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Abstract. Two-player (antagonistic) games on (possibly stochastic) graphs are a prevalent model
in theoretical computer science, notably as a framework for reactive synthesis.
Optimal strategies may require randomisation when dealing with inherently probabilistic goals,
balancing multiple objectives, or in contexts of partial information. There is no unique way to define
randomised strategies. For instance, one can use so-called mixed strategies or behavioural ones. In
the most general settings, these two classes do not share the same expressiveness. A seminal result
in game theory — Kuhn’s theorem — asserts their equivalence in games of perfect recall.
This result crucially relies on the possibility for strategies to use infinite memory, i.e., unlimited
knowledge of all the past of a play. However, computer systems are finite in practice. Hence it is
pertinent to restrict our attention to finite-memory strategies, defined as automata with outputs.
Randomisation can be implemented in these in different ways: the initialisation, outputs or transitions
can be randomised or deterministic respectively. Depending on which aspects are randomised, the
expressiveness of the corresponding class of finite-memory strategies differs.
In this work, we study two-player turn-based stochastic games and provide a complete taxonomy of
the classes of finite-memory strategies obtained by varying which of the three aforementioned com-
ponents are randomised. Our taxonomy holds both in settings of perfect and imperfect information.

Keywords: two-player games on graphs · stochastic games · Markov decision processes · finite-
memory strategies · randomised strategies

1 Introduction

Games on graphs. Games on (possibly stochastic) graphs have been studied for decades, both
for their own interest (e.g., [EM79, Con92, GZ05]) and for their value as a framework for reactive
synthesis (e.g., [GTW02, Ran13, BCH+16, BCJ18]). The core problem is almost always to find op-
timal strategies for the players: strategies that guarantee winning for Boolean winning conditions
(e.g., [EJ88, Zie98, BHR16, BDOR19]), or strategies that achieve the best possible payoff in quan-
titative contexts (e.g., [EM79, BMR+18, BHRR19]). In multi-objective settings, one is interested in
Pareto-optimal strategies (e.g., [CRR14, VCD+15, RRS17, DKQR20]), but the bottom line is the same:
players are looking for strategies that guarantee the best possible results.

In reactive synthesis, we model the interaction between a system and its uncontrollable environment
as a two-player antagonistic game, and we represent the specification to ensure as a winning objective.
An optimal strategy for the system in this game then constitutes a formal blueprint for a controller to
implement in the real world [BCJ18].
Randomness in strategies. In essence, a pure strategy is simply a function mapping histories (i.e., the
past and present of a play) to an action deterministically.

Optimal strategies may require randomisation when dealing with inherently probabilistic goals,
balancing multiple objectives, or in contexts of partial information: see, e.g., [CD12, RRS17, BRR17,
DKQR20]. There are different ways of randomising strategies. For instance, a mixed strategy is essentially
a probability distribution over a set of pure strategies. That is, the player randomly selects a pure
strategy at the beginning of the game and then follows it for the entirety of the play without resorting to
randomness ever again. By contrast, a behavioural strategy randomly selects an action at each step: it
thus maps histories to probability distributions over actions.
Kuhn’s theorem. In full generality, these two definitions yield different classes of strategies (e.g., [CDH10,
OR94]). Nonetheless, Kuhn’s theorem [Aum16] proves their equivalence under a mild hypothesis: in games
of perfect recall, for any mixed strategy there is an equivalent behavioural strategy and vice-versa. A game
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Fellow.

ar
X

iv
:2

20
1.

10
82

5v
1 

 [
cs

.G
T

] 
 2

6 
Ja

n 
20

22



2 James C. A. Main and Mickael Randour

is said to be of perfect recall for a given player if said player never forgets their previous knowledge and
the actions they have played (i.e., they can observe their own actions). Let us note that perfect recall and
perfect information are two different notions: perfect information is not required to have perfect recall.

Let us highlight that Kuhn’s theorem crucially relies on two elements. First, mixed strategies can be
distributions over an infinite set of pure strategies. Second, strategies can use infinite memory, i.e., they
are able to remember the past completely, however long it might be. Indeed, consider a game in which a
player can choose one of two actions in each round. One could define a (memoryless) behavioural strategy
that selects one of the two actions by flipping a coin each round. This strategy generates infinitely many
sequences of actions, therefore any equivalent mixed strategy needs the ability to randomise between
infinitely many different sequences, and thus, infinitely many pure strategies. Moreover, an infinite number
of these sequences require infinite memory to be generated (due to their non-regularity).
Finite-memory strategies. From the point of view of reactive synthesis, infinite-memory strategies,
along with randomised ones relying on infinite supports, cannot be realistically implemented. This is why
a plethora of recent advances has focused on finite-memory strategies, usually represented as (a variation
on) Mealy machines, i.e., finite automata with outputs. See, e.g., [GZ05, CRR14, BFRR17, DKQR20,
BLO+20, BORV21]. Randomisation can be implemented in these finite-memory strategies in different
ways: the initialisation, outputs or transitions can be randomised or deterministic respectively.

Depending on which aspects are randomised, the expressiveness of the corresponding class of finite-
memory strategies differs: in a nutshell, Kuhn’s theorem crumbles when restricting ourselves to finite
memory. For instance, we show that some finite-memory strategies with only randomised outputs (i.e., the
natural equivalent of behavioural strategies) cannot be emulated by finite-memory strategies with only
randomised initialisation (i.e., the natural equivalent of mixed strategies) — see Lemma 5.1. Similarly, it
is known that some finite-memory strategies that are encoded by Mealy machines using randomisation in
all three components admit no equivalent using randomisation only in outputs [dAHK07, CDH10].

DRR = RRR = RDR
(Thm. 4.2, 4.3)

RRD

DDR

DRD (behavioural)

RDD (mixed)

DDD (pure)

Lem. 5.3 (strictness)

Lem. 5.4 (strictness)

Lem. 5.2 (strictness)

Thm. 4.1, Lem. 5.1
Direct

Direct

Fig. 1.1. Lattice of strategy classes in terms of expressible probability distributions over plays. In the three-letter
acronyms, the letters, in order, refer to the initialisation, outputs and updates of the Mealy machines: D and R
respectively denote deterministic and randomised components.

Our contributions. We consider two-player zero-sum stochastic games (e.g., [Sha53, Con92, MS03,
BORV21]), encompassing two-player (deterministic) games (e.g., [BLO+20]) and Markov decision processes
(e.g., [RRS17]) as particular subcases. We establish a Kuhn-like taxonomy of the classes of finite-memory
strategies obtained by varying which of the three aforementioned components are randomised: we illustrate
it in Figure 1.1, and describe it fully in Section 3.

Let us highlight a few elements. Naturally, the least expressive model corresponds to pure strategies.
In contrast to Kuhn’s theorem, and as noted in the previous paragraph, we see that mixed strategies
are strictly less expressive than behavioural ones. We also observe that allowing randomness both in
initialisation and in outputs (RRD strategies) yields an even more expressive class — and incomparable to
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what is obtained by allowing randomness in updates only. Finally, the most expressive class is obviously
obtained when allowing randomness in all components; yet it may be dropped in initialisation or in
outputs without reducing the expressiveness — but not in both simultaneously.

To compare the expressiveness of strategy classes, we consider outcome-equivalence, as defined in
Section 2. Intuitively, two strategies are outcome-equivalent if, against any strategy of the opponent, they
yield identical probability distributions (i.e., they induce identical Markov chains). Hence we are agnostic
with regard to the objective, winning condition, payoff function, or preference relation of the game, and
with regard to how they are defined (e.g., colours on actions, states, transitions, etc).

Finally, let us note that in our setting of two-player stochastic games, the perfect recall hypothesis
holds. Most importantly, we assume that actions are visible. Lifting this hypothesis drastically changes
the relationships between the different models. While our main presentation considers perfect-information
games for the sake of simplicity, we show in Section 6 that our results hold in games of imperfect
information too, assuming visible actions.
Related work. There are three main axes of research related to our work.

The first one deals the various types of randomness one can inject in strategies and their consequences.
Obviously, Kuhn’s theorem [Aum16] is a major inspiration, as well as the examples of differences between
strategy models presented in [CDH10]. On a different but related note, [CDGH15] studies when randomness
is not helpful in games nor strategies (as it can be simulated by other means).

The second direction concentrates on trying to characterise the power of finite-memory strategies,
with or without randomness. One can notably cite [GZ05] for memoryless strategies, and [LPR18,
BLO+20], [BORV21], and [BRV21] for finite-memory ones in deterministic, stochastic, and infinite-arena
games respectively.

The third axis is interested in the use of randomness as a means to simplify strategies and/or reduce
their memory requirements. Examples of this endeavour can be found in [CdAH04, CHP08, Hor09,
CRR14, MPR20]. These are further motivations to understand randomised strategies even in contexts
where randomness is not needed a priori to play optimally.
Outline. Section 2 summarises all preliminary notions. In Section 3, we present the taxonomy illustrated
in Figure 1.1 and comment it. We divide its proofs into two sections: Section 4 establishes the inclusions,
and Section 5 proves their strictness. Finally, Section 6 presents how we transfer our results to the richer
setting of games of imperfect information.
Acknowledgements. Mickael Randour is a member of the TRAIL Institute.

2 Preliminaries

Probability. Given any finite or countable set A, we write D(A) of the set of probability distributions
over A, i.e., the set of functions p : A→ [0, 1] such that

∑
a∈A p(a) = 1. Similarly, given some set A and

some σ-algebra F over A, we denote by D(A,F) the set of probability distributions over the measurable
space (A,F).
Games. We consider two-player stochastic games of perfect information played on graphs. We denote
the two players by P1 and P2. In such a game, the set of states is partitioned between the two players. At
the start of a play, a pebble is placed on some initial state and each round, the owner of the current state
selects an action available in said state and the next state is chosen randomly following a distribution
depending on the current state and chosen action. The game proceeds for an infinite number of rounds,
yielding an infinite play.

Formally, a (two-player) stochastic game (of perfect information) is a tuple G = (S1, S2, A, δ) where
S = S1 ] S2 is a non-empty finite set of states partitioned into a set S1 of states of P1 and a set S2

of states of P2, A is a finite set of actions and δ : S × A → D(S) is a (partial) probabilistic transition
function. For any state s ∈ S, we write A(s) for the set of actions available in s, which are the actions
a ∈ A such that δ(s, a) is defined. We assume that for all s ∈ S, A(s) is non-empty, i.e., there are no
deadlocks in the game.

A play of G is an infinite sequence s0a0s1 . . . ∈ (SA)ω such that for all k ∈ N, δ(sk, ak)(sk+1) > 0. A
history is a finite prefix of a play ending in a state. Given a play π = s0a0s1a1 . . . and k ∈ N, we write π|k
for the history s0a0 . . . ak−1sk. For any history h = s0a0 . . . ak−1sk, we let last(h) = sk. We write Plays(G)
to denote the set of plays of G, Hist(G) to denote the set of histories of G and Histi(G) = Hist(G)∩ (SA)∗Si
for the set of histories ending in states controlled by Pi. Given some initial state sinit ∈ S, we write
Plays(G, sinit) and Hist(G, sinit) for the set of plays and histories starting in state sinit respectively.
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An interesting class of stochastic games which has been extensively studied is that of deterministic
games; a game G = (S1, S2, A, δ) is a deterministic game if for all s ∈ S and a ∈ A(s), δ(s, a) is a Dirac
distribution. Another interesting class of games is that of one-player games. A game G = (S1, S2, A, δ) is
a one-player game of Pi if S3−i is empty, i.e., all states belong to Pi. These one-player games are the
equivalent of Markov decision processes in our context, and will be referred to as such.
Strategies and outcomes. A strategy is a function that describes how a player should act based on a
history. Players need not act in a deterministic fashion: they can use randomisation to select an action.
Formally, a (behavioural) strategy of Pi is a function σi : Histi(G)→ D(A) such that for all histories h
and all actions a ∈ A, σi(h)(a) > 0 implies a ∈ A(last(h)). In other words, a strategy assigns to any
history ending in a state controlled by Pi a distribution over the actions available in this state.

When both players fix a strategy and an initial state is decided, the game becomes a purely stochastic
process (a Markov chain). Let us recall the relevant σ-algebra for the definition of probabilities over plays.
For any history h, we define

Cyl(h) = {π ∈ Plays(G) | h is a prefix of π},

the cylinder of h, consisting of plays that extend h. Let us denote by FG the σ-algebra generated by all
cylinder sets.

