Growth and biofilm formation of *Cupriavidus metallidurans* CH34 on different metallic and polymeric materials used in spaceflight applications

Nissem Abdeljelil*a,b,c,d*, Najla Ben Miloud Yahia*d, Ahmed Landoulsi*c, Abdelwaheb Chatti*c, Ruddy Wattiez*a, Rob Van Houdt*b and David Gillan*a

*aProteomics and Microbiology Lab, Research Institute for Biosciences, Mons University, Mons, Belgium; bMicrobiology Unit, Interdisciplinary Biosciences, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium; cLaboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia; dNational Center for Nuclear Sciences and Technologies, Sidi Thabel, Tunisia

*Nissem.abdeljelil@student.umons.ac.be
Growth and biofilm formation of *Cupriavidus metallidurans* CH34 on different metallic and polymeric materials used in spaceflight applications

Bacteria biofilm formation and its complications are of special concern in isolated structures, such as offshore stations, manned submarines and space habitats, as maintenance and technical support are poorly accessible due to costs and/or logistical challenges. In addition, considering that future exploration missions are planned to adventure farther and longer in space, unlocking biofilm formation mechanisms and developing new antifouling solutions are key goals in order to ensure spacecraft’s efficiency, crew’s safety and mission success. In this work, we explored the interactions between *Cupriavidus metallidurans*, a prevalently identified contaminant onboard the International Space Station, and aerospace grade materials such as the titanium alloy TiAl6V4, the stainless steel AISI 316 (SS316) and Polytetrafluoroethylene (PTFE) or Teflon. Borosilicate glass was used as a control and all surfaces were investigated at two different pH values (5.0 and 7.0). Biofilms were almost absent on stainless steel and the titanium alloy contrary to Teflon and glass that were covered by an extensive biofilm formed via monolayers of scattered matrix-free cells and complex multilayered clusters or communities. Filamentous extracellular DNA structures were observed specifically in the complex multilayered clusters adherent to Teflon, indicating that the employed attachment machinery might depend on the physicochemical characteristics of the surface.

Keywords: *Cupriavidus metallidurans*; biofilm; eDNA; PTFE; stainless steel; titanium alloy

Introduction

Bacteria have the ability to attach to a surface and/or to each other and to form multicellular communities embedded in a polymeric matrix known as biofilms (Stoodley et al., 2002). This phenomenon is linked to an increased resistance to antibacterial agents and despite decontamination processes, adherent bacteria are problematic for many industries such as health care, drugs manufacturing, food
processing, oil extraction and electronics (Harrison et al., 2007; Mah and O’Toole, 2001; Van Houdt and Michiels, 2010). Biofilm formation and its complications are of special concern in isolated structures, such as offshore stations, manned submarines and space habitats, as maintenance and technical support are poorly accessible due to costs and/or logistical challenges. Biofilms can cause surface corrosion, hardware degradation, clots and failures in critical equipment such as piping or filters of life supporting systems, water-recycling units, radiators and in extravehicular mobility units (EMU). In fact, related to spaceflight applications, such incidents have already been observed in the Salyut, Mir and Skylab stations, and continue to be a challenging threat on board the International Space Station (ISS) (Diaz et al., 2019; Flemming, 1998; Klintworth et al., 1999).

The main concern for biofilm control strategies in spacecraft revolves around water storage and recycling systems as the initiation of biofilm formation depends largely on humidity (water droplets, vapor, condensate, water/liquid pipes, liquid tanks). For instance, numerous hazardous points have been identified in spacecraft wet systems as potential entries for microbial contamination or to be prone to biofilm formation, and most of them have been traced to the sanitary space, the Environmental Control and Life Support System (ECLSS) of the spacecraft or of its EMU and in thermal control systems (Roman and Minton-Summers, 1998; Schultz et al., 1991; Squire et al., 2014). In general, the ECLSS is a complex network of tanks, pumps, pipes, hoses and filters that allows the regeneration of potable water from the recovery of urine and humidity condensate in an enclosed environment. On the ISS, it is especially complicated and it extends on 29 orbital replacement units (ORU) where countless components made from various materials (e.g. Stainless Steel 302, 303, 304, 316, 318-8, 6061 Aluminum, TiAl6V4, Inconel 718) can be directly or indirectly interacting. Other materials of
spacecraft or space suits such as Teflon, Nafion, Fluorel, nylon, Nomex, Gore-tex, nickel and boron-nickel alloys, 60NiTi, graphite, silver, polyurethane coated aluminum and gold-anodized aluminum can also be in contact with humid environments (Squire et al., 2014).

