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Abstract—LoRaWAN is one of the most popular Internet of
Things radio communication technologies since it allows data to
be transmitted over long distances with low power consumption
on unlicensed ISM bands. Devices used with LoRaWAN are
often constrained for reasons of manufacturing cost and to save
energy as they are most often battery-powered. As a consequence,
security mechanisms chosen for such devices must be lightweight.
The LoRaWAN standard relies on AES-128 for encryption and
authentication, using a pre-shared key.

With the increasing amount of computational power at hand
and the advent of quantum cryptography, the use of short AES
keys without renewal for long periods of time is a potential
weakness. However, using longer keys in LoRaWAN impacts end
devices in terms of processing time and energy consumption. It
might also require adaptations in the protocol design. This paper
investigates the cost of using different AES key sizes with different
payload sizes on an off-the-shelf LoRaWAN platform. Our results
show that costs in terms of delay and energy consumption are
moderate and using longer key sizes is a practical solution to
increase the security of LoRaWAN.

Index Terms—LoRaWAN, LoRa, IoT, IIoT, Security

I. INTRODUCTION

It is well known that nowadays Internet of Things (IoT)
technology plays an increasingly important role in our daily
life. Many different devices are connected to the Internet to
share information with other things. Various IoT communication
mechanisms have been developed to suit different types of
applications. For example, multiple Low-Power Wide Area
Network (LPWAN) technologies exist such as LoRaWAN,
NB-IoT and Sigfox. LoRaWAN is one of the most popular for
three main reasons: it uses low power, it can transmit data over
a distance of several kilometers and it uses the license-free
ISM band. However, since it is expected that most LoRaWAN
devices are battery-powered, increasing the battery lifetime
requires keeping the node power consumption at a minimum.
The use of constrained resources affects various aspects of
communication, including security. In other words, very strong
and sophisticated security mechanisms cannot be applied. For
the LoRaWAN standard, this results in security mechanism
based on AES-128 encryption and authentication relying on a
pre-shared key (PSK).

The security of the LoRaWAN technology has been the
subject of several studies. Multiple vulnerabilities and attacks
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have been described [1} 2], such as denial-of-service, disclosure
and modification of message content, as well as battery
exhaustion. Automated security protocol verification tools such
as Scyther [3] have been used to uncover such vulnerabilities.
For example, known vulnerabilities of version 1.0 of LoORaWAN
Over-the-Air Authentication (OTAA) were detected [4], while
version 1.1 no longer showed these vulnerabilities.

In a recent survey of LPWAN security [5], the length of
symmetric cryptography keys is questioned, especially since
such keys are used for extended periods of time, typically during
the whole lifetime of devices. Using AES with 128-bits keys
might not be strong enough due to increased computing power
available in the future. Furthermore, the advent of quantum
computing questions the strength of today’s cryptographic
algorithms. In particular, Grover’s algorithm [6] can be applied
to break AES-128 with resources estimated to 2,953 qubits [7]].
Figure [1| based on IBM’s roadmap for scaling quantum
technologyﬂ shows how the number of qubits is expected
to grow from 2019 onward. Looking at the trend, the number
of qubits required to make such attack practical is expected to
be reached in the near future.
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Fig. 1: IBM’s roadmap for scaling quantum technology.

The use of AES on embedded systems and its impact in terms
of resource usage has been studied in a few papers, some of
them focusing on mobile devices [8]], others on IoT devices [9}
10]. None of them has considered that question in the context of
LoRaWAN. Even though the power consumption of LoRaWAN
devices has been studied [[11]], the impact of varying the AES
key size has not been considered yet. Therefore, in this paper,
we explore what changes are required in LoORaWAN to make
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use of longer AES key sizes and evaluate experimentally the
impact on end devices performance in terms of processing time
and energy consumption.

The paper is organized as follows. We discuss related work
on Section [lI} Section [l1I| provides the necessary background
about LoRaWAN and its authentication mechanism. Section [V]
describes our evaluation methodology and exposes our mea-
surement results. Finally, we conclude in Section

II. RELATED WORK

This section explores existing work related to LoRaWAN
security, with a focus on the link with energy consumption.