Let σ1 and σ2 be strategies of P1 and P2 respectively and sinit ∈ S be an initial state. We define the
probability measure (over (Plays(G),FG)) induced by playing σ1 and σ2 from sinit in G, written Pσ1,σ2

sinit ,
in the following way: for any history h = s0a0 . . . sn ∈ Hist(G, sinit), the probability assigned to Cyl(h) is
given by the product

Pσ1,σ2
sinit (Cyl(h)) =

n−1∏
k=0

τk(s0a0 . . . sk)(ak) · δ(sk, ak, sk+1),

where τk = σ1 if sk ∈ S1 and τk = σ2 otherwise. For any history h ∈ Hist(G) \ Hist(G, sinit), we set
Pσ1,σ2
sinit (Cyl(h)) = 0. By Carathéodory’s extension theorem [Dur19, Theorem A.1.3], the measure described

above can be extended in a unique fashion to (Plays(G),FG).
Let σ1 be a strategy of P1. A play or prefix of play s0a0s1 . . . is said to be consistent with σ1 if for all

indices k, sk ∈ S1 implies σ1(s0a0 . . . sk)(ak) > 0.1 Consistency with respect to strategies of P2 is defined
analogously.
Outcome-equivalence of strategies. In later sections, we study the expressiveness of finite-memory
strategy models depending on the type of randomisation allowed. Two strategies may yield the same
outcomes despite being different: the actions suggested by a strategy in an inconsistent history can be
changed without affecting the outcome. Therefore, instead of using the equality of strategies as a measure
of equivalence, we consider some weaker notion of equivalence, referred to as outcome-equivalence.

We say that two strategies σ1 and τ1 of P1 are outcome-equivalent if for any strategy σ2 of P2 and for
any initial state sinit, the probability distributions Pσ1,σ2

sinit and Pτ1,σ2
sinit coincide.

We now provide a useful criterion to establish outcome-equivalence of strategies, that does not invoke
the probability distributions they induce. When studying the outcome-equivalence of two strategies,
we are only concerned with the suggestions these strategies provide in histories that are consistent
with them. In other words, any deviation in unreachable histories does not affect the outcome. Hence,
one could reformulate outcome-equivalence as having to suggest the same distributions over actions in
histories that are consistent with (one of) the strategies. In the sequel, we prove that this reformulation is
indeed equivalent to the definition of outcome-equivalence. We rely on this reformulation to prove the
outcome-equivalence of two strategies.

Lemma 2.1 (Strategic criterion for outcome-equivalence). Let σ1 and τ1 be two strategies of P1.
These two strategies are outcome-equivalent if and only if for all histories h ∈ Hist1(G), h consistent with
σ1 implies σ1(h) = τ1(h).

Proof. First, we assume that σ1 and τ1 are outcome-equivalent strategies. Let h ∈ Hist1(G) be a history
controlled by P1 that is consistent with σ1. We must prove that σ1(h) = τ1(h) holds. Let a ∈ A(last(h))
be an action enabled in the last state of h, we establish that σ1(h)(a) = τ1(h)(a).

Fix some P2 strategy σ2 that is consistent with h and some state s ∈ S such that δ(last(h), a)(s) > 0.
Let us denote by sinit the first state of h. The outcome-equivalence of σ1 and τ1 ensures Pσ1,σ2

sinit (Cyl(h)) =

1 We use the terminology of consistency not only for plays and histories, but also for prefixes of plays that end
with an action.
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Pτ1,σ2
sinit (Cyl(h)) and Pσ1,σ2

sinit (Cyl(has)) = Pτ1,σ2
sinit (Cyl(has)). Furthermore, we have Pσ1,σ2

sinit (Cyl(h)) > 0 because
h is assumed to be consistent with σ1 and σ2. We obtain from the definition of the probability of cylinders
that, for λ1 ∈ {σ1, τ1},

Pλ1,σ2
sinit (Cyl(has)) = Pλ1,σ2

sinit (Cyl(h)) · λ1(h)(a) · δ(last(h), a)(s).

It follows from δ(last(h), a)(s) > 0 and Pσ1,σ2
sinit (Cyl(h)) = Pτ1,σ2

sinit (Cyl(h)) > 0 and the equality above that
σ1(h)(a) = τ1(h)(a). This concludes the proof of the first direction of the lemma.

Now, let us assume that for any history h ∈ Hist1(G) controlled by P1, if h is consistent with σ1, then
σ1(h) = τ1(h). We must prove that for any initial state sinit ∈ S and any strategy σ2 of P2, we have
Pσ1,σ2
sinit = Pτ1,σ2

sinit .
Fix sinit ∈ S and σ2 a strategy of P2. It suffices to show that Pσ1,σ2

sinit and Pτ1,σ2
sinit coincide over cylinder

sets by Carathéodory’s extension theorem. We use an inductive argument as follows: we assume that the
two probability measures coincide over all cylinders of histories with k actions and deduce that the two
probability measures coincide over cylinders of histories with k + 1 actions.

The base case concerns histories with no actions. For any state s ∈ S, we have Pσ1,σ2
sinit (Cyl(s)) =

Pτ1,σ2
sinit (Cyl(s)) = 0 if s 6= sinit and 1 otherwise. Now, we assume that for all histories h ∈ Hist(G) with k

actions, we have Pσ1,σ2
sinit (Cyl(h)) = Pτ1,σ2

sinit (Cyl(h)).
Fix a history h′ = has ∈ Hist(G) with k + 1 actions. We will distinguish two cases based on the owner

of the last state of the prefix h. First, let us assume that last(h) ∈ S2, i.e., P2 controls the last state of h.
For λ1 ∈ {σ1, τ1}, we have

Pλ1,σ2
sinit (Cyl(h′)) = Pλ1,σ2

sinit (Cyl(h)) · σ2(h)(a) · δ(last(h), a)(s)
= Pσ1,σ2

sinit (Cyl(h)) · σ2(h)(a) · δ(last(h), a)(s),

by the induction hypothesis. This proves that Pσ1,σ2
sinit (Cyl(h′)) = Pτ1,σ2

sinit (Cyl(h′)).
Now, let us assume that last(h) ∈ S1. Then we have, for λ1 ∈ {σ1, τ1},

Pλ1,σ2
sinit (Cyl(h′)) = Pλ1,σ2

sinit (Cyl(h)) · λ1(h)(a) · δ(last(h), a)(s). (2.1)

We distinguish two subcases. First, let us assume that the history h is not consistent with σ1. Then
it follows from the inductive hypothesis that Pσ1,σ2

sinit (Cyl(h)) = Pτ1,σ2
sinit (Cyl(h)) = 0. From Equation (2.1),

we conclude Pσ1,σ2
sinit (Cyl(h′)) = Pτ1,σ2

sinit (Cyl(h′)) = 0. If we now assume h is consistent with σ1, it follows
from our hypothesis on the two strategies that σ1(h)(a) = τ1(h)(a). By combining the former with the
inductive hypothesis and Equation (2.1), we obtain Pσ1,σ2

sinit (Cyl(h′)) = Pτ1,σ2
sinit (Cyl(h′)).

The inductive argument above shows that Pσ1,σ2
sinit (Cyl(h)) = Pτ1,σ2

sinit (Cyl(h)) for any history h ∈ Hist(G),
which is sufficient to ensure Pσ1,σ2

sinit = Pτ1,σ2
sinit . This ends the proof of the second implication.

Subclasses of strategies. A strategy is called pure if it does not use randomisation; a pure strategy
can be viewed as a function Histi(G)→ A. A strategy that only uses information on the current state
of the play is called memoryless: a strategy σi of Pi is memoryless if for all histories h, h′ ∈ Histi(G),
last(h) = last(h′) implies σi(h) = σi(h

′). Memoryless strategies can be viewed as functions Si → D(A).
Strategies that are both memoryless and pure can be viewed as functions Si → A.

A strategy σ is said to be finite-memory (FM) if it can be encoded by a Mealy machine. A Mealy
machine is an automaton with outputs along its edges. In the context of randomised strategies, we include
randomisation in the initialisation, outputs and updates (i.e., transitions) of the Mealy machine. Formally,
a stochastic Mealy machine of Pi is a tupleM = (M,µinit, αup, αnext), where M is a finite set of memory
states, µinit ∈ D(M) is an initial distribution, αup : M ×S×A→ D(M) is the (stochastic) update function
and αnext : M × Si → D(A) is the (stochastic) next-move function.

Before we explain how to define the strategy induced by a Mealy machine, let us first describe how
these machines work. Fix a Mealy machineM = (M,µinit, αup, αnext). Let s0 ∈ S. At the start of a play,
an initial memory state m0 is selected randomly following µinit. Then, at each step of the play such that
sk ∈ Si, an action ak is chosen following the distribution αnext(mk, sk), and otherwise an action is chosen
following the other player’s strategy. The memory state mk+1 is then randomly selected following the
distribution αup(mk, sk, ak) and the game state sk+1 is chosen following the distribution δ(sk, ak), both
choices being made independently.

Let us now explain how a strategy can be derived from a Mealy machine. As explained previously,
when in a certain memory state m ∈ M and game state s ∈ Si, the probability of an action a ∈ A(s)
being chosen is given by αnext(m, s)(a). Therefore, the probability of choosing the action a ∈ A after some
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history h = ws (where w ∈ (SA)∗ and s = last(h)) is given by the sum, for each memory state m ∈M , of
the probability that m was reached afterM processes w, multiplied by αnext(m, s)(a).

To provide a formal definition of the strategy induced byM, we must first describe the distribution
over memory states afterM processes elements of (SA)∗. We formally define this distribution inductively.
Details on how to derive the formulae for the update of these distributions, which use conditional
probabilities, are relegated to Appendix A.

The distribution µε over memory states after reading the empty word ε is by definition µinit. Assume
inductively we know the distribution µw for w = s0a0 . . . sk−1ak−1 and let us explain how one derives
µwskak from µw for any state sk ∈ supp(δ(sk−1, ak−1)) and for any action ak ∈ A(sk).

If sk ∈ S3−i, i.e., sk is not controlled by the owner of the strategy, the action ak does not introduce
any conditions on the current memory state. Therefore, we set, for any memory state m ∈M ,

µwskak(m) =
∑
m′∈M

µw(m
′) · αup(m

′, sk, ak)(m),

which consists in checking for each predecessor state m′, what the probability of moving to memory state
m is and weighing the sum by the probability of being in m′.

If sk ∈ Si, i.e., sk is controlled by the owner of the strategy, then the choice of an action conditions
what the predecessor memory states could be. If we have, for all memory states m′ ∈ M such that
µw(m

′) > 0, that αnext(m
′, sk)(ak) = 0, then the action ak is actually never chosen. In this case, to ensure

a complete definition, we perform an update as in the previous case. Otherwise, we condition updates on
the likelihood of being in a memory state knowing that the action ak was chosen. We set, for any memory
state m ∈M ,

µwskak(m) =

∑
m′∈M µw(m

′) · αup(m
′, sk, ak)(m) · αnext(m

′, sk)(ak)∑
m′∈M µw(m′) · αnext(m′, sk)(ak)

.

This quotient is not well-defined whenever for all m′ ∈ supp(µw), αnext(m
′, sk)(ak) = 0, justifying the

distinction above.
Using these distributions, we formally define the strategy σMi induced by the Mealy machineM =

(M,µinit, αup, αnext) as the strategy σMi : Histi(G)→ D(A) such that for all histories h = ws, for all actions
a ∈ A(s),

σMi (h)(a) =
∑
m∈M

µw(m) · αnext(m, s)(a).

Classifying finite-memory strategies. In the sequel, we investigate the relationships between different
classes of finite-memory strategies in terms of expressive power. We classify finite-memory strategies
following the type of stochastic Mealy machines that can induce them. We introduce a concise notation
for each class: we use three-letter acronyms of the form XXX with X ∈ {D,R}, where the letters, in
order, refer to the initialisation, outputs and updates of the Mealy machines, with D and R respectively
denoting deterministic and randomised components. For instance, we will write RRD to denote the class
of Mealy machines that have randomised initialisation and outputs, but deterministic updates. We also
apply this terminology to FM strategies: we will say that an FM strategy is in the class XXX — i.e., it is
an XXX strategy — if it is induced by an XXX Mealy machine.

Moreover, in the remainder of the paper, we will abusively identify Mealy machines and their induced
FM strategies. For instance, we will say thatM is an XXX strategy to mean thatM is an XXX Mealy
machine (thus inducing an XXX strategy). As a by-product of this identification, we apply the terminology
introduced previously for strategies to Mealy machines, without explicitly referring to the strategy they
induce. For instance, we may say a history is consistent with some Mealy machine, or that two Mealy
machines are outcome-equivalent. Let us note however that we will not use a Mealy machine in lieu of
its induced strategy whenever we are interested in the strategy itself as a function. This choice lightens
notations; the strategy induced by a Mealy machine need not be introduced unless it is required as a
function.