Both urine and humidity condensate collected in spacecraft can contain a large number of molecules and various carbon sources that are suitable for microbial proliferation. Even after processing, water samples from the Mir station had 0.005 to 0.023 g L\(^{-1}\) of total organic carbon. Analysis of humidity condensate in Shuttle missions STS-45 and STS-47 showed that the total organic carbon levels ranged from 0.12 g L\(^{-1}\) to 0.7 g L\(^{-1}\) (National Research Council, 2000). These concentrations are sufficient for microbial proliferation, especially for oligotrophic bacteria that can survive at levels of carbons as low as 0.001 g L\(^{-1}\) (Ishida and Kadota, 1981). Next to water and available nutrients, the characteristic surface properties of the materials, such as hydrophobicity, surface energy and electron donor/acceptor potential, will play a crucial role in orienting microbial adhesion.

Squire et al. (2014) indicate that due to technical limitations, the routine antimicrobial procedure (gamma irradiation or extended heat treatment at 87.7°C) cannot be applied to all ORUs elements before launch. In fact, 5 from 16 items that are launched wet or containing water are not subjected to disinfection. This could create favorable conditions for inflight microbial growth and potential biofilm formation that could spread inside the wet system. Also microbial monitoring campaigns onboard the ISS showed recurrent microbial contamination events (Van Houdt and Leys, 2020; Zea et al., 2020). Although biofilms in water systems are interacting multispecies communities (Thompson et al., 2020; Yang et al., 2021), one species that attracted attention is *Cupriavidus metallidurans*. A Gram-negative bacterium belonging to the
Burkholderiaceae family that has been detected from 2009 to 2019 in almost all samples coming from the wastewater tank, the potable waterbus or the condensate (Mijnendonckx et al., 2013; Zea et al., 2020). This facultative chemolithotrophic motile microbe shows resistance to a broad range of metals, including silver used as disinfectant onboard ISS, and is able to adapt to various harsh conditions, including low nutrients environments (Maertens et al., 2020; Mijnendonckx et al., 2019; Mijnendonckx et al., 2013; Van Houdt et al., 2021; Zhang et al., 2018). In addition, bacteria are exposed to specific conditions (e.g. microgravity and cosmic radiation) during spaceflight (Acres et al., 2021; Bijlani et al., 2021; Horneck et al., 2010; Huang et al., 2018), which have also been studied for C. metallidurans type strain CH34 (Byloos et al., 2017; Leys et al., 2009) (De Gelder et al., 2009; Leroy et al., 2010). Furthermore, it is used to explore future spaceflight applications such as testing antimicrobial surfaces (Siems et al., 2022) as well as biomining and bioremediation (Byloos et al., 2017; Cockell et al., 2020; Santomartino et al., 2020). It is therefore a representative of the contaminant species found in humid spacecraft systems as well as a microbe with potential extra-terrestrial applications.

As future exploration missions are planned to adventure farther and longer in space, unlocking biofilm formation mechanisms and developing new antifouling solutions suitable for use in such a challenging environment are goals of key importance in order to ensure spacecraft’s efficiency, crew’s safety and mission success. In this work, we aim to explore the interactions between C. metallidurans and aerospace grade materials such as titanium alloy TiAl6V4, stainless steel AISI 316 (SS316) and polytetrafluoroethylene (PTFE) or Teflon. The impact of these materials on planktonic growth and biofilm formation, in addition to its biodeterioration effect are investigated at different pH values.
Material and methods

Bacterial strains, media and culture conditions

C. metallidurans CH34 was routinely grown in Tris–buffered mineral medium (MM284) (Mergeay et al., 1985) supplemented with 2 g L-1 sodium gluconate as the sole carbon source. The final pH was adjusted to 5.0 or 7.0 with HCl 37%. Although gluconate can chelate metal ions (Gyurcsik and Nagy, 2000) and could impact biofilm biomass and production of extracellular polymeric substances (Liu et al., 2021; Luo et al., 2019; Pal and Paul, 2013), it is readily consumed by *C. metallidurans* and as such would have a limited impact.