Since no clear guidelines exist in the LoRaWAN standard to
secure the network core, new secure LoORaWAN architectures
have been proposed [[12, |13]]. Noting that the gateway is the most
exposed part of the infrastructure as it lies outside the network
core, Oniga and his colleagues [12] connect the gateways
to the core through VPNs. Moreover, every communication
within the network core, e.g. between network and application
servers, is secured with TLS and mutual authentication based
on a Public Key Infrastructure (PKI) and Certificate Authority
(CA). Another secured LoRaWAN backend [13] is proposed
focusing on the communication layer between stack servers.
Their proposal named Server Session Key Generation (S2KG)
relies on using Ellipitic Curve Cryptography (ECC) to derive
network sessions keys.

LoRaWAN security evaluation testbed have also been
proposed. For example, ChirpOTLE [14] is used for verifying
a novel Adaptive Data Rate (ADR) spoofing attack and the
vulnerability of missing beacon authentication in Class B
operation. It allowed the authors to propose countermeasures for
both attacks by revising the LoRaWAN specification. Another
proposal [15] combines standalone LoRaWAN transceivers
with software-defined radio (SDR) and GNU Radio. It allows
them to reproduce a man-in-the-middle attack.

The evaluation of symmetric-key cryptography on resource-
constrained devices has been the topic of multiple evaluations.
For example, a comparison of DES, 3DES and AES on mobile
devices (PDA) was performed by Rif‘a-Pous and Herrera-
Joancomart [8]]. In [16], the processing time of multiple
lightweight hardware substitution-permutation network (SPN)
block ciphers were compared, with the objective of using
them on low-resource devices. The analysis of AES latency
and energy consumption on Contiki-based IoT devices was
proposed in [9], using the Texas Instruments ARM-based
CC2650 on which three AES implementations were tested:
Contiki’s own built-in AES, tinyAES and B-Con’s AES. The
former outperforming the others in terms of duration and
energy consumption. Using a similar platform, the Texas In-
struments CC1310, [10] compares software and hardware AES
implementations, concluding that hardware implementations
indeed reduce the duration and energy consumption. However,
even with hardware AES, software remains involved for the
application over multiple blocks. Tsai et al propose a hardware
low-power AES data encryption architecture (LPADA) [17]]
for LoORaWAN. The crust of the proposal is to implement

AES substitution through a low-power lookup-table and better
manage power distribution of unused AES logic along its
different rounds.

An analytical model of LoRaWAN energy performance was
proposed [11]], predicting a 1-year battery lifetime should be
achieved by an end-device running on a 2400 mAh battery
with 5 min message sending interval while it would tend
asymptotically to about 6 years with increasingly larger
intervals. However, that study does not focus on the cost
of security primitives.

To the best of our knowledge, no literature discusses the
impact of using longer AES key sizes with LoRaWAN end-
device.

III. BACKGROUND

LoRaWAN is a Low Power Wide Area Network (LPWAN)
technology. It allows the transmission of small packets over
long-distance by resource-constrained devices. It combines
wireless access links using the LoRa physical layer with an
IP-based network core. The topology of a LoRaWAN network
is illustrated in Figure [2] There are 4 main components in
this architecture. First, end devices (ED), shown on the left,
typically consist of a radio transceiver and antenna combined
with a micro-controller that takes care of sampling, processing
and transmitting sensor data. End devices are often battery
powered. Second, gateways (GW) are used by end devices
to access the LoRaWAN network. Gateways also consist of a
radio transceiver and a microprocessor. However, as opposed
to the end nodes, gateways are typically mains powered and
connected to the Internet through a wired or cellular network. It
is typical (and desirable) that the transmission of an end device
be captured by multiple gateways. The last two components,
the Network (NS) and Application servers (AS), are part of
the LoORaWAN core and communicate with each other through
[P-based communications.
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Fig. 2: LoRaWAN network architecture.

The whole LoRaWAN network allows end devices to
send data to client applications. However, there is no direct
communication between them. The end device data is first
received by gateways, then processed by network servers
and finally made available on the application servers. Client
applications can then retrieve the received data through



e.g. web APIs or the MQTT protocol. The communication
is bidirectional. This means clients can also schedule the
transmission of data down to end devices.