We close this section by commenting some of the classes, and discuss previous appearances in the
literature, under different names. Pure strategies use no randomisation: hence, the class DDD corresponds
to pure FM strategies, which can be represented by Mealy machines that do not rely on randomisation.

Strategies in the class DRD have been referred to as behavioural FM strategies in [CDH10]. The name
comes from the randomised outputs, reminiscent of behavioural strategies that output a distribution over
actions after a history. We note that stochastic Mealy machines that induce DRD strategies are such that
their distributions over memory states are Dirac due to the deterministic initialisation and updates.
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Similarly, RDD strategies have been referred to as mixed FM strategies [CDH10]. The general definition
of a mixed strategy is a distribution over pure strategies: under a mixed strategy, a player randomly
selects a pure strategy at the start of a play and plays according to it for the whole play. RDD strategies
are similar in the way that the random initialisation can be viewed as randomly selecting some DDD
strategy (i.e., a pure FM strategy) among a finite selection of such strategies.

The elements of RRR, the broadest class of FM strategies, have been referred to as general FM
strategies [CDH10] and stochastic-update FM strategies [BBC+14, CKK17]. The latter name highlights
the random nature of updates and insists on the difference with models that rely on deterministic updates,
more common in the literature.

3 Taxonomy of finite-memory strategies

In this section, we present the relationships between the classes of finite-memory strategies in terms of
expressiveness. We say that a class C1 of FM strategies is no less expressive than a class C2 if for all games
G, for all FM strategiesM∈ C2 in G, one can find some FM strategyM′ ∈ C1 of G such thatM andM′
are outcome-equivalent strategies. For the sake of brevity, we will say that C2 is included in C1, and write
C2 ⊆ C1.

Figure 1.1 summarises our results. In terms of set inclusion, each line in the figure indicates that the
class below is strictly included in the class above. Each line is decorated with a reference to the relevant
results. The strictness results hold in two-player deterministic games and in Markov decision processes,
i.e., there are no collapses in the diagram in either of these settings.

Some relations follow purely from syntactic arguments. For instance, the inclusion DRD ⊆ RRD follows
from the fact that RRD Mealy machines have more randomisation power than DRD ones. Four other
inclusions follow from the same argument: DDD ⊆ RDD, DDD ⊆ DDR, DDR ⊆ RRR and RRD ⊆ RRR.
We do not comment further on these trivial inclusions.

Pure strategies lie at the bottom of the diagram. It is easy to see that they are the least expressive:
pure strategies cannot induce any non-Dirac distributions on plays in deterministic one-player games.

Now, let us comment the non-trivial inclusions covered in Section 4. Theorem 4.1 establishes the
inclusion RDD ⊆ DRD. Theorems 4.2 and 4.3 respectively state that RRR ⊆ DRR and RRR ⊆ RDR.
The converse inclusions are purely syntactic, implying the equality on the uppermost level of Figure 1.1.

Let us move on to the strictness of inclusions, following from results of Section 5. Lemma 5.1 and
Lemma 5.2 show that the classes RDD and DRD are strictly included in the classes DRD and RRD
respectively. The two lemmata that imply the strict inclusion of classes DDR and RRD in the class RRR
also explain why the class DDR is not comparable to the three classes RDD, DRD and RRD. On the
one hand, Lemma 5.3 asserts the existence of a game in which there is some RDD strategy that has
no outcome-equivalent counterpart in DDR. It follows that the classes RDD, DRD and RRD are not
included in the class of DDR strategies, and that DDR is strictly included in the class RRR. On the other
hand, Lemma 5.4 states that there is some game in which there is a DDR strategy such that there is no
outcome-equivalent RRD strategy. This implies that the class DDR is not included in the class RRD, and
it follows that the class DDR is incomparable with the classes RDD, DRD and RRD. Furthermore, it
also entails that RRD is strictly included in the class RRR.

We close this section by comparing our results with Kuhn’s theorem. Kuhn’s theorem asserts that
the classes of behavioural strategies and mixed strategies in games of perfect recall share the same
expressiveness. Games of perfect recall have two traits: players never forget the sequence of histories
controlled by them that have taken place and they can see their own actions. In particular, stochastic
games of perfect information are a special case of games of perfect recall. Recall that mixed strategies are
distributions over pure strategies. We comment briefly on the techniques used in the proof of Kuhn’s
theorem, and compare them with the finite-memory setting. Let us fix a game G = (S1, S2, A, δ).

On the one hand, the emulation of mixed strategies with behavioural strategies is performed as follows.
Let pi be a mixed strategy of Pi, i.e., a distribution over pure strategies of G. An outcome-equivalent
behavioural strategy σi is constructed such that, for all histories h ∈ Histi(G) and actions a ∈ A(last(h)),
the probability σi(h)(a) is defined as the probability

pi({τi pure strategy | τi consistent with h and τi(h) = a})
pi({τi pure strategy | τi consistent with h})

.

In the finite-memory case, similar ideas can be used to show that RDD ⊆ DRD. In the proof of Theorem 4.1,
from some RDD strategy (i.e., a so-called mixed FM strategy), we construct a DRD strategy (i.e., a
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so-called behavioural FM strategy) that keeps track of the finitely many pure FM strategies that the
RDD strategy mixes and that are consistent with the current history. An adaption of the quotient above
is used in the next-move function of the DRD strategy.

On the other hand, the emulation of behavioural strategies by mixed strategies exploits the fact
that mixed strategies may randomise over infinite sets. In a finite-memory setting, the same techniques
cannot be applied. As a consequence, the class of RDD strategies is strictly included in the class of DRD
strategies. In a certain sense, one could say that Kuhn’s theorem only partially holds in the case of FM
strategies.

4 Non-trivial inclusions

This section covers the non-trivial inclusions that are asserted in the lattice of Figure 1.1. The structure of
this section is as follows. Section 4.1 contains the proof that RDD ⊆ DRD. The inclusion RRR ⊆ DRR is
presented in Section 4.2. Finally, we close this section by proving the inclusion RRR ⊆ RDR in Section 4.3.

4.1 Simulating RDD strategies with DRD ones

In this section, we focus on the classes RDD and DRD. We argue that for all RDD strategies in any
game, one can find some outcome-equivalent DRD strategy (Theorem 4.1). Let us note that the converse
inclusion is not true, and this discussion is relegated to Section 5.1. The construction provided in the
proof of Theorem 4.1 yields a DRD strategy that has a state space of size exponential in the size of
the state space of the original RDD strategy; we complement Theorem 4.1 by proving that there are
some RDD strategies for which this exponential blow-up in the number of states is necessary for any
outcome-equivalent DRD strategy (Lemma 4.1). We argue that this blow-up is unavoidable in both
deterministic two-player games and Markov decision processes.

Let G = (S1, S2, A, δ) be a game. Fix an RDD strategyM = (M,µinit, αup, αnext) of Pi. Let us sketch
how to emulate M with a DRD strategy B = (B, binit, βup, βnext) built with a subset construction-like
approach. The memory states of B are functions f : supp(µinit)→M∪{⊥}. A memory state f is interpreted
as follows. For all initial memory states m0 ∈ supp(µinit), we have f(m0) = ⊥ if the history seen up to
now is not consistent with the pure FM strategy (M,m0, αup, αnext), and otherwise f(m0) is the memory
state reached in the same pure FM strategy after processing the current history. Updates are naturally
derived from these semantics.

Using this state space and update scheme, we can compute the likelihood of each memory state of the
mixed FM strategyM after some sequence w ∈ (SA)∗ has taken place. Indeed, we keep track of each
initial memory state from which it was possible to be consistent with w, and, for each such initial memory
state m0, the memory state reached after w was processed starting in m0. Therefore, this likelihood can
be inferred from µinit; the probability ofM being in m ∈M after w has been processed is given by the
(normalised) sum of the probability of each initial memory state m0 ∈ supp(µinit) such that f(m0) = m.

The definition of the next-move function of B is directly based on the distribution over states ofM
described in the previous paragraph, and ensures that the two strategies select actions with the same
probabilities at any given state. For any action a ∈ A(s), the probability of a being chosen in game state
s and in memory state f is determined by the probability ofM being in some memory state m such that
αnext(m, s) = a, where this probability is inferred from f .

Intuitively, we postpone the initial randomisation and instead randomise at each step in an attempt of
replicating the initial distribution in the long run. In the sequel, we formalise the DRD strategy outlined
above and prove its outcome-equivalence with the RDD strategy it is based on.

Theorem 4.1. Let G = (S1, S2, A, δ) be a game. LetM = (M,µinit, αup, αnext) be an RDD strategy of Pi.
There exists a DRD strategy B = (B, binit, βup, βnext) such that B andM are outcome-equivalent.

Proof. We formalise the strategy described above. Let us writeM0 for the support of the initial distribution
µinit ofM. We define the set of memory states B to be the set of functions M0 →M ∪ {⊥}. The initial
memory state of B is given by the identity function binit : m0 7→ m0 over M0. The update function βup is
as follows: for any f ∈ B, any s ∈ S and a ∈ A(s), we let βup(f, s, a) be the function f ′ such that for all
m0 ∈M0, if s ∈ Si, we have

f ′(m0) =

{
αup(f(m0), s, a) if f(m0) ∈M and αnext(f(m0), s) = a

⊥ otherwise,
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and if s ∈ S3−i, we have

f ′(m0) =

{
αup(f(m0), s, a) if f(m0) ∈M
⊥ otherwise,

The asymmetry between Pi-controlled states and P3−i-controlled states is explained as follows.
Whenever the processed state is controlled by Pi, we can refine our knowledge on which memory state
we have possibly started from thanks to the action selected. We execute this by mapping to ⊥ any
initial memory states m0 such that the played action would not have been selected in the memory state
f(m0) ∈ M , effectively removing m0 from the set of initial memory states from which we could have
started. However, if P3−i controls the state, then we do not gain any information on the initial memory
state, and perform updates without refining our knowledge.

The next-move function βnext is defined as follows: for any memory state f ∈ B and s ∈ Si, we let
βnext(f, s) be arbitrary if f maps ⊥ to all memory states, and otherwise βnext(f, s) is the distribution over
A such that, for all a ∈ A, we have

βnext(f, s)(a) =
∑

m0∈M0

αnext(f(m0),s)=a

µinit(m0)∑
m′0 /∈f−1(⊥) µinit(m′0)

,

where f−1(⊥) = {m0 ∈M0 | f(m0) = ⊥}.
We note that the memory state f ∈ B mapping ⊥ to all initial memory states is only reached whenever

a history inconsistent withM has been processed. By Lemma 2.1, we need not take in account histories
inconsistent withM to establish the outcome-equivalence ofM and B. This explains why the next-move
function is left arbitrary in that case.

We will use Lemma 2.1 to establish the outcome-equivalence ofM and B. To this end, we first show
a relation, for each w ∈ (SA)∗ consistent with M, between the distribution µw ∈ D(M) over states
of memoryM after processing w and the function fw reached after B reads w (recall that for a DRD
strategy, the distribution over its states after processing w is a Dirac distribution). Formally, this relation
is as follows: for any w ∈ (SA)∗ consistent withM and any memory state m ∈M , we have

µw(m) =

∑
m0∈f−1

w (m) µinit(m0)∑
m0∈M0(w) µinit(m0)

, (4.1)

where M0(w) denotes the set of initial memory elements m0 ∈ M0 of M such that fw(m0) 6= ⊥, i.e.,
M0(w) is the set of potential initial memory states knowing that we have followed w, and f−1w (m) =
{m0 ∈M0 | fw(m0) = m}.

This equation intuitively expresses that B accurately keeps track of the current distribution over
memory states ofM along a play. A corollary of the above is that whenever we follow histories consistent
withM, we are assured never to reach the memory state of B that assigns ⊥ to all states in M0.

We prove Equation (4.1) with an inductive argument. The case of w = ε is trivial: by definition
µε = µinit and fε is the identity function over M0. Now, let us assume that Equation (4.1) holds for
w′ ∈ (SA)∗ consistent withM, and let us prove it for w = w′sa consistent withM.

When writing relations between µw′ and µw in the sequel, we adopt notation slightly different to
Section 2. In this case, the update function αup and next-move αnext ofM are deterministic. Thus, instead
of weighing sums with Dirac distributions, we only sum over relevant states for clarity.

First, we proceed with the simpler case of s ∈ S3−i. By definition, we have

µw(m) =
∑
m′∈M

αup(m
′,s,a)=m

µw′(m
′).

