. Second, they limited
the overall number of concurrent builds across all open-
source projects to around 560 jobs, with the consequence of
much longer build delays, especially during the day. Lastly,
they imposed a limit of 1,000 minutes of (cumulated) build
execution time for all Linux and Windows builds, even for

2https://blog.travis-ci.com/2020-11-02-travis-ci-new-billing

Jan
2020

Jan
2021

Jul Oct Apr Jul Oct Apr
0

500

1000

1500

2000

2500

nu
m

be
r o

f r
ep

os
ito

rie
s change in

 free plan

GHA

migrating to GHA
adopting Travis
discontinuing Travis

Fig. 9: Monthly number of repositories adopting Travis,
discontinuing Travis and migrating from Travis to GHA.

open-source projects. Even if the quota can be refurbished on
demand, these changes to the free plan have sparked numerous
complaints from maintainers of open-source projects.3

We investigated whether Travis’ decision resulted in a large
number of repositories migrating away from Travis to a com-
peting CI. Fig. 9 shows the monthly number of repositories
adopting and discontinuing Travis (as seen in Fig. 3), as well
as the number of repositories that migrated from Travis to
GHA. This figure shows that Travis’ change in free plan
drove many repositories to discontinue Travis and that most
of them migrated to GHA, much more than when GHA was
introduced. For instance, we found that 3,793 repositories
migrated away from Travis to GHA within the 3 months
following Travis’ change in free plan, accounting for more
than one third (37.5%) of all migrations from Travis to GHA
since its introduction 15 months before. For comparison, only
1,115 repositories migrated during the 3 months preceding the
change (11% of all migrations).

One should nevertheless note that, despite the many migra-
tions and discontinuations from Travis, it continues to be one
of the most popular CI services, remaining the secondmost
used CI for GitHub repositories of npm packages.

Co-usage of multiple CIs

In RQ2 we observed that around 12% of all repositories
use multiple CIs simultaneously. This is surprising since one
might intuitively expect all CIs to provide similar services.In
order to understand the reasons behind the use of multiple CIs,
we contacted the maintainers of some of the repositories in our
dataset that were found to co-use CIs. Based on the answers

3https://pastebin.com/2Y7LY0EN compiles some supporting references.

https://blog.travis-ci.com/2020-11-02-travis-ci-new-billing
https://pastebin.com/2Y7LY0EN

they provided, we identified several reasons why a repository
might rely on multiple CIs at the same time.

Firstly, most CIs have limitations in the number of jobs that
can be run in parallel, which can significantly increase the
time needed for builds. Using multiple CIs allows to benefit
from a kind of load balancing at the level of the builds. One
maintainer reported: “runtime balancing at the DNS level is
not enough for me. I need that also at build time.”
Job execution by multiple CIs was mentioned by a maintainer
as a more fault tolerant approach: “my git repo is built and
tested against at least 3 remotes. I occasionally see any one of
them down once in a few months or so. But more importantly,
my own pipeline sometimes has specific parts failing on one
or more of those providers. One ultimately always passes so
that my nightly build is always safe and done”.
Another reason to use multiple CIs relates to the set of sup-
ported operating systems. Although most CIs support today’s
main operating systems, this has not always been the case. For
example, AppVeyor was the only major CI offering Windows
builds up to 2018. At the same time, AppVeyor was known to
have strong limitations in its free plan, such as no concurrent
jobs or long build queues.4 Therefore, repositories wishing to
benefit from Windows support and fast builds for Linux had
no choice but to combine AppVeyor with another CI. This
may explain why we found, for an overwhelming majority
of AppVeyor usages, repositories co-using Travis at the same
time. Interestingly, the decline of AppVeyor observed in RQ1

coincides with the availability of Windows builds in competing
CIs. Indeed, Travis started to support Windows builds in
October 2018,5 shortly after Azure. For comparison, support
for Windows was added in August 2019 for CircleCI and in
January 2020 for GitLab, and was already available in GHA
since its release in November 2019.

As a follow-up research, we aim to complement our quanti-
tative analysis by more qualitative insights (e.g., by conducting
developer surveys) in order to better understand the reasons
that drove developers to use multiple CIs simultaneously and
the implications of doing so, to identify the reasons and the
benefits of migrating from a given CI to another one. With such
additional insight, we plan to create recommendation models
to suggest repository maintainers when to complement a given
CI and by which one, as well as when and how to migrate to
another CI and which one.

VIII. THREATS TO VALIDITY

Using the framework of Wohlin et al. [11], we discuss the
threats that may affect the validity of our findings.