Since end devices spend most of their time in sleep mode,
they only wake up when they need to transmit data (uplink) or
to receive data (downlink). Downlink transmissions can only
occur after an uplink transmission to allow the network to
learn when the device is awaken. For this purpose, just after an
uplink transmission, an end device is allowed to schedule up
to two short periods of times, named receive windows, where
it will remain in listening mode.

A. LoRa physical layer

LoRa is a proprietary radio modulation technique due to
Semtech. It is used as the physical layer of a LoORaWAN network
for communications between the end devices and gateways.
LoRa transmissions are performed over Industrial, Scientific and
Medical (ISM) bands which can be used unlicensed worldwide,
the exact frequency bands varying by region.

LoRa modulation is Chirp Spread Spectrum (CSS), a
technique where symbols correspond to signals whose frequency
varies linearly with time in a cyclic manner. Data is encoded by
modifying the starting frequency of such cycle. One parameter
of LoRa is the Spreading Factor (SF). It influences the number
of bits that can be encoded in a symbol and at the same time
the duration of symbols. Larger spreading factor values make
the signal easier to recover, hence make transmissions possible
over longer distances. Smaller values reduce the transmission
time of LoRa frames. The transmission range of LoRa varies
from up to a few kilometers in urban areas to over several
kilometers in rural areas or direct line of sight [18].

Transmissions using different spreading factors are orthogo-
nal. This means that such transmissions, occurring simulta-
neously will not collide. LoORaWAN gateways are typically
capable of demodulating multiple orthogonal transmissions
received at the same time.

B. LoRaWAN security

To provide secure communications, LoRaWAN relies on the
Advanced Encryption Standard (AES), a symmetric-key block
cipher using the principle of substitution-permutation network.
Although AES supports key sizes of 128, 192 and 256 bits,
the shorter size was adopted in the standard. The reason is
the key size affects the number of transformation rounds to be
computed: 10, 12 and 14 rounds for keys of 128, 192 and 256
bits, respectively. In LoRaWAN, AES is used for encryption
using the AES-CCM* scheme but also for computing Message
Integrity Code (MIC), using AES-CMAC.

LoRaWAN security is organized in two layers, as can be
seen at the bottom of Figure |3| First, confidentiality is achieved
from the end-device to the application server by encrypting the
message payload thanks to AES-CCM*, using an application
session key (AppSKey). Second, data origin authentication,
integrity and replay protection is ensured between the end
device and the network server, thanks to the inclusion of a

frame counter (FCnt) and using AES-CMAC to compute a
MIC with a network session key (NwkSKey).

Before end devices are able to transmit and receive data
securely through a LoRaWAN network, they need to be
activated. This process allows end devices to derive the
necessary session keys, to obtain a short address (DevAddr)
and some network parameters. There are currently two methods
to activate an end device: Activation by Personalization (ABP)
and Over-the-Air Activation (OTAA). Essentially, with ABP,
devices are provisioned with session keys at configuration time,
while with OTAA, the session keys are dynamically derived
from a per-device root key (AppKey). OTAA is the preferred
activation method since it makes re-keying possible. Moreover,
it allows to work with different networks as the NwkSKey will
be re-generated upon joining.

C. Over-the-Air Activation

Before its activation with OTAA, an end device must be
configured with its 64-bits identifier (DevEUTI), the application
64-bits identifier (AppEUT) and its per-device 128-bits root key
(AppKey). These parameters are typically configured by the
device manufacturer. The network server stores a pair (DevEUTI,
AppKey) for every device provisioned in the network.

The OTAA procedure is illustrated in Figure |3} We now
proceed to detail every step.

1) The end device sends a Join-Request message to
the network server. This message contains the AppEUI
and DevEUI as well as a DevNonce. The latter is a
randomly generated number to prevent replay attacks.
The Join-Request message is sent in cleartext but
appended with a MIC calculated by applying AES-CMAC
on the message, with the AppKey.

2) When the network server receives the Join-Request
message, it checks the DevNonce has not been used
previously. To this end, it maintains the list of last
DevNonce used by each end device. The network
server authenticates the end device by re-calculating
and comparing the MIC. If it corresponds to the received
MIC, the end device is authenticated. This indeed proves
the end device knows the AppKey. The network server
then generates a 32-bits address (DevAddr) for the end
device and a randomly generated AppNonce.