From our inductive hypothesis, we obtain

µw(m) =
∑
m′∈M

αup(m
′,s,a)=m

∑
m0∈f−1

w′ (m
′)

µinit(m0)∑
m′0∈M0(w′)

µinit(m′0)

=
1∑

m′0∈M0(w′)
µinit(m′0)

·
∑

m0∈M0(w
′)

αup(fw′ (m0),s,a)=m

µinit(m0).
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It follows from the definition of βup that M0(w) = M0(w
′). Thus, the denominator of the term above

matches that of Equation (4.1). Furthermore, fw is the function that assigns αup(fw′(m0), s, a) to any
m0 ∈ M0(w

′). It follows that the rightmost sum in the last equality can be rewritten as the sum∑
m0∈f−1

w (m) µinit(m0), matching the numerator of the fraction of Equation (4.1). This concludes the proof
of the inductive case when s ∈ S3−i.

Now, let us assume that s ∈ Si. In this case, we may have M0(w) 6=M0(w
′). In light of this, we must

take care not to have M0(w) = ∅, in which case the denominator of the right-hand side of Equation (4.1)
evaluates to zero. From the definition of βup, it follows that M0(w) is formed of the memory elements
m0 ∈ M0(w

′) such that αnext(fw′(m0), s) = a. We know that w = w′sa is consistent with M. This
implies there is some m ∈M such that αnext(m, s) = a and µw′(m) > 0. From the inductive hypothesis
(Equation (4.1) with w′), we obtain that there is some m0 ∈M0(w

′) such that fw′(m0) = m, otherwise the
right-hand side of the equation would evaluate to zero. The equality fw′(m0) = m implies m0 ∈M0(w),
thus we have shown that M0(w) is non-empty.

Now that we have shown that Equation (4.1) is well-defined, we move on to its proof. Let us write
αnext(·, s)−1(a) to denote the subset of M consisting of memory states m such that αnext(m, s) = a. By
definition, we have

µw(m) =

∑
m′∈αnext(·,s)−1(a)
αup(m

′,s,a)=m

µw′(m
′)∑

m′∈αnext(·,s)−1(a) µw′(m
′)
.

For the numerator, we obtain from the inductive hypothesis that∑
m′∈αnext(·,s)−1(a)
αup(m

′,s,a)=m

µw′(m
′) =

∑
m′∈αnext(·,s)−1(a)
αup(m

′,s,a)=m

∑
m0∈f−1

w′ (m
′)

µinit(m0)∑
m′0∈M0(w′)

µinit(m′0)

=
∑

m0∈f−1
w (m)

µinit(m0)∑
m′0∈M0(w′)

µinit(m′0)
.

We explain the passage from the double sum to the simple sum. It follows from the fact that fw(m0) = m
holds if and only if fw′(m0) is a memory state m′ such that αup(m

′, s, a) = m and αnext(m
′, s) = a, by

definition of βup.
For the denominator, we obtain from the inductive hypothesis,∑

m′∈αnext(·,s)−1(a)

µw′(m
′) =

∑
m′∈αnext(·,s)−1(a)

∑
m0∈f−1

w′ (m
′)

µinit(m0)∑
m′0∈M0(w′)

µinit(m′0)

=
∑

m0∈M0(w)

µinit(m0)∑
m′0∈M0(w′)

µinit(m′0)
;

the last equality is a consequence of the definition of βup: recall that M0(w) consists of the elements m0 of
M0(w

′) such that αnext(fw′(m0), s) = a. By combining the two equations above, we immediately obtain
Equation (4.1), ending the inductive argument.

We now establish the outcome-equivalence ofM and B via Lemma 2.1. Let h = ws ∈ Histi(G) be a
history of G consistent withM. Let a ∈ A(s) be an action enabled in s. The probability of a being played
after h underM is given by the weighted sum

∑
m∈αnext(·,s)−1(a) µw(m). Under B, the probability of a

being played is ∑
m0∈M0

αnext(fw(m0),s)=a

µinit(m0)∑
m′0∈M0(w) µinit(m0)

.

It follows from Equation (4.1) that these two probabilities coincide. Lemma 2.1 implies the outcome-
equivalence of strategiesM and B, ending the proof.

The construction of a DRD strategy provided in the proof of Theorem 4.1 leads to an exponential
blow-up of the memory state space. For an RDD strategyM = (M,µinit, αup, αnext), we have constructed
an outcome-equivalent DRD strategy with a state space consisting of functions supp(µinit)→M ∪ {⊥},
therefore with a state space of size (|M |+1)|supp(µinit)|. In the upcoming lemma, we state that an exponential
blow-up in the number of initial memory states cannot be avoided in general.
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Lemma 4.1. For all n ∈ N, there exists a two-player deterministic game (respectively a Markov decision
process) Gn with n+ 2 states, 4n+ 2 transitions, n+ 1 actions, and an RDD strategyMn of P1 with n
states such that any outcome-equivalent DRD strategy must have at least 2n − 1 states.

Proof. Let n ∈ N. We construct a two-player deterministic game Gn as follows. We let S1 = {si | 1 ≤ i ≤
n}∪{s?}, and S2 = {t}. The set of action A is {ai | 1 ≤ i ≤ n}∪{b}. We denote transitions with a function
δ : S ×A→ S instead of probability measures over successor states. For each i ∈ {1, . . . , n}, the actions
ai and b are the only actions enabled in si and they both move to state t, i.e., δ(si, ai) = δ(si, b) = t. In
state t, all actions are enabled, and we set for all i, δ(t, ai) = si and δ(t, b) = s?. In state s?, all actions
ai are enabled and label self-loops, i.e., for all i, we have δ(s?, ai) = s?. We illustrate the game G3 in
Figure 4.1.

ts2

s1

s3

s?

a1a1 b

a2

a2

b

a3 a3b

b

a1

a2

a3

Fig. 4.1. The game G3 from the proof of Lemma 4.1.

We define the RDD strategyMn = (M,µinit, αup, αnext) as follows. We let M = {1, . . . , n}, and µinit

is taken to be the uniform distribution over M . The memory update function is taken to be trivial:
we set αup(m, s, a) = m for all m ∈ M , s ∈ S and a ∈ A. For each memory state m ∈ M , we let
αnext(m, sm) = αnext(m, s

?) = am and whenever k 6= m, we let αnext(m, sk) = b. InM, once the initial
state is decided, it no longer changes. In the memory state m ∈ {1, . . . , n}, the strategy prescribes action
am in the states sm and s?, and in states sj with j 6= m, the strategy prescribes action b.

We now argue that all DRD strategies that are outcome-equivalent toM must have at least 2n − 1
memory states. Let B = (B, binit, βup, βnext) be one such FM strategy. We give a lower bound on |B| by
analysing the number of required next-move functions. In practice, we show that there must be at least
2n − 1 distinct distributions of the form βnext(·, s?).

Let E = {k1, . . . , k`} (M be a proper subset of M . Consider the history

hE = t ak1 sk1 b t ak2 sk2 b . . . t ak` sk` b t b s
?.

Letm ∈ E. We see that along the history hE , the action b is used in state sm. Therefore, hE is not consistent
with the pure FM strategy (M,m,αup, αnext) derived fromM by setting its initial state to m. Similarly, we
see that for m /∈ E, the history hE is consistent with the pure FM strategy (M,m,αup, αnext). Thus, the set
of actions that can be played after hE when followingMn is exactly the set {am | m ∈M \ E} 6= ∅. Due
to the deterministic initialisation and updates of DRD strategies, there must be some bE ∈ B such that
supp(βnext(bE , s

?)) = {am | m ∈M \E}. Necessarily, we must have supp(βup(bE , s
?)) 6= supp(βup(bE′ , s

?))
whenever E 6= E′, hence bE 6= bE′ . Consequently, we must have at least one memory state in B per proper
subset of M , i.e., |B| ≥ 2n − 1.

The proof of the existence of a suitable Markov decision process remains. We explain how to adapt
the deterministic game Gn. To change Gn to a suitable Markov decision process, it suffices to give P1 the
sole P2 state t, and change its outgoing transitions as follows. We only let a single action b enabled in t
such that there is a uniform probability of reaching the states other than t using this action. The strategy
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needs to change to account for the change of ownership of t. Only the next-move function of the strategy
is mended; it must now prescribe the action b when in t.

By performing these two changes, it is possible to directly reuse the arguments used in the two-player
case to find the same lower bound. This concludes our explanation of how to adapt the game and strategy
above to the context of Markov decision processes, and ends the proof.

4.2 Simulating RRR strategies with DRR ones

In this section, we establish that DRR strategies are as expressive as RRR strategies, i.e., randomness in
the initialisation can be removed. We outline the ideas behind the construction of a DRR strategy that is
outcome-equivalent to a given RRR strategy. The rough idea behind the construction is to simulate the
behaviour of the RRR strategy at the start of the play using a new initial memory state and then move
back into the RRR strategy we simulate.

We substitute the random selection of an initial memory element in two stages. To ensure the first
action is selected in the same way under both the supplied strategy and the strategy we construct, we
rely on the randomised outputs. The probability of selecting an action a in a given state s of the game in
our new initial memory state is given as the sum of selecting action a in state s in each memory state m
weighed by the initial probability of m.

We then leverage the stochastic updates to behave as though we had been using the supplied FM
strategy from the start. If the first game state was controlled by the player who does not own the strategy,
the probability of moving into a memory state m is also described by a weighted sum similar in spirit to
the case of the first action (albeit by considering the update function in place of the next-move function).
Whenever the owner of the strategy controls the first state of the game, the chosen action conditions
which possible initial memory states we could have found ourselves in. The reasoning in this case is
similar to the one for the update of the distribution over memory states (denoted by µw in Section 2)
after processing some sequence in (SA)∗.

We now state our expressiveness result and formalise the construction outlined above.

Theorem 4.2. Let G = (S1, S2, A, δ) be a game. LetM = (M,µinit, αup, αnext) be an RRR strategy owned
by Pi. There exists a DRR strategy B = (B, binit, βup, βnext) such that B andM are outcome-equivalent,
and such that |B| = |M |+ 1.

Proof. Let us define B = (B, binit, βup, βnext) as follows. Let binit be such that binit /∈ M . We set B =
M ∪ {binit}. We let βup and βnext coincide with αup and αnext over M × S × A and M × S1 respectively
(for the update function, we view distributions over M as distributions over B that assign probability
zero to binit). It remains to define these two functions over {binit} × S ×A and {binit} × Si respectively.

First, we complete the definition of the memory update function βup. Let s ∈ S and a ∈ A. We let
βup(binit, s, a)(binit) = 0. For the remaining memory states, we distinguish two cases following whether
s ∈ Si or s ∈ S3−i. First, let us assume s ∈ Si. We assume that there exists some m0 ∈ M such that
µinit(m0) > 0 and αnext(m0, s)(a) > 0 (i.e., the action a has a positive probability of being played in s at
the start of a play under the strategyM). We set, for all m ∈M ,

βup(binit, s, a)(m) =

∑
m′∈M µinit(m

′) · αup(m
′, s, a)(m) · αnext(m

′, s)(a)∑
m′∈M µinit(m′) · αnext(m′, s)(a)

.

Whenever we have αnext(m0, s)(a) = 0 for all m0 ∈ M such that µinit(m0) > 0, we let βup(binit, s, a) be
arbitrary. Next, let us assume that s ∈ S3−i. In this case, we set for all m ∈M ,

βup(binit, s, a)(m) =
∑
m′∈M

µinit(m
′) · αup(m

′, s, a)(m).

For the next-move function βnext, we define, for all states s ∈ S and actions a ∈ A(s),

βnext(binit, s)(a) =
∑
m∈M

µinit(m) · αnext(m, s)(a).

Now, it remains to prove thatM and B are outcome-equivalent. By Lemma 2.1, it suffices to show
that both strategies suggest the same distributions over actions along histories consistent withM. We
provide a proof in two steps. First, we consider histories with a single state and then all histories with a
more than one state all at once.
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Let s ∈ S1 and a ∈ A(s). On the one hand, the probability of the action a being played after the
history s underM is given by ∑

m∈M
µinit(m) · αnext(m, s)(a).

On the other hand, the probability of this same action a being played after the history s under B is given
by βnext(binit, s)(a). These two probabilities coincide by construction.

Let us move on to histories h = ws consisting of more than one state and consistent withM. Because
both αnext and βnext coincide over M × Si, it suffices to show that the distributions over memory states
attained after the strategies process w coincide to deduce that the two strategies suggest the same
distributions over actions after h. Furthermore, because both αup and βup coincide over M × S ×A, if we
show that for all prefixes of plays of the form sa ∈ SA consistent withM, we have the same distribution
over memory states in both FM strategies, then it follows that for all longer histories consistent withM,
we also have the same distributions over memory states in both strategies. Proving the previous claim
ends this proof; we obtain that both strategies must suggest the same distributions over actions along
histories consistent withM.

Let w = sa ∈ SA be consistent withM. Let µw and βw denote the distribution over memory states
after processing w inM and B respectively. Fix some m ∈M , and let us prove that µw(m) = βw(m). If
s ∈ S3−i, we have

µw(m) =
∑
m′∈M

µinit(m
′)αup(m

′, s, a)(m) = βup(binit, s, a)(m) = βw(m).