Preparation and setup of biofilm experiments

Materials tested included coupons of borosilicate glass (75 mm x 25 mm x 1 mm, stainless steel AISI 316 (used in ECLSS tanks and pipes, pumps and separators (Squire et al., 2014); 80 mm x 5 mm x 0.5mm), Teflon (used in hoses of thermal control systems, valves, bladders, insulation and gas separators (Squire et al., 2014; Wieland and Center, 1998); 18 mm x 13 mm x 3 mm) and titanium alloy TiAl6V4 (used in the outer shell of water tanks and tubing (Petala et al., 2020); 25mm x 25 mm x 1 mm) were cleaned with deionized water and sonicated in 70% ethanol for 15 min. Next, coupons were rinsed with deionized water and autoclaved. Precultures of *C. metallidurans* CH34 were grown at 30°C on an orbital shaker (150 rpm) until an optical density (OD600) of 0.2 in MM284 (pH 7.0). Each sterilized coupon was then placed in a 50 mL conical centrifuge tube to which 15 mL of MM284 and 350 µL preculture were added. Tubes were then placed on a tilting (15°) shaker and incubated at room temperature (23 ± 2°C) and 1 rpm (turbulent flow conditions) for 168 hours.
Analysis of growth and biofilm formation

Planktonic growth was evaluated by measuring OD600 every 24 h. Biofilm formation was assessed using the crystal violet (CV) dye that binds to DNA and proteins. A solution of 0.1% CV was prepared (0.1 g of CV in 2 mL 95% ethanol and 98 mL of deionized water). At the end of the experiment, coupons were gently removed and softly rinsed 3 times with deionized water. Coupons were then air-dried and covered with the CV solution for 15 min. Afterwards, the CV solution was discarded and coupons were rinsed 3 times with deionized water. Coupons were left to air dry before quantifying the amount of CV by solubilizing in 4 mL of 95% ethanol and measuring absorbance at 620 nm. Measurements were normalized by subtracting the average of abiotic controls.

For biofilm viable counts, coupons were rinsed twice with sterile saline solution (0.85% NaCl). Next, coupons were placed in a new sterile tube with 15 ml of saline solution and sonicated (30 s, 35 kHz) in a sonication bath (Elma, Germany) and subsequently vortexed (20 min, 2700 rpm). Cell suspensions (100 μL) of a serial ten-fold dilution in saline were spread on MM284 agar plates and incubated at 30°C. Colony forming units (CFU) were counted after 3 days.

Scanning Electron Microscopy (SEM)

Biofilms were examined under the SEM at the end of the experiment (168 h). Surfaces were gently rinsed with deionized water to remove non-adherent cells. Samples were then fixed for 2 hours in Bouin’s solution (Jacobsen et al., 1980). Next, samples were dehydrated by immersion in an ethanol graded series as follows: 30 min in 70% ethanol, overnight in 70% ethanol, 30 min in 70% ethanol, 2 times 30 min in 90% ethanol, and 1 h in 100% ethanol. After dehydration, samples were dried with liquid CO2 in a critical point dryer. Finally, they were gold-coated in a sputter coater and placed in a JSM-7200F microscope (JEOL, Japan).
DNase treatment

Biofilms were grown as previously described (only at pH 7 to avoid interference with DNase activity). Growth medium was discarded and coupons were gently rinsed with sterile deionized water to remove loosely attached cells. Rinsed coupons were immersed in 3 ml of 5 μg mL⁻¹ DNaseI (Qiagen, Germany) and incubated 1 h statically at 37°C. Next, samples were rinsed, stained with CV, dried at room temperature and observed with an automated inverted fluorescence microscope (TE2000-E; Nikon, Tokyo, Japan) equipped with a Cy5 filter set (excitation passband: 590-650 nm; emission: 660-740 nm).

Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP-AES)

The concentration of iron and aluminum leached from SS316 and TiAl6V4, respectively, were determined in the culture medium and the planktonic cells with ICP-AES. At the end of the experiment (168 h), coupons were removed from the culture medium and bacteria in suspension were pelleted via centrifugation at 10.000 g for 2 min. One mL of the supernatant was sampled and diluted with 14 mL of 5% HNO3. The pellets were resuspended in 1 mL of filtered deionized water and 2 mL of concentrated HNO3 was added to each sample and left to digest overnight at room temperature. Finally, 12 mL of 5% HNO3 was added. For abiotic controls, samples were centrifuged and 1 mL supernatant was diluted in 14 mL of 5% HNO3. All samples were stored at +5°C until analysis.