3) The network server constructs a Join—Accept message
containing the DevAddr, the AppNonce, a network
idenfitier (Net ID) and some network settings. Over this
message, a MIC is generated by AES-CMAC, using
the AppKey. The Join-Accept message itself is
encrypted by AES-CCM* with the AppKey. The network
server sends the message and MIC back to the end device.

4) Both the end device and the network server now share
the same AppNonce and DevNonce. Together with the
AppKey, they are used to derive the application session
key (AppSKey) and network session key (NwkSKey).
The network server sends the AppSKey and DevAddr
to the application server.
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Fig. 3: LoRaWAN v1.0

OTAA v1.0 has a security weakness in the AppSKey
calculation from the root key that allows the network servers to
access the encrypted data between end devices and application
servers. In OTAA vl.1, a new entity, named join server (JS)
is responsible for the session key establishment. It then share
the NwkSKey with network servers and the AppSKey with
application servers. We do not discuss this version further as,
from an end device perspective, it does not change the required
resources.

IV. EXPERIMENTAL EVALUATION

We designed a methodology based on a specific testbed
and firmware to quantify the impact of changing the AES
key size when applying LoRaWAN encryption, decryption
and MIC calculation on payloads of different sizes. We rely
on the following performance metrics: duration and energy
consumption of AES encryption and MIC operations. Our
measurements are performed on a typical IoT device supporting
a LoRaWAN stack.

A. Experimental Platform

To perform our measurements, we setup a small testbed,
as illustrated on Figure El The Device Under Test (DUT)
is a LoRaWAN development board based on an ultra-low-
power ARM Cortex-M0+ MCU (STM32L072CZ) running
at 32 MHz. It is combined with a Semtech SX1276 LoRa
transceiver. The ARM MCU has no hardware cryptography
support, which means that the crypto primitives we test are
completely implemented in software in the LoRaWAN stack.

To measure the energy consumption of the DUT, we rely
on a JouleScope JS110 precision DC energy analyzer from
JetPerch. This device allows to simultaneously measure the
power supply voltage and current of the DUT, and therefore
estimate its power consumption. It does this at very high rate
(2 MSamples/s), with a bandwidth of 250 kHz. Moreover it
has a very high dynamic current range spanning nanoAmps to
Amps (9 orders of magnitude), a required feature to measure
the energy consumption of devices with very low power modes.

Over-the-Air Activation
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Fig. 4: Wiring diagram of the measurement testbed.

As shown on Figure [d the DUT power is provided through
its USB port. We interrupted it to make it go through the
JouleScope input and output ports. In addition to this, we
connected GPIO ports of the DUT to the JouleScope digital
inputs. These GPIO ports are under control of the test firmware
and allow to mark with high precision specific times in the
voltage/current trace collected by the JouleScope. These marks
allow to identify regions of interest and extract the related
samples.

B. Methodology

To achieve our objective of measuring the power consumption
and processing time induced by the cryptography primitives
used in the LoRaWAN stack, we developed a specific test
firmware for the STM32 MCU. We relied on the Mbed
Oﬂ using the LoRaMacCrypto library. The toolchain was
Mbed CLI2. We selected the following three functions in
the LoRaMacCrypto for analysis: encrypt_payload which
performs the AES-CCM* encryption of LoRaWAN payloads,

Zhttps://github.com/ARMmbed/mbed-os
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Fig. 5: Duration of AES encryption and decryption

decrypt_payload which does the corresponding decryp-
tion, and compute_mic which calculates the MIC using
AES-CMAC. These functions were instrumented to toggle the
GPIO pins described in Section and produce the markers
in the captured trace upon entry or exit of the functions. In
addition to this we use an Mbed OS timer to measure the time
spent in the functions. We validated that the measured time
matches the interval between the markers.

We perform our measurements for the 3 possible AES key
sizes : 128 bits, 192 bits and 256 bits. Moreover, we use 4
different payload sizes: 11 bytes, 53 bytes, 125 bytes and 242
bytes. The sizes of payload are chosen from the maximum
uplink user payload size [18]].