Let us assume henceforth that s ∈ Si. On the one hand, we have

µw(m) =

∑
m′∈M µinit(m

′) · αup(m
′, s, a)(m) · αnext(m

′, s)(a)∑
m′∈M µinit(m′) · αnext(m′, s)(a)

= βup(binit, s, a)(m),

and on the other hand, we have (because binit is the sole initial state of B),

βw(m) =
βup(binit, s, a)(m) · βnext(binit, s)(a)

βnext(binit, s)(a)
= βup(binit, s, a)(m),

ending the proof.

4.3 Simulating RRR strategies with RDR ones

We are concerned in this section with the simulation of RRR strategies by RDR strategies, i.e., with
substituting randomised outputs with deterministic outputs. The idea behind the removal of randomisation
in outputs is to simulate said randomisation by means of both stochastic initialisation and updates. These
are used to preemptively perform the random selection of an action, simultaneously with the selection of
an initial or successor memory state.

Let G = (S1, S2, A, δ) be a stochastic game and letM = (M,µinit, αup, αnext) be an RRR strategy of
Pi. We construct an RDR strategy B = (B, βinit, βup, βnext) that is outcome-equivalent toM and such
that |B| ≤ |M | · |S| · |A|. The state space of B consists of pairs (m,σi) where m ∈ M and σi is a pure
memoryless strategy of Pi. To achieve our bound on the size of B, we cannot take all pure memoryless
strategies of Pi. To illustrate how we perform the selection of these pure memoryless strategies, we provide
a simple example of the construction on a DRD strategy (which is a special case of RRR strategies) with
a single memory state (i.e., a memoryless randomised strategy).

Example 4.1. We consider a game G = (S1, S2, A, δ) where S1 = {s1, s2, s3}, S2 = ∅, A = {a1, a2, a3} and
all actions are enabled in all states. We need not specify δ exactly for our purposes. For our construction,
we fix an order on the actions of G: a1 < a2 < a3.

LetM = ({m},m, αup, αnext) be the DRD strategy such that αnext(m, s1) and αnext(m, s2) are uniform
distributions over {a1, a2} and A respectively, and αnext(m, s3)(a1) = 1

3 , αnext(m, s3)(a2) = 1
6 and

αnext(m, s3)(a3) =
1
2 .

Figure 4.2 illustrates the probability of each action being chosen in each state as the length of a
segment. Let us write 0 = x1 < x2 < x3 < x4 < x5 = 1 for all of the endpoints of the segments appearing
in the illustration. For each index i ∈ {1, . . . , 4}, we define a pure memoryless strategy σk that assigns to
each state the action lying in the segment above it in the figure. For instance, σ2 is such that σ2(s1) = a1
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s1 a1 a2

s2 a1 a2 a3

s3 a1 a2 a3

σi σ1 σ2 σ3 σ4

x1 = 0 x2 = 1
3

x3 = 1
2

x4 = 2
3 x5 = 1

Fig. 4.2. Representation of cumulative probability of actions under strategy M and derived memoryless strategies.

and σ2(s2) = σ2(s3) = a2. Furthermore, for all i ∈ {1, . . . , 4}, the length xk+1 − xk of its corresponding
interval denotes the probability of the strategy being chosen during stochastic updates.

We construct an RDR strategy B = (B, βinit, βup, βnext) that is outcome-equivalent toM in the following
way. We let B = {m} × {σ1, σ2, σ3, σ4}. The initial distribution is given by βinit(m,σk) = xk+1 − xk,
i.e., the probability of σk in the illustration. We set, for any j, k ∈ {1, . . . , 4}, s ∈ S and a ∈ A,
βup((m,σk), s, a)((m,σj)) = xj+1 − xj . Finally, we let βnext((m,σk), s) = σk(s) for all k ∈ {1, . . . , 4} and
s ∈ S.

The argument for the outcome-equivalence of B and M is the following; for any state s ∈ S1, the
probability of moving into a memory state (m,σk) such that σk(s) = a is by construction the probability
αnext(m, s). C

In the previous example, we had a unique memory state m and we defined some memoryless strategies
from the next-move function partially evaluated in this state (i.e., from αnext(m, ·)). In general, each
memory state may have a different partially evaluated next-move function, and therefore we must define
some memoryless strategies for each individual memory state. For each memory state, we can bound the
number of derived memoryless strategies by |Si| · |A|; we look at cumulative probabilities over actions (of
which there are at most |A|) for each state of Pi. This explains our announced bound on |B|.

Furthermore, in general, the memory update function is not trivial. Generalising the construction
above can be done in a straightforward manner to handle updates. Intuitively, the probability to move to
some memory state of the form (m,σ) will be given by the probability of moving into m multiplied by
the probability of σ (in the sense of Figure 4.2).

We now formally state our result in the general setting and provide its proof.

Theorem 4.3. Let G = (S1, S2, A, δ) be a game. LetM = (M,µinit, αup, αnext) be an RRR strategy owned
by Pi. There exists an RDR strategy B = (B, βinit, βup, βnext) such that B andM are outcome-equivalent,
and such that |B| ≤ |M | · |Si| · |A|.

Proof. Let us fix a linear total order on the set of actions A, denoted by <. Fix some m ∈ M . We let
xm1 < . . . < xm`(m) denote the elements of the set{∑

a′<a

αnext(m, s)(a
′) | s ∈ Si, a ∈ A

}

that are strictly inferior to 1, and let xm`(m)+1 = 1. These xmj represent the cumulative probability provided
by αnext(m, ·) over actions taken in order, for each state of G. For each j ∈ {1, . . . , `(m)}, we define
a memoryless strategy σmj : Si → A as follows: we have σmj (s) = a if

∑
a′<a αnext(m, s)(a

′) ≤ xmj <∑
a′≤a αnext(m, s)(a

′). In other words, for any state s ∈ Si, we have σmj (s) = a whenever xmj is at least
the cumulative probability of actions strictly inferior to a in αnext(m, s) and at most the cumulative
probability of actions up to action a included. Refer to the Figure 4.2 of Example 4.1 for an explicit
illustration. We refer to xmj+1 − xmj as the probability of σmj in the sequel.

Let m ∈ M , s ∈ Si and a ∈ A(s). We observe that we can relate αnext(m, s)(a) and the sum of the
probabilities of each σmj such that σmj (s) = a as follows. First, we introduce some notation. Let I(m, s, a)
denote the set of indices j such that σmj (s) = a, i.e., the indices such that the jth strategy related to m
prescribes action a in s. It holds that∑

j∈I(m,s,a)

(xmj+1 − xmj ) = αnext(m, s)(a). (4.2)
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Let s ∈ Si and a ∈ A(s). Equation (4.2) can be proven as follows. First, note that all indices j
appearing in the sum are consecutive by construction. Therefore, the sum above is telescoping and only
xmj++1 − x

m
j− remains, where j+ and j− denote the largest and smallest indices in the sum respectively.

By construction, we have xmj− =
∑
a′<a αnext(m, s)(a

′) and xmj++1 =
∑
a′≤a αnext(m, s)(a

′). We conclude
that xmj++1 − x

m
j− = αnext(m, s)(a), proving Equation (4.2). This observation will be useful to establish

the outcome-equivalence ofM with the strategy defined below.
We can now define our RDR strategy B = (B, βinit, βup, βnext). We define

B = {(m,σmj ) | m ∈M, 1 ≤ j ≤ `(m)}.

The initial distribution and update function of B are derived from those of M multiplied with the
probability of the memoryless strategy that appears in the second component of the memory state of B
into which we move. The initial distribution βinit is defined as βinit(m,σmj ) = µinit(m) · (xmj+1 − xmj ) for all
(m,σmj ) ∈ B. The update function is defined as βup((m,σmj ), s, a)((m′, σm

′

k )) = αup(m, s, a)(m
′) · (xm′k+1 −

xm
′

k ) for all (m,σmj ), (m′, σm
′

k ) ∈ B, s ∈ S and a ∈ A. Finally, the deterministic next-move function of B
is defined as βnext((m,σmj ), s) = σmj (s) for all (m,σmj ) ∈ B and all s ∈ Si.

We now argue the outcome-equivalence ofM and B. For any w ∈ (SA)∗, let µw (resp. βw) denote the
distribution over M (resp. B) after strategyM (resp. B) has read w. It follows from Lemma 2.1 and the
definition of strategies derived from FM strategies that it suffices to establish, for all histories h = ws
consistent withM, that the following holds:∑

m∈M
µw(m) · αnext(m, s)(a) =

∑
m∈M

j∈I(m,s,a)

βw((m,σ
m
j )). (4.3)

To prove Equation (4.3), we first prove another statement inductively. We show that for any w ∈ (SA)∗

consistent withM, we must have that µw(m) is proportional to βw((m,σmj )). To be precise, we establish
that for any w ∈ (SA)∗ consistent withM, we must have

βw((m,σ
m
j )) = (xmj+1 − xmj ) · µw(m). (4.4)

We proceed by induction. Consider the empty word w = ε. Because µinit = µε and βinit = βε,
Equation (4.4) follows from the definition of βinit. Let us now assume inductively that for w′ ∈ (SA)∗

consistent with M, we have Equation (4.4) and let us prove it for w = w′sa consistent with M. Fix
(m,σmj ) ∈ B. We consider two cases, depending on the owner of s.

First, let us assume that s ∈ Si. By definition, we have,

βw((m,σ
m
j )) =

∑
m′∈M

∑
k∈I(m′,s,a) βw′((m

′, σm
′

k )) · βup((m′, σm
′

k ), s, a)((m,σmj ))∑
m′∈M

∑
k∈I(m′,s,a) βw′((m

′, σm
′

k ))
.

The numerator of the above can be rewritten as follows, by successively using the definition of βup followed
by the inductive hypothesis and Equation (4.2):∑

m′∈M

∑
k∈I(m′,s,a)

βw′((m
′, σm

′

k )) · αup(m
′, s, a)(m) · (xmj+1 − xmj )

=(xmj+1 − xmj ) ·
∑
m′∈M

αup(m
′, s, a)(m) · µw′(m′) ·

∑
k∈I(m′,s,a)

(xm
′

k+1 − xm
′

k )


=(xmj+1 − xmj ) ·

∑
m′∈M

αup(m
′, s, a)(m) · µw′(m′) · αnext(m

′, s)(a).

Following the same reasoning, the denominator can be rewritten as∑
m′∈M

µw′(m
′) · αnext(m

′, s)(a).

By combining the equations above and the formula for the update of µw, we obtain βw((m,σ
m
j )) =

(xmj+1 − xmj ) · µw(m).



16 James C. A. Main and Mickael Randour

We now move on to the case s ∈ S3−i. By definition, we have

βw((m,σ
m
j )) =

∑
m′∈M

∑
1≤k≤`(m′)

βw′((m
′, σm

′

k )) · βup((m′, σm
′

k ), s, a)((m,σmj ))

= (xmj+1 − xmj ) ·
∑
m′∈M

αup(m
′, s, a)(m) ·

∑
1≤k≤`(m′)

βw′((m
′, σm

′

k ))

 .

The innermost sum can be rewritten as follows by applying the inductive hypothesis∑
1≤k≤`(m′)

βw′((m
′, σm

′

k )) = µw′(m
′) ·

∑
1≤k≤`(m′)

(xm
′

k+1 − xm
′

k ) = µw′(m
′).

By substituting the latter equation in the equation of βw((m,σmj )) above, we see the definition of µw
from µw′ appear in the outer sum. We obtain βw((m,σmj )) = (xmj+1 − xmj ) · µw(m′), ending the proof of
Equation (4.4).

We now show how Equation (4.4) implies Equation (4.3), which will prove thatM and B are indeed
outcome-equivalent. Let h = ws ∈ Histi(G) be a history consistent withM. Let a ∈ A(s). The probability
that the action a is chosen after history h under M is given by

∑
m∈M µw(m) · αnext(m, s)(a). The

probability that a is selected after h under B, on the other hand, is given by

∑
m∈M

∑
j∈I(m,s,a)

βw((m,σ
m
j )) =

∑
m∈M

µw(m) ·
∑

j∈I(m,s,a)

(xmj+1 − xmj )


=

∑
m∈M

µw(m) · αnext(m, s)(a).

In the above, the first equation is obtained from Equation (4.4) and the second equation follows from
Equation (4.2). This concludes the argument for the outcome-equivalence of our two FM strategies.

To end the proof of this lemma, we prove the upper bound on |B| given in the statement of the result.
For any memory state m ∈M , `(m) is bounded by |Si| · |A|, by definition of the numbers xmj . Therefore,
we have at most |Si| · |A| pairs of the form (m,σmj ) per memory state m ∈M , i.e., |B| ≤ |M | · |Si| · |A|.