Construct validity: As any empirical study focusing on
GitHub project histories, the validity of our findings is subject
to the intrinsic limitations of mining git [6] and GitHub [4].
Another important threat concerns the accuracy of our dataset.
We detected CI usage in GitHub repositories on the basis of

4https://pastebin.com/RAH0wFQ5 compiles some supporting references.
5https://blog.travis-ci.com/2018-10-11-windows-early-release

the presence of specific CI-related files. This is an underesti-
mation, since it precluded us from detecting CIs that are self-
hosted using a locally configured service, that are configured
through their web interface (e.g., AppVeyor, Jenkins, Amplify
or Buddy), or that do not impose a specific file path for their
configuration files (e.g., Buildkite). This well-known problem
has been reported by others as well [12] and it explains why
the use of Jenkins is underrepresented in our dataset. In fact,
we have only been able to detect usages of Jenkins since the
introduction of its pipeline-as-code feature in April 2016.

To some extent, our dataset is also subject to overestimation,
since the presence of CI-related files does not necessarily
imply that the CI is actually being used and triggers any
build. It is also likely that we overestimated the use of
GHA as a CI. We assumed that any use of GHA relates to
continuous integration, while it can serve different purposes
such as welcoming users, closing issues, etc. However, this
is unlikely to affect our findings, since the vast majority of
the available Actions on the GitHub marketplace relate to
continuous integration, and since our manual inspection of
several repositories did not reveal any case where GHA is
used exclusively for tasks unrelated to continuous integration.

Conclusion validity: Since our conclusions are mostly
based on quantitative observations, they are unlikely to be
affected by such threats.

Internal validity: We set a threshold of 30 days to
detect CI usages in repositories to reduce the possible noise
introduced by short-lived tests or attempts to integrate a CI.
We used the same threshold to distinguish between co-usages
and migrations, notably to accommodate for a transition period
during migrations. We manually checked how variations in this
threshold would affect the reported findings. Despite some
expected small variations on the observations we made, the
findings remain the same.

External validity: Our findings do not necessarily gen-
eralise beyond the considered dataset of GitHub repositories
for active npm packages. The results may differ for soft-
ware repositories belonging to other package distributions;
for arbitrary GitHub projects; for software repositories using
other online coding platforms (e.g., GitLab); and for other
versioning systems. Replications of our analysis beyond the
current dataset would be needed to check whether the observed
findings generalise in a wider context.

IX. RELATED WORK

To the best of our knowledge, Kinsman et al. [13] are the
only researchers having empirically studied GHA. Their anal-
ysis focused on the adoption of GHA by GitHub repositories.
Less than 1% of the considered active repositories were found
to adopt GHA, and only 926 projects in their dataset had
adopted it for at least 6 months. Our own analysis, based
on more recent data, shows a quite different story, with a
dramatic increase in popularity of GHA in 2020 and 2021. The
research questions targeted by our analysis are complementary,
since they focused on a coarse-grained analysis to compare
GHA against other CIs, whereas [13] carried out a fine-grained

https://pastebin.com/RAH0wFQ5
https://blog.travis-ci.com/2018-10-11-windows-early-release

analysis to categorise the types of actions being used and
discussed, as well as their impact on pull requests.

Given its popularity, the use of Travis in GitHub projects has
been a prolific empirical research topic [10], [12], [14]–[18].
For example, Vasilescu et al. [12] empirically studied Travis
usage in 918 out of 1,884 GitHub projects (corresponding to
a usage ratio of 48.7%), extracted in November 2014. They
observed that projects using Travis have higher productivity
in terms of more pull requests processed (accepted, merged
and rejected) without an observable decrease in quality (in
terms of reported bugs). As another example, Cassee et al.
[15] studied the impact of Travis on code reviewing practices
in 685 GitHub projects. They observed that in projects using
Travis, pull requests are having less discussions, suggesting
that the same amount of work can be carried out with less
need for interdeveloper communication. Beller et al. [16]
focused on the relation between testing and Travis usage,
by analysing failures in 2,640,825 Java and Ruby builds.
Zampetti et al. [10] conducted a fine-grained analysis of
how specific Travis pipelines evolve and get restructured over
time. In line with our quantitative observations of the fall
of Travis in GitHub projects, Widder et al. [19] identified,
through a mixed methods study, eight main reasons why
projects decided to abandon the use of Travis: long build times,
unsupported technologies, CI consistency across projects, lack
of tests, infrequent changes, poor user experience, closed
source concerns, and troubleshooting build failures. Given that
the study was conducted before the official support of CI
through GHA, the migration towards GHA was not identified
as a main reason.