Contact-angle measurements

Coupons were incubated 3 h in sterile MM284 (final pH of 5 or 7). Next, coupons were removed from the medium and left to air-dry before analysis. Contact angle measurement was performed using a VCA optima goniometer (AST Products, Billerica,
USA) according to the static drop method. Three μL of deionized water were deposited on the dry substratum and six measurements were made for each sample. Images were analyzed with VCA Optima software (AST Products, Billerica, USA). The surface was considered hydrophilic or hydrophobic when the contact angle was less or more than 90°, respectively.

Statistical analysis
Statistical comparison of two samples was performed using the Student’s t-test. Statistical comparison of multiple samples was performed using a one-way ANOVA analysis, followed by a post-hoc Tukey test. A p-value less than 0.05 was considered statistically significant.

Results and Discussion
Surface characterization
The surfaces of the uninoculated clean materials were first analyzed under the SEM. SS316 appeared regular and streaked with parallel thin bands (Figure 1b). Teflon appeared mainly smooth and crossed occasionally by stripes or stretches of nearly 5-μm width (Figure 1c). The glass surface was very smooth and free from any special topographic features (Figure 1a), whereas TiAl6V4 was rough and covered with crests and pits of 10 to 30 μm wide (Figure 1d). Contact angle measurements showed that glass was highly hydrophilic at pH 5.0 and 7.0, and no significant differences in contact angles were observed (Figure 2). Glass was the most hydrophilic substratum with very low contact angles that did not exceed 25.31 ± 6.45°. Teflon was the most hydrophobic material with contact angles not less than 109.11 ± 6.61° (Figure 2) and SS316 was amphiphilic. Finally, although contact angles of TiAl6V4 varied significantly between pH 5.0 and pH 7.0, it remained hydrophilic (Figure 2). Since the growth medium
(MM284) contained various ions and a carbohydrate (gluconate), contact angles were also measured in pure water. Indeed, MM284 components significantly decreased the contact angles for glass and TiAl6V4 at pH 5 and pH 7, and for SS316 at pH 5 (Figure 2). At the contrary, a significant increase in contact angle was observed for Teflon between the conditioning in MM284 pH 7.0 and in pure water.

Planktonic growth of C. metallidurans CH34 in the presence of the test surfaces

It is clear that bacteria show variable sensitivities to pH. Whereas neutrophilic bacteria prosper in circumneutral pH, acidophilic and alkaliphilic ones prefer opposite sides of the pH scale. In addition, the presence of macromolecules, nutrients and sensitizing compounds can change the bacterial response to the surrounding pH. Non-optimal pH or pH shifts are stressful for bacteria, it can unbalance the cellular homeostasis, disrupt membrane integrity and fluidity and inhibit key reactions involved in bacterial growth or survival (Guan and Liu, 2020; Padan et al., 2005). In addition, pH also plays a critical role in the readjustment of material surface properties by influencing hydrophobicity and electrostatic forces. It can slow or accelerate the corrosion of some materials and can enhance the leaching of their composing elements. Therefore, we performed the experiments at neutral (pH 7.0) and acidic (pH 5.0) conditions. Without the presence of the test surfaces *C. metallidurans* showed comparable growth at pH 5.0 and 7.0 (Figure 3). In addition, none of the test surfaces, and any leached elements, affected planktonic growth at pH 5.0 or 7.0 (Figure 3). Leaching of chromium and nickel ions, and aluminum and vanadium ions in biological media have been reported for stainless steel and titanium alloy, respectively (Berggren et al., 2004; Hedberg and Odnevall Wallinder, 2015; Herting et al., 2006; Mumme et al., 2005; Zhou et al., 2011).
Adhesion and biofilm formation of *C. metallidurans* CH34 on the test surfaces

Although prolonged contact with the test materials did not affect planktonic growth, the physicochemical differences between the test surfaces did significantly influence adhesion of *C. metallidurans* CH34. Crystal violet staining showed that Teflon and glass were more prone to *C. metallidurans* CH34 adhesion and biofilm formation than TiAl6V4 and SS316 (Figure 4, Supplementary Figure 1) with Teflon having significantly more adherent biomass than glass both in pH 5 and pH 7.0. Determination of viable biofilm cell numbers by plate count was also performed for glass and Teflon (pH 5), and corroborated the quantification by CV staining (Supplementary Figure 2).