Remark 4.1. The choice of the order on the set of actions fixed at the start of the previous proof influences
the size of the constructed strategy. We note that we do not require a uniform order for actions for all
memory states. Indeed, the order is used to define all memoryless strategies of the form σmj . Because
these strategies do not interact with strategies associated to other memory states, it is possible to use
different orderings on actions depending on the memory state m that is considered. C

5 Strictness of inclusions

We now discuss the strictness of inclusions in the lattice of Figure 1.1. Section 5.1 complements the
previous Section 4.1 and presents a DRD strategy that has no outcome-equivalent RDD counterpart.
The strict inclusion of the class DRD in the class of RRD strategies is covered in Section 5.2. Finally,
we provide the necessary results to establish that the class DDR is incomparable to the classes of RDD,
DRD and RRD strategies in Section 5.3.

5.1 DRD versus RDD strategies

The goal of this section is to show that there exists some (one-player deterministic) game where some
DRD strategy cannot be emulated by any RDD strategy. Let us first explain some intuition behind this
statement. Intuitively, an RDD strategy can only randomise once at the start between a finite number
of pure FM (DDD) strategies. After this initial randomisation, the sequence of actions prescribed by
the RDD strategy is fixed relatively to the play in progress. Any DRD strategy that chooses an action
randomly at each step cannot be reproduced by an RDD strategy. Indeed, this randomisation generates
an infinite number of patterns of actions. These patterns cannot all be captured by an RDD strategy due
to the fact that its initial randomisation is over a finite set.

Lemma 5.1. There exist a one-player deterministic game G = (S1, S2, A, δ) and some DRD strategy
M = (M,minit, αup, αnext) of P1 such that there is no outcome-equivalent RDD strategy.
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Proof. Consider the one-player game G depicted in Figure 5.1. Consider the memoryless behavioural
strategy σ1 : S1 → D({a, b}) such that σ1(s) is the uniform distribution over {a, b}. This strategy
can be represented by a DRD strategy with a single memory state m with the next-move function
αnext(m, s) = σ1(s).

sa b

Fig. 5.1. A (one-player) game with a single state.

The strategy σ1 induces a probability distribution over plays of G such that all plays have a probability
of zero. Indeed, let π be a play of G. One can view the singleton {π} as the decreasing intersection⋂
k∈N Cyl(π|k). Hence, the probability of {π} is the limit of the probability of Cyl(π|k) when k goes to

infinity. One can easily show that the probability under σ1 of Cyl(π|k) is 1
2k
. It follows that the probability

of {π} is zero.
We now argue that there is no outcome-equivalent RDD strategy. First, let us recall that any RDD

strategy can be presented as a distribution over a finite number of pure FM strategies. Given that there
are no probabilities on the transitions of G, for any pure strategy σpure

1 , there is a single outcome under
σpure
1 . We can infer from the former that, for any RDD strategy of G, there must be at least one play

that has a non-zero probability, and therefore this strategy cannot be outcome-equivalent to σ1, ending
the proof.

5.2 RRD versus DRD strategies

In this section, we argue that there exists a game in which an RRD strategy has no outcome-equivalent
DRD strategy. The example we provide is based on positive strategies for the snowball game of [KS81].
The snowball game is a concurrent safety game, i.e., a game in which both players act simultaneously
each round and in which the goal of P1 is to avoid a given state. In this game, P1 has a single snowball
and P2 can either hide or run to a safe spot. The goal of P1 is to hit P2 with the snowball, and P1 loses
if either they throw the snowball while P2 hides or if they do not throw the snowball when P2 runs (i.e.,
if they miss the chance to hit P2).

There are no positive DRD strategies in this game [dAHK07], i.e., one cannot construct a DRD
strategy that ensures P1 wins with a positive probability. However it is possible to construct a positive
RRD strategy with two states [CDH10]. In the upcoming proof, we slightly change the snowball game
to a turn-based game and exploit the strategy presented in [CDH10] to prove the existence of an RRD
strategy with no outcome-equivalent DRD strategy in turn-based games.

Lemma 5.2. There exist a one-player deterministic game G and an RRD strategy of P1 such that there
is no outcome-equivalent DRD strategy.

Proof. Consider the game depicted in Figure 5.2. In state start, P1 can either throw the snowball or
wait, and in state finish, the snowball has been thrown and it is only possible to wait.

start finish
throw

wait wait

Fig. 5.2. A simplification of the snowball game.

The RRD strategy we consider has two states Never and Eventually. The initial memory distribution
is uniform. The updates are simple; the memory state never changes after initialisation. The difference
between the states lies in their next-move functions. In the memory state Never, the action wait is
suggested with probability 1 in all game states. In the memory state Eventually, both actions have a
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uniform probability of being chosen in game state start and in state finish, the action wait is prescribed
with probability 1.

The RRD strategy presented above has two key characteristics: it has a non-zero probability of
throwing the snowball at each step and has a non-zero probability of never throwing it. In the sequel, we
show that for any DRD strategy, a non-zero probability of throwing the ball at each step implies that the
ball is thrown almost-surely.

Let M = (M,minit, αup, αnext) denote a DRD strategy such that, after any history of the form
(start throw)kstart, the action throw is selected with a non-zero probability. Let mk denote the memory
element reached after M processes the word (start throw)k for each k ∈ N. There are finitely many
different such memory states, and for all k ∈ N, we have αnext(mk, start)(throw) > 0. In particular, there
is a positive lower bound on the probability of the ball being thrown at each step, and therefore the ball is
thrown almost-surely in state start under the strategyM. Therefore,M cannot be outcome-equivalent
to the RRD strategy described in the earlier part of the proof.

5.3 Comparing RRD and DDR strategies

We argue in this section that the classes RRD and DDR of finite-memory strategies are incomparable.
While we have shown that RDR and DRR strategies are as powerful as RRR strategies, DDR strategies
are not because they lack the ability to provide a random output at the first step of a game. Due to this
trait, one can even construct some RDD strategy that cannot be emulated by any DDR strategy; any
strategy that randomises between two pure FM strategies prescribing different actions for the first state
of the game (assuming said state is controlled by the owner of the strategy and has at least two enabled
actions) has no outcome-equivalent DDR strategy. The following result follows immediately.

Lemma 5.3. There exist a one-player deterministic game G and an RDD strategyM such that there is
no DDR strategy that is outcome-equivalent toM.

On the other hand, one can construct a DDR strategy that has no outcome-equivalent RRD strategy.
Intuitively, the only randomisation in updates of the memory for RRD strategies is tied to the stochastic
next-move function; an action is chosen randomly, and said action is used along with the current state of
the game to select the next memory state. Randomised updates allow for more flexibility. In particular, it
allows for randomisation in the updates of memory states even in the presence of deterministic actions,
and this randomness is independent to some extent from the randomisation of actions. Furthermore, it
also allows for stochastic updates even when the other player acts.

In the proof of the upcoming lemma, we provide an example of a two-player deterministic game and
a DDR strategy with no outcome-equivalent RRD strategy. The main idea is as follows. When faced
with histories containing only actions of the player that does not own the strategy, RRD strategies can
at most suggest finitely many distributions over actions; the distribution over memory states after one
such history assigns a (possibly empty) sum of initial probabilities to each memory state due to the
deterministic updates. However, DDR strategies may have infinitely many possible distributions at hand
thanks to the stochastic updates. In the proof, we also argue how the game can be adapted to a Markov
decision process. Intuitively, we need simply replace the second player with randomised transitions.

Lemma 5.4. There exist a two-player deterministic game (respectively a Markov decision process) G
and a DDR strategyM such that there is no RRD strategy that is outcome-equivalent toM.

Proof. Consider the two-player deterministic game with two states G = (S1, S2, A, δ), where S1 = {s1},
S2 = {s2}, A = {a, b}, and in P1’s state s1, both actions are enabled and lead back into s1, i.e.,
δ(s1, a)(s1) = δ(s1, b)(s1) = 1, and in P2’s state s2, using action a does not change the state and action b
moves to state s1, i.e., δ(s2, a)(s2) = δ(s2, b)(s1) = 1.

In this game, let us consider the DDR strategy M = (M,ma, αup, αnext) of P1 defined as follows.
There are two memory states ma and mb, with ma as the initial state. The next-move function is defined
as follows; in memory state ma, the action a is prescribed by the strategy, i.e., αnext(ma, s1) = a and in
memory state mb, the action b is prescribed, i.e., αnext(mb, s1) = b.

The updates of the memory are performed stochastically. When in memory state ma, if we read the
state s2 of P2 with any action, then we move to memory state mb with probability 1

2 and otherwise
remain in memory state ma. Formally, we set αup(ma, s2, c)(ma) = αup(ma, s2, c)(mb) =

1
2 for any c ∈ A.

If instead P1’s state is processed in ma, we do not change the memory state, i.e., αup(ma, s1, c)(ma) = 1
for c ∈ A. Once memory state mb is reached, it can no longer be left, i.e., αup(mb, s, c)(mb) = 1 for any
s ∈ S and c ∈ A.
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The intuition of this strategy is as follows when starting in state s2; the more turns P2 acts, the higher
the likelihood of the action b being played in P1’s state is. Indeed, if we are not in memory state mb and
we update the memory after P2 acts, there is a probability of 1

2 of moving into mb, and we try to move
to mb at each step whenever we still are in memory state ma.

To prove that there is no RRD strategy of P1 that is outcome-equivalent toM, we proceed in two
steps. Let σM1 denote the behavioural strategy induced by M (as a function of histories), and let wk
denote (s2a)

ks2b for any k ∈ N. We first show that the set D(M) = {σM1 (wks1) | k ∈ N}, containing
distributions over A, is infinite. Then we show that the analogous set for an RRD strategy is necessarily
finite to end the proof.

We now prove that D(M) is infinite. For any w ∈ (SA)∗ consistent with M, let µMw denote the
distribution over memory states ofM after processing w. By definition, we have σM1 (wks1)(a) = µMwk

(ma)
and σM1 (wks1)(b) = µMwk

(mb). Hence, to prove that D(M) is infinite, it suffices to show that all of
the µMwk

are distinct from one another. It can easily be shown by induction that µMwk
(ma) =

1
2k+1 and

µMwk
(mb) = 1− 1

2k+1 . This ends the argument for the infinity of D(M).
We move on to the last part of the proof. Let M′ = (M ′, µ′init, α

′
up, α

′
next) be some arbitrary RRD

strategy, and let σM
′

1 denote the strategy induced byM′. Let us prove that the set D(M′) = {σM′1 (wks1) |
k ∈ N} is finite. For any w ∈ (SA)∗ consistent withM′, let µM′w denote the distribution over memory
states ofM′ after processing w. By definition, we have σM

′

1 (wks1)(a) =
∑
m′∈M ′ µ

M′
wk

(m′)·α′next(m′, s1)(a),
and σM

′

1 (wks1)(b) = 1− σM′1 (wks1)(a). It follows from the former that we need only show that there are
finitely many different distributions µM

′

wk
to end the proof, as these determine the distributions σM

′

1 (wks1)
in D(M′).

To prove that there are finitely many µM
′

wk
, we show that each µM

′

wk
assigns to elements of M ′ a

probability given by a sum of probabilities given by µ′init. Given there are finitely many such sums, we
obtain that there are indeed finitely many distributions µM

′

wk
. We proceed via an analysis of the update of

the µM
′

w s.
For all k ∈ N, let us write vk for (s2a)k, which is the prefix of wk without its last state-action pair.

First, we show that for all k ∈ N, µM′vk
(m′) is a sum of initial probabilities for all m′ ∈M ′. This statement

is proven by induction. The base case follows from the definition of µM
′

ε = µ′init. Now assume the statement
holds for some k ∈ N. We have, by definition, for all m′ ∈M ′,

µM
′

vk+1
(m′) =

∑
m′′∈M ′

α′up(m
′′,s,c)=m′

µvk(m
′′),

due to the fact P2 controls s2. This ends the inductive argument. Now, let k ∈ N, and let us establish the
announced result on the distributions µwk

. Let m′ ∈M ′. We have, by definition,

µM
′

wk
(m′) =

∑
m′′∈M ′

α′up(m
′′,s,c)=m′

µvk(m
′′),

and by the former this proves that µM
′

wk
(m′) is a sum of probabilities appearing in the image of µ′init. This

ends the argument that there are finitely many µM
′

wk
s.

We have established that D(M′) must be finite. Therefore, there cannot be any RRD strategy that is
outcome-equivalent toM.

We now explain how the two-player game can be adapted to a suitable Markov decision process to
end the proof. The state space of the game remains unchanged and the state s2 of P2 is transferred to P1.
The transitions of s2 are altered as follows: only one action, the action a, is enabled in s2 and we set the
transition distribution from s2 using action a as the uniform distribution over s1 and s2. The next-move
function ofM is mended so that in all memory states, it suggests action a in s2.