In their seminal blog [20], Fowler and Foemmel introduced
10 core CI practices to increase the speed of software devel-
opment. Since then, dozens of open source or commercial CI
tools and services have been introduced and used. Elaszhary
et al. [21] studied the benefits and challenges of these 10
core CI practices in three software-producing companies using
them. These practices were broadly implemented with quite
some variation, calling for further studies to understand these
differences and their impact on software quality and process
improvement. Specifically focusing on npm package reposito-
ries on GitHub, Lamba et al. [22] studied the spread of CI and
quality assurance tools over time. They found social factors
to contribute significantly to the probability of tool adoption,
with characteristic differences between early and late adopters.
They also observed that repositories tend to stick to a given
CI tool once it has been adopted.

Hilton et al. [7] carried out a mixed-methods study of CI
usage in GitHub projects. They surveyed 442 developers and
analysed 35,555 GitHub projects and 1,529,291 builds to gain
insights in the costs and benefits associated with CI. They
observed that CIs are widely used, with Travis (90.1%) and
CircleCI (19.1%) being the most popular by far, and a median
adoption rate of one year. They also hypothesised that the CI
adoption rate (40.27%) would increase even further. Our more
recent analysis did reveal a higher CI adoption rate (53.61%
in May 2021) but we did not observe an increase in adoption

rate over time. We could confirm that Travis and CircleCI
were among the top 3 most popular CIs, but GHA emerged as
a newcomer in the CI landscape that has overtaken all other
CIs in popularity.

X. CONCLUSION

In this article we reported on an exploratory census of the
evolving landscape of CI services used in GitHub repositories
for npm. Specific changes in policies and features offered
by existing CIs, as well as the introduction of new CIs,
has lead to important shifts in CI popularity and usage. To
show this, we conducted a longitudinal quantitative analysis
of CI co-usage and migration in 91,810 GitHub repositories
corresponding to the nine-year development history of npm
packages. We focused on the seven most popular CI services
covering 99% of all observed usages: Travis, GitHub Actions
(GHA), CircleCI, AppVeyor, Azure, GitLab CI and Jenkins.

Noticing that 1 out of 4 repositories has used more than one
CI during its lifetime, we analysed the simultaneous usage of
multiple CIs. This revealed a frequent co-usage of AppVeyor
with other CI services in order to enable builds for the
Windows platform. Yet, several limitations of AppVeyor and
improvements in competing CIs have lead many repositories
to stop using AppVeyor.

Travis and GHA were the predominant CIs, having been
used in over 90% of the considered repositories. We found
objective evidence for the rise of GHA, becoming the most
dominant CI in less than 18 months, taking over the role of
Travis that dominated the scene for more than nine years.
Using regression discontinuity design we determined that
introduction of GHA aligned with a decreasing growth rate
in the usage of Travis, CircleCI and Azure. We also found
evidence for the fall of Travis due to a combination of multiple
factors. The introduction of GHA as a new CI caused many
repositories to migrate from Travis to GHA. The decision
to change the free plan policy of Travis further increased
migrations from Travis to one of its competitors.

Our results are based on empirical observations, providing
insights in how the Github CI landscape has been experiencing
important changes. If the empirical findings should generalise
beyond npm, they provide rich information to OSS practition-
ers on the most appropriate CI to adopt as well on which CIs
to stop using. Maintainers of CI solutions can benefit from it
as well, to counter negative effects of implementation choices
and policy changes, as well as to cope with the impact of
competing services, in order to survive in the rapidly evolving
CI landscape. Our research also opens the door for future
qualitative analyses in order to answer important research
questions such as: What are the reasons why projects migrate
between CIs? How easy is it to perform such a migration?
What are the consequences of those migrations?

ACKNOWLEDGMENT

This research is supported by the Fonds de la Recherche
Scientifique – FNRS under Grants number O.0157.18F- RG43
(Excellence of Science project SECO-ASSIST) and T.0017.18.

REFERENCES

[1] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
GitHub: Transparency and collaboration in an open software repository,”
in International Conference on Computer Supported Cooperative Work
(CSCW). ACM, 2012, pp. 1277–1286.

[2] C. Chandrasekara and P. Herath, Hands-on GitHub Actions: Implement
CI/CD with GitHub Action Workflows for Your Applications. Apress,
2021.

[3] GitHub, “The 2020 state of the octoverse - community report,” 2020.
[Online]. Available: octoverse.github.com

[4] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “The promises and perils of mining GitHub,” in Inter-
national Conference on Mining Software Repositories (MSR). ACM,
2014, pp. 92–101.