C. Experimental Result

The results are divided into two main sections. First, the
measured processing times are reported in Figure [5] for the
AES encryption and decryption and Table [If (1st row) for the
MIC calculation. Then, the energy consumption (in Joules)
is reported in Figure [6] and Table [[] (2nd row). Measurements
were performed 10 times for every combination of key size
and payload size. We report the average of these values.

We first observe that the processing time and energy
consumption increase linearly with the payload size, regardless
of the AES key size. For example, the processing time
for AES128 encryption goes from 168us (E11) with the
smallest payload to 1,710us with the largest one (E242). This
corresponds respectively to energy consumption equal to 48]
and 543uJ. Second, since using larger key sizes increases the
number of rounds of the AES block cipher, we expected that the
processing time and energy consumption would increase in the
same proportion. This is indeed what we observe in the results
for Encrypt and Decrypt. For example, looking at the largest
payload, the processing time (E242) jumps from 1,710 pus to
2,262us, a 32% increase, when changing from AES128 (10
rounds) to AES256 (14 rounds). The results for Encrypt and
Decrypt are almost the same. This is also expected as AES
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Fig. 6: Energy consumption of AES encryption and decryption

encryption and decryption are the reverse of each other and
the encrypt_payload and decrypt_payload functions
share a common code base. For the MIC results, although
AES-CMAC can be used with AES192 and AES256 [19],
the LoRaMacCrypto implementation only works with 128-bits
keys. For this reason, we could only measure that function
with the shortest key size.

Although the increase in processing time and energy
consumption seem significant, they remain very limited when
compared to the time and energy required for a complete data
transmission. For example, using the SF7 spreading factor with
500 kHz bandwidth, the transmission time (time-on-air) of a
242 bytes payload amounts to ~ 90.5 ms. The time dedicated
to payload encryption represents only 2.5% of the transmission
time. With higher spreading factors or narrower bandwidths,
the impact is even smaller.

We observed limited variance across our processing time
and energy measurements for a given pair of input parameters.
We ascribe such variations to two factors. First, our test
firmware does not disable interrupts during the execution of the
functions which sometimes implies small increases in measured
processing time, and as a result increased estimated energy
consumption. Second, the USB power supply voltage provided
by the computer exhibited some voltage ripple. As the energy
is calculated as the integral of the product of the current and
voltage samples, this voltage variation causes a bit of noise in
the resulting energy estimate. Finally, we measured the power
consumption at the USB port of the DUT, which implies that
other components of the development board were also drawing
current, such as the debug USB interface (ST-LINK). These
variations were however very limited and do not affect the
conclusion of our study.

V. CONCLUSION

The current version of LoRaWAN relies on AES with 128-
bits key size to secure its communications. AES is used for



TABLE I: Duration and energy consumption of MIC calculation

Payload Size
11 Bytes | 53 Bytes | 125 Bytes | 242 Bytes
Duration (ps) 621 919 1,353 2,218
Energy (¢J) 186 287 430 692

Note: AES key size 128 bits

the confidentiality of data, using the AES-CCM* mode, and to
provide origin authentication, message integrity and prevent
replay, by using AES-CMAC. Our objective in this paper was
to evaluate the cost of using longer AES key sizes with the
perspective to strengthen LoRaWAN’s security. The cost of
the cryptography operations is indeed important to consider on
resource-constrained devices. To this end, we setup an evaluation
testbed composed of a LoRaWAN embedded platform running
a custom firmware. We measure the processing time and energy
consumption of targeted LoRaWAN security primitives under
different combinations of AES key sizes and payload sizes.

From the experimental results we observe that the considered
metrics indeed increase with key and payload sizes. However,
the impact is moderate, making using larger AES key size a
practical solution. For example with the largest payload size of
242 bytes, the AES encryption duration increased by about
32 % when changing from AES128 to AES256. The resulting
additional energy remains however very low compared to the
cost of other operations such as radio communications.

Using a larger AES key size does not imply changes in the
LoRaWAN frame formats. However, the network stack on the
end device and the network and application servers need to be
updated. In our further work, we plan to completely implement
such changes. In addition, we envision an additional activation
method based on using asymmetric cryptography and certificates
to allow for stronger authentication by relying on Elliptic-Curve
Cryptography (ECC). We expect the incurred energy cost to
remain acceptable for resource-constrained devices.
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