The essence of the argument in the case of the two-player game was that P2 could remain for an
arbitrarily long amount of rounds in their state s2. Here, the random transitions play the same role. By
adapting the calculations above, one can show that the mended DDR strategy described in the previous
paragraph has no outcome-equivalent RRD counterpart in our Markov decision process. This ends the
proof.
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6 Games of imperfect information

We explain how to transfer the results presented in the previous sections to the setting of stochastic games
of imperfect information in which players can observe their own actions. In Section 6.1, we introduce the
relevant definitions of games of imperfect information and observation-based strategies. We then explain
how to adapt our previous proofs to this context in Section 6.2.

6.1 Imperfect information and observation-based strategies

Imperfect information. We consider two-player stochastic games of imperfect information played on
graphs. Unlike games of perfect information, the players are not fully informed of the current state of
the play and the actions that are used along the play. Instead, they perceive an observation for each
state and action, and this observation may be shared between different states and actions, making them
indistinguishable. These observations are not shared between the players; each player perceives the ongoing
play differently.

We now formalise this game model. A stochastic game of imperfect information is defined as a
tuple Γ = (S1, S2, A1, A2, δ,Z1,Obs1,Z2,Obs2) where (S1, S2, A = A1 ] A2, δ) is a stochastic game of
perfect information such that for all i ∈ {1, 2} and s ∈ Si, A(s) ⊆ Ai, and for i ∈ {1, 2}, Zi is a
finite set of observations of Pi and Obsi : S ∪ A → Zi is the observation function of Pi, which assigns
an observation to each state and action. We require that for any i ∈ {1, 2}, for any two states s and
s′ ∈ Si, Obsi(s) = Obsi(s

′) implies A(s) = A(s′), i.e., in two indistinguishable states, the same actions
are available. We fix Γ for the remainder of the section and let G denote the underlying game of perfect
information.

Plays and histories of Γ are respectively defined as plays and histories of G. We will reuse the notations
Plays(Γ ), Hist(Γ ) and Histi(Γ ) for the sets of plays of Γ , histories of Γ and histories of Γ ending in a
state of Pi respectively. We extend the observation functions to histories naturally: given some history
h = s0a0 . . . sn of Γ , we let Obsi(h) = Obsi(s0)Obsi(a0) . . .Obsi(sn). This extension will be used to define
the relevant notion of strategies in games of imperfect information.

In the sequel, we place ourselves in the context of Kuhn’s theorem and assume that a player’s own
actions are visible. Formally, we will require that for Pi, the set of actions Ai is included in the set Zi
and that for all a ∈ Ai and x ∈ S ∪A, Obsi(x) = a if and only if x = a.
Observation-based strategies. In Γ , players can only rely on the observations they perceive to select
actions. Therefore, strategies in games of imperfect information are not defined over histories, but instead
over sequences of observations induced by histories. These strategies are called observation-based strategies.
Formally, an observation-based strategy of Pi is a function σi : Obsi(Histi(Γ ))→ D(Ai) such that for any
history h ∈ Histi(Γ ), supp(σi(Obsi(h))) ⊆ A(last(h)), i.e., the actions suggested by σi after perceiving the
sequence of observations induced by h are available in the last state of h. We will refer to strategies of
the underlying game of perfect information G as history-based strategies to insist on the nuance between
the two notions.

For any observation-based strategy σi of Pi, we can naturally derive a history-based strategy τi; we
define τi(h) = σi(Obsi(h)) for all h ∈ Histi(G). This allows us to easily define concepts we have introduced
for games of perfect information in games of imperfect information.

First, we discuss the probability measure over plays induced by two given observation-based strategies
σ1 of P1 and σ2 of P2 from a fixed initial state sinit of Γ . This measure can be directly defined as the
measure Pτ1,τ2sinit over Plays(G) = Plays(Γ ), where τi denotes the history-based strategy derived from σi for
i ∈ {1, 2}.

Then let us move on to the definition of consistency. We will say a history h is consistent with an
observation-based strategy σ1 if it is consistent with the history-based strategy derived from σ1. Finally,
we will say that two observation-based strategies σ1 and τ1 are outcome-equivalent if they induce the
same distribution over plays from any initial state, i.e., if their respective derived history-based strategies
are outcome-equivalent. As a direct consequence of Lemma 2.1, the following result holds.

Lemma 6.1. Let σ1 and τ1 be two observation-based strategies of P1. These two strategies are outcome-
equivalent if and only if for all histories h ∈ Hist1(G), h consistent with σ1 implies σ1(Obs1(h)) =
τ1(Obs1(h)).

Finite-memory strategies. An observation-based strategy is finite-memory if it is induced by a
(stochastic) Mealy machine that reads observations instead of states and actions. Formally, we define
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an observation-based Mealy machine of Pi as a tupleM = (M,µinit, αup, αnext) where M is a finite set of
memory states, µinit is an initial distribution over M , αup : M ×Zi ×Zi → D(M) is the update function
and αnext : M ×Zi → D(Ai) is the next-move function.

The strategies induced by such Mealy machines are defined analogously to the strategies induced by
Mealy machines in the context of perfect information. The only difference is that its updates and the
actions it suggests are based on observations instead of states and actions themselves.

LetM = (M,µinit, αup, αnext) be an observation-based stochastic Mealy machine of Pi. We will formally
derive an observation-based strategy fromM. The reasoning follows roughly the same lines as in Section 2:
we will proceed based on the distribution over memory states attained after a sequence of states and
actions has taken place. This distribution is defined in the exact same way, except that we replace states
and actions with their respective observations in the next-move and update functions that appear in the
relevant formulae.

To exploit this distribution to define an observation-based strategy, we must ensure the following:
given two sequences w and v ∈ (SA)∗ that are mapped to the same sequence of observations of Pi, the
distribution over the memory states ofM after processing both strategies coincide. This property is not
immediate; when we update this distribution over memory states when adding one step to a sequence in
(SA)∗, we sometimes need to condition these updates on the actions themselves, rather than on associated
observations. In other words, the distribution over memory states is not intrinsic to the sequence of
observations that was perceived in general.

The visibility of actions is the key to this property. Intuitively, because we condition updates of the
distribution over memory states in states of Si on the chosen action and we know this action, we can
ensure that the update to the distribution over memory states is performed uniformly over all sequences
in (SA)∗ that are mapped to the same sequence of observations.

Lemma 6.2. Let w ∈ (SA)∗. Let µw denote the distribution over memory states ofM after the sequence
w has taken place. For all v ∈ (SA)∗ such that w and v are mapped to the same sequence of observations,
we have µv = µw.

Proof. We will proceed by induction on the length of the considered sequence w ∈ (SA)∗. Recall that at
the start of a play, an initial memory state is drawn following µinit. Hence the distribution over memory
states after the empty word ε is µε = µinit. In this case, there is nothing to show for the uniformity
argument.

We now assume the following by induction: the sequence w = s0a0 . . . skak has taken place and the
distribution µw over M coincides with any µv where v = t0b0 . . . tkbk can be mapped to the same sequence
of observations as w. We consider w′ = wsk+1ak+1. We describe µw′ and show that for any sequence v′
that shares the same sequence of observations as w′, we have µw′ = µv′ . Let us fix v′ = vtk+1bk+1 to
prove the latter claim.

We distinguish two cases. If the state sk+1 is not controlled by Pi, we set, for any memory state m,

µw′(m) =
∑
m′∈M

µw(m
′) · αup(m

′,Obsi(sk+1),Obsi(ak+1))(m).

We now show that µw′ = µv′ . It suffices to show that tk+1 ∈ S3−i. Indeed, that would imply that µv′
is computed from µv in the same manner that µw′ was computed from µw, and µw = µv holds by
induction. We know that Obsi(bk+1) = Obsi(ak+1) /∈ Ai (Pi can perceive their own actions), and because
bk+1 ∈ A(tk+1), we must have tk+1 ∈ S3−i.

Now, let us assume that sk+1 is controlled by Pi. In this case, due to the visibility of actions, we have
ak+1 = Obsi(ak+1) = bk+1. In particular, we have tk+1 ∈ Si. Recall that we must condition updates on
the action ak+1. We distinguish two cases as before. If for all memory states m ∈M such that µw(m) > 0,
we have αnext(m,Obsi(sk+1))(ak+1) = 0, we let updates be performed as above. It follows immediately in
this case that µw′ = µv′ ; µv′ is computed in the same way because µv = µw and Obsi(sk+1) = Obsi(tk+1).

Finally, let us assume that there is m ∈M such that µw(m) > 0 and αnext(m,Obsi(sk+1))(ak+1) > 0.
In this case, we set, for any memory state m ∈M ,

µw′(m) =

∑
m′∈M µw(m

′) · αup(m
′,Obsi(sk+1), ak+1)(m) · αnext(m

′,Obsi(sk+1))(ak+1)∑
m′∈M µw(m′) · αnext(m,Obsi(sk+1))(ak+1)

.

The equation for µv′ is the same as above, except sk+1 is replaced with tk+1. Because these two states
are such that Obsi(sk+1) = Obsi(tk+1), it immediately follows that µw′ = µv′ , ending our uniformity
argument.
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Lemma 6.2 allows us to define a strategy fromM as we had done in the perfect information setting.
The observation-based strategy σMi : Obsi(Histi(Γ ))→ D(Ai) induced byM is defined as follows. For any
history h = ws ∈ Histi(Γ ) and a ∈ A(s), we set σMi (Obsi(h))(a) =

∑
m∈M µw(m) · αnext(m,Obsi(s))(a).

Classes of finite-memory strategies. In the sequel, we transfer our results on games of perfect
information to games of imperfect information with visible actions. We will use the same classification of
Mealy machines with three-letter acronyms for observation-based Mealy machines. As was the case in the
earlier sections, we will abusively say, e.g.,M is an RRR observation-based strategy to mean thatM
is an observation-based Mealy machine with stochastic initialisation, outputs and updates, and avoid
referring to the observation-based strategy it induces in this way.

6.2 Transferring our taxonomy to imperfect information

In this section, we are concerned with transferring our taxonomy of finite-memory strategies in games of
perfect information to games of imperfect information. We open this section by stating its main result.

Theorem 6.1. The taxonomy of Figure 1.1 established in the context of games of perfect information
also holds for observation-based finite-memory strategies in the context of games of imperfect information
in which a player’s own actions are observable.

Games of perfect information are games of imperfect information in which the observation functions
are the identity function. For this reason, all results that establish the strictness of inclusions or that two
classes are not comparable carry over directly.

Therefore, we need only discuss the three following results: Theorems 4.1, 4.2 and 4.3. We comment
each of these theorems and explain how their proofs can be adapted for observations instead of states and
actions. All three proofs share one characteristic; the outcome-equivalence of the given and constructed
strategies is shown using Lemma 2.1. Lemma 6.1 ensures the validity of this technique with imperfect
information.

In Theorem 4.1, we simulate RDD strategies by means of DRD strategies. The approach is as follows:
we keep track of a finite set of pure FM strategies and remove one whenever we perceive an action that is
inconsistent with it. Using the visibility of actions, we can use this same approach in games of imperfect
information. Furthermore, the RDD strategy that is simulated and all of the pure FM strategies encoded
in the simulating DRD strategy all use exactly the same observation-based update scheme. Therefore, this
construction is suitable to establish that any RDD strategy has an outcome-equivalent DRD counterpart
in the context of imperfect information.

Theorem 4.2 claims that any RRR strategy admits some outcome-equivalent DRR strategy. The
approach consists in adding a new initial memory state, and then leverage stochastic updates to enter the
supplied RRR strategy from the second step of the game and proceed as though we had been using it
from the start. We designed the updates from the new initial memory state so that, from the second step
in the game, the distribution over memory states was the same in the RRR strategy and the constructed
DRR one. More precisely, the update probability distribution from the new initial state is defined as the
probability over the memory states of the RRR strategy after one step. Lemma 6.2 ensures that this
distribution is robust to the passage to imperfect information, and justifies that the approach can be used.

Finally, Theorem 4.3, unlike the previous two, does not rely on the visibility of actions. This theorem
states that for all RRR strategies, one can find an outcome-equivalent RDR strategy. The tactic in our
proof was to preemptively draw actions before we entered new memory states. The updates in the RDR
strategy we built directly used constants inferred from the next-move function (i.e., independent from
states and actions themselves) and the updates of the RRR strategy. Therefore, the same construction
can be directly adapted to games of partial information.