[5] J. Katz, “Libraries.io open source repository and dependency metadata
(version 1.4.0) [data set],” http://doi.org/10.5281/zenodo.2536573, 2018.

[6] C. Bird, P. C. Rigby, E. T. Barr, D. Hamilton, D. M. German, and
P. Devanbu, “The promises and perils of mining git,” in Working
Conference on Mining Software Repositories (MSR). IEEE Computer
Society, May 2009. [Online]. Available: https://www.microsoft.com/
en-us/research/publication/the-promises-and-perils-of-mining-git/

[7] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
costs, and benefits of continuous integration in open-source projects,”
in International Conference on Automated Software Engineering (ASE).
IEEE, 2016, pp. 426–437.

[8] D. L. Thistlethwaite and D. T. Campbell, “Regression-discontinuity
analysis: An alternative to the ex post facto experiment.” Journal of
Educational Psychology, vol. 51, no. 6, pp. 309–317, 1960.

[9] T. D. Cook and D. T. Campbell, Quasi-experimentation : design &
analysis issues for field settings. Boston: Houghton Mifflin, 1979.

[10] F. Zampetti, S. Geremia, G. Bavota, and M. Di Penta, “Ci/cd pipelines
evolution and restructuring: A qualitative and quantitative study,” in
International Conference on Software Maintenance and Evolution (IC-
SME), 2021.

[11] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and
A. Wessln, Experimentation in Software Engineering. Springer, 2012.

[12] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and
productivity outcomes relating to continuous integration in GitHub,” in
Joint Meeting on Foundations of Software Engineering (FSE), 2015, pp.
805–816.

[13] T. Kinsman, M. Wessel, M. A. Gerosa, and C. Treude, “How do
software developers use GitHub actions to automate their workflows?”
in International Conference on Mining Software Repositories (MSR),
2021.

[14] B. Vasilescu, S. van Schuylenburg, J. Wulms, A. Serebrenik, and M. G.
van den Brand, “Continuous integration in a social-coding world: Em-
pirical evidence from GitHub,” in International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2014, pp. 401–405.

[15] N. Cassee, B. Vasilescu, and A. Serebrenik, “The silent helper: The
impact of continuous integration on code reviews,” in International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
2020, pp. 423–434.

[16] M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests broke the build:
An explorative analysis of Travis CI with GitHub,” in International
Conference on Mining Software Repositories (MSR), 2017, pp. 356–367.

[17] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu, “Wait for it:
Determinants of pull request evaluation latency on GitHub,” in Working
Conference on Mining Software Repositories (MSR), 2015, pp. 367–371.

[18] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu, “The
impact of continuous integration on other software development prac-
tices: A large-scale empirical study,” in International Conference on
Automated Software Engineering (ASE), 2017, pp. 60–71.

[19] D. G. Widder, M. Hilton, C. Kästner, and B. Vasilescu, “A conceptual
replication of continuous integration pain points in the context of Travis
CI,” in Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, 2019, pp. 647–658.

[20] M. Fowler and M. Foemmel, “Continuous Integration,” https:
//martinfowler.com/articles/originalContinuousIntegration.html, Septem-
ber 2000, [Online; accessed 3 January 2022].

[21] O. Elazhary, C. Werner, Z. S. Li, D. Lowlind, N. A. Ernst, and
M.-A. Storey, “Uncovering the benefits and challenges of continuous
integration practices,” IEEE Transactions on Software Engineering, pp.
1–1, 2021.

[22] H. Lamba, A. Trockman, D. Armanios, C. Kästner, H. Miller, and
B. Vasilescu, “Heard it through the gitvine: An empirical study of tool
diffusion across the npm ecosystem,” in Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE). ACM, 2020, pp. 505–517.

octoverse.github.com
https://www.microsoft.com/en-us/research/publication/the-promises-and-perils-of-mining-git/
https://www.microsoft.com/en-us/research/publication/the-promises-and-perils-of-mining-git/
https://martinfowler.com/articles/originalContinuousIntegration.html
https://martinfowler.com/articles/originalContinuousIntegration.html

	Introduction
	Data Extraction
	RQ1: How did the CI landscape evolve?
	RQ2: What are the most frequent combinations of CIs?
	RQ3: How frequently are CIs being replaced by an alternative?
	RQ4: How has the CI landscape changed since GHA was introduced?
	Discussion
	Threats to Validity
	Related Work
	Conclusion
	References