Adhesion to glass also varied according to the pH as the CV-stained adherent biomass on glass at pH 5.0 was nearly two-fold more important than at pH = 7.0. For Teflon, adhesion was independent of the pH. A previously reported theoretical model predicted that pH variations could influence S. aureus adhesion to glass because it alters its hydrophilicity/hydrophobicity (Hamadi et al., 2009). In our experiment, the surface properties of glass were not significantly affected during the experiment (Figure 2), therefore, other factors are putatively responsible for the observed difference between pH 5.0 and 7.0 (Sheng et al., 2008).

It is generally assumed that hydrophobic (reduces the strength of repulsion forces between the substratum and bacteria) and rough (creates areas of low shear stress) surfaces are more attractive for microbial adhesion than hydrophilic and smooth ones (Zheng et al., 2021). Indeed, the hydrophobic Teflon surface showed the most adhesion compared to the other materials. High adhesion on Teflon has previously been reported for *Pseudomonas aeruginosa* (Alfa et al., 2017), *Salmonella* spp. and *Listeria monocytogenes* (Sinde and Carballo, 2000). Although glass is very hydrophilic, with contact angles from 12.3 ± 2° to 25.3 ± 6.5°, it was the second most attractive material for *C. metallidurans* CH34 biofilm formation. The capacity of bacteria to attach both to
hydrophilic and hydrophobic surfaces has already been observed for *Staphylococcus epidermidis* and in *P. aeruginosa* (Cerca et al., 2005; Shelobolina et al., 2018), and was corroborated here for *C. metallidurans*.

Stainless steel 316, which was significantly more hydrophobic than glass (Figure 1), showed limited *C. metallidurans* CH34 biofilm formation at pH 5.0 and no biofilm formation at pH 7.0. (Figure 4). Interestingly, biofilm formation on stainless steel 304 in mineral water has recently been documented (Maertens et al., 2020). Studies demonstrated the superior capacity of SS316 over SS304 in repelling microbial adhesion in potable water (Percival et al., 1997). These differences could be explained by the different composition of SS316, which contains 2 to 3% of Molybdenum (Percival, 1999), or by specific growth conditions. In addition, SS316 is known to be less vulnerable to corrosion and pitting in the presence of chloride or low pH environments, and also to microbiologically influenced corrosion (Wang et al., 2021).

The introduction of Mo in the alloy’s formula has therefore significant consequences on the physicochemical properties of the material.

Titanium alloy contact angles 41.6 ± 5.7° to 53.8 ± 4.7° were significantly higher than glass. In addition, the alloy showed a rough surface rich in large pits that could have been ideal sites for bacterial cells seeking protection from shear forces. Nevertheless, almost no *C. metallidurans* CH34 biofilm formation was detected (low quantification with large deviations). However, TiAl6V4 surfaces are not invulnerable to bacterial adhesion and can be colonized by *Serratia spp.*, sulphur-oxidizing and sulphate-reducing bacteria (Cwalina et al., 2017) and by clinical isolates of *Streptococcus, Staphylococcus* and *Escherichia coli* (Wang et al., 2018). Therefore, properties such as surface hydrophobicity and roughness alone or even combined are not the only factors that mediate bacterial adhesion and the development into a mature...
biofilm. In fact, Gyo et al. (2008) coined that the relationship between hydrophobicity and biofilm formation is controversial and put forward that the adhesion process in immersed biofilms is even more complicated because of potential anomalies between surface properties and submerged conditions.

Biofilm architecture

Biofilms were also observed under the SEM. On glass, *C. metallidurans* CH34 biofilms grew either as single cells, cells clustered in a polymeric extracellular matrix or dense globular clusters (Figure 5a, b, c and d). On Teflon, the density of single adherent cells was higher than for glass, which is in agreement with CV quantification. The cell clusters were also larger than those observed on glass. In addition, Teflon-adherent clusters were