In light of the discussion above, we can conclude that Theorem 6.1 holds.
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A Probability over memory states in stochastic-update strategies

A.1 Introduction

In this section, we explain the reasoning behind the formulae for the distribution over memory states
of a Mealy machine after it processes a word in (SA)∗. Our arguments use conditional probabilities.
We establish the result for P1; the reasoning for P2 is analogous. To this end, let us fix some game
G = (S1, S2, A, δ) and a Mealy machineM = (M,µinit, αup, αnext) of P1.

Let w = s0a0s1a1 . . . skak ∈ (SA)∗. We are interested in the distribution over memory states in M
afterM has processed w. We will need some hypotheses on w: the probability of being in some memory
state m after processing w is formally the conditional probability of being in m at step k + 1 given w.
Thus, we will have to require w to be of positive probability underM and (at least) one strategy of P2.

We will reuse the notation µw that is introduced in Section 2. The main goal of this section is to
prove the inductive relations for µw. We recall them hereafter. Assume w is not the empty word and let
w′ = s0a0s1a1 . . . sk−1ak−1. If sk ∈ S2, we have

µw(m) =
∑
m′∈M

µw′(m
′) · αup(m

′, sk, ak)(m), (A.1)

and if sk ∈ S1, we have

µw(m) =

∑
m′∈M µw′(m

′) · αup(m
′, sk, ak)(m) · αnext(m

′, sk)(ak)∑
m′∈M µw′(m′) · αnext(m′, sk)(ak)

. (A.2)

We will derive these equations by studying the Markov chain induced byM and a strategy of P2. As
indicated by the equations above, the strategy of P2 we consider has no impact on µw. We introduce one
such strategy so that the Markov chain is well-defined.

Let us fix some strategy σ2 of P2 and some initial state sinit ∈ S. In the sequel, we prove that the
equations above hold for any w ∈ (SA)∗ starting from sinit and consistent withM and σ2. By proving that
the equations above hold, it will follow immediately that P2’s strategy has no impact on the distributions
of the form µw.

A.2 Description of the Markov chain

First, let us describe the Markov chain induced by playingM and σ2 from sinit in G. Formally, it is an
infinite Markov chain where states are non-empty sequences (s0,m0, a0) . . . (sk,mk, ak) in (S ×M ×A)∗
where s0a0 . . . ak−1sk is a history of G and ak ∈ A(sk). The support of the initial distribution is
{(sinit,m, a) | µinit(m) > 0, αnext(m, sinit)(a) > 0}. The initial probability of a state (sinit,m, a) is given as
the product µinit(m) · αnext(m, sinit)(a); it is the probability that m is drawn as the initial memory state
and that a is selected in sinit in memory state m.

Let h = (s0,m0, a0) . . . (sk,mk, ak) and h′ = h(sk+1,mk+1, ak+1) be two states of our Markov chain.
The transition probability from h to h′ is defined as follows. We multiply three probabilities (recall that
state transitions, memory updates and action draws are independent): the probability δ(sk, ak)(sk+1)
of moving into sk+1 from sk using action ak, the probability αup(mk, sk, ak)(mk+1) that the memory is
updated to mk+1 from mk when reading sk and ak, and the probability of the action ak+1 being selected,
which is computed through M if sk+1 ∈ S1 and from σ2 otherwise. Formally, the probability of the
transition from h to h′ is δ(sk, ak)(sk+1) · αup(mk, sk, ak)(mk+1) · αnext(sk+1,mk+1)(ak+1) if sk+1 ∈ S1

and δ(sk, ak)(sk+1) · αup(mk, sk, ak)(mk+1) · σ2(h)(ak+1) otherwise.
We define a probability measure over infinite sequences of states of the Markov chain described

above in the standard way, using cylinders. Initial infinite sequences of this Markov chain belong in
((S ×M ×A)∗)ω and are of the form t0(t0t1)(t0t1t2) . . . where tk ∈ S ×M ×A. In the sequel, we identify
these infinite initial sequences to elements of (S×M×A)ω. We will write P for the probability distribution
over (S ×M ×A)ω obtained this way.

In the sequel, we will use random variables defined over (S ×M × A)ω to derive Equations (A.1)
and (A.2). Let B denote a set. For any random variable X : (S ×M ×A)ω → B and b ∈ B, we will write
{X = b} for X−1({b}) and omit the braces when evaluating P over such sets, e.g., we write P(X = b) for
P({X = b}).

Now, let us define the relevant random variables. We will denote by Sk (resp. Mk, Ak) the random
variable that describes the state of the game (resp. memory state, action) at position k of a sequence in (S×
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M×A)ω. We will writeWk for the random variable describing the sequenceWk = S0A0S1A1 . . . Sk−1Ak−1
which is the sequence read by M prior to step k. Similarly, we write Hk (resp. Mk) for the random
variable Hk =WkSk (resp. Mk =M0M1 . . .Mk) that describes the history at step k (resp. the sequence
of memory states up to step k).

We now list some useful properties of these random variables we will rely on. We will be concerned
with conditional probabilities, and therefore all upcoming equations will assume that some event has a
positive probability. The four aspects we will exploit are the following: (i) memory updates only depend
on the latest memory state, game state and action; (ii) memory updates are independent from game
state updates; (iii) the probability of an action depends only on the last game and memory states when
the game state is controlled by P1; (iv) the probability of an action is independent from the sequence of
memory states when the last game state is controlled by P2.

Recall that for memory states, the updates depend solely on the previous memory state, the previous
game state and the previous action. Formally, let us take a non-empty sequence w = s0a0 . . . sk−1ak−1 ∈
(SA)∗ such that P(Wk = w) > 0. For any sequence of memory states m = m0m1 . . .mk−1 ∈ Mk such
that P(Mk−1 = m |Wk = w) > 0, we have, for every state m ∈M ,

P(Mk = m |Wk = w ∧Mk−1 = m)

= P(Mk = m | Sk−1 = sk−1 ∧Mk−1 = mk−1 ∧Ak−1 = ak−1)

= αup(mk−1, sk−1, ak−1)(m).

Recall also that state transitions and memory updates are performed independently. In other words,
for any history h = s0a0 . . . sk ∈ Hist(G) such that P(Hk = h) > 0, we have for any memory state m ∈M ,

P(Mk = m | Hk = h) = P(Mk = m |Wk = w),

where w denotes s0a0 . . . sk−1ak−1.
Now, let us move on to the probability of actions following a history. Let h = s0a0 . . . sk ∈ Hist(G) such

that P(Hk = h) > 0. First, let us assume sk ∈ S1. Whenever P1 controls the last state of a history, the
probability of the next action depends only on the last state of the history and the last memory state. We
have, for any sequence of memory states m = m0m1 . . .mk ∈Mk+1 such that P(Mk = m | Hk = h) > 0
(i.e., any sequence of memory states likely to occur by processing h) and action a ∈ A(sk),

P(Ak = a | Hk = h ∧Mk = m) = P(Ak = a | Sk = sk ∧Mk = mk) = αnext(mk, sk)(a).

Now, let us assume sk ∈ S2. In this case, the probability of the next action is given by σ2(h) and is
independent of the sequence of memory states seen along h. Formally, we have, for any sequence of
memory states m = m0m1 . . .mk ∈Mk+1 such that P(Mk = m | Hk = h) > 0 and action a ∈ A(sk),

P(Ak = a | Hk = h ∧Mk = m) = P(Ak = a | Hk = h) = σ2(h)(a).

A.3 Proving the formulae for µw

Let w = s0a0s1a1 . . . skak ∈ (SA)∗ such that P(Wk+1 = w) > 0. For any m ∈M , the so-called probability
µw(m) is formalised by the conditional probability P(Mk+1 = m | Wk+1 = w). Henceforth, we assume
that w is non-empty. Let w′ = s0a0 . . . sk−1ak−1 be the prefix of w without its last state and last action.
To prove Equations (A.1) and (A.2), we must express µw as a function of µw′ . Discussions following
whether sk ∈ S1 or sk ∈ S2 are relegated to further in the proof, after preliminary work common to both
cases.

We fix m ∈ M for the remainder of the section. The first step in our approach is to consider all
possible paths inM that reach m and have a positive probability of occurring whenever w is processed by
M. Considering these paths will allow us to exhibit terms in which αup appears within Equations (A.1)
and (A.2). We use the following notation for sets of paths: we write Pathsmw for the set of sequences
m0m1 . . .mk such that the path m0m1 . . .mkm inM is consistent with w, i.e., we let

Pathsmw = {m0m1 . . .mk ∈Mk+1 | P(Mk+1 = m0 . . .mkm |Wk+1 = w) > 0}.
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We define, for any memory state m′ ∈ M , the set Pathsm
′

w′ as a subset of Mk in the same fashion. It
follows from the law of total probability (formulated for conditional probabilities), that

µw(m) = P(Mk+1 = m |Wk+1 = w)

=
∑

mm′∈Pathsmw

P(Mk+1 = m |Wk+1 = w ∧Mk = mm′) · P(Mk = mm′ |Wk+1 = w)

=
∑

mm′∈Pathsmw

αup(m
′, sk, ak)(m) · P(Mk = mm′ |Wk+1 = w)

=
∑

m∈Pathsm′
w′

∑
m′∈M

αup(m
′, sk, ak)(m) · P(Mk = mm′ |Wk+1 = w)

=
∑
m′∈M

αup(m
′, sk, ak)(m) ·

∑
m∈Pathsm′

w′

P(Mk = mm′ |Wk+1 = w)

 .

We now shift our focus to the general term of the inner sum. Let us fix m′ ∈M . This sum is indexed
by all paths inM that reach m′ and have positive probability. Therefore, it follows from the law of total
probability that ∑

m∈Pathsm′
w′

P(Mk = mm′ |Wk+1 = w) = P(Mk = m′ |Wk+1 = w).

We underscore that this probability is not µw′(m′) = P(Mk = m′ | Wk = w′). Up to this point, we
have established that

µw(m) =
∑
m′∈M

αup(m
′, sk, ak)(m) · P(Mk = m′ |Wk+1 = w). (A.3)

Using Bayes’ theorem, we can show a relation between the probability P(Mk = m′ |Wk+1 = w) and
µw′(m

′). Let us write h′ in the following for the history w′sk given by w without its last action. Let us
note that {Wk+1 = w} and {Hk = h′} ∩ {Ak = ak} both denote the same set. We have the following
chain of equations.

P(Mk = m′ |Wk+1 = w)

= P(Mk = m′ ∧Hk = h′ |Wk+1 = w)

=
P(Wk+1 = w |Mk = m′ ∧Hk = h′) · P(Mk = m′ ∧Hk = h′)

P(Wk+1 = w)

=
P(Ak = ak |Mk = m′ ∧Hk = h′) · P(Mk = m′ | Hk = h′)

P(Ak = ak | Hk = h′)
.

The first equality is a consequence of Wk+1 = w implying Hk = h′. Bayes’ theorem is used between
lines two and three. To go from the third to the fourth line, both the numerator and denominator of the
fraction have been multiplied by P(Hk = h′) and the definition of conditional probabilities has been used
to rewrite the denominator and the rightmost factor of the numerator.

We now analyse the three terms of the fraction above. The probability P(Mk = m′ | Hk = h′) is equal
to the probability P(Mk = m′ |Wk = w′). This is exactly µw′(m′). For the two remaining probabilities,
these differ following which player controls sk.
First case (P2 controls sk). Assume that sk ∈ S2. It follows from the fact that the randomisation of
σ2 is done independently of the current memory state that

P(Ak = ak |Mk = m′ ∧Hk = h′) = P(Ak = ak | Hk = h′) = σ2(h
′)(ak).

Therefore, we have

P(Mk = m′ |Wk+1 = w) = P(Mk = m′ | Hk = h′) = µw′(m
′).

By injecting the above in Equation (A.3), we directly obtain Equation (A.1).
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Second case (P1 controls sk). Assume that sk ∈ S1. It follows that

P(Ak = ak |Mk = m′ ∧Hk = h′) = αnext(mk, sk)(ak).

As for the probability P(Ak = ak | Hk = h′) in the denominator, we use the law of total probability once
more. We have:

P(Ak = ak | Hk = h′)

=
∑

m′′∈M
P(Mk=m

′′|Hk=h
′)>0

P(Ak = ak |Mk = m′′ ∧Hk = h′) · P(Mk = m′′ | Hk = h′)

=
∑

m′′∈M
αnext(m

′′, sk)(ak) · µw′(m′′).

By combining the equations above with Equation (A.3), we conclude that

µw(m) =
∑
m′∈M

αup(m
′, sk, ak)(m) · µw′(m

′) · αnext(m
′, sk)(ak)∑

m′′∈M µw′(m′′) · αnext(m′′, sk)(ak)
,

which is equivalent to Equation (A.2).
This concludes the explanations on how to derive the formulae for the distribution over memory states

whenever a consistent history is processed byM.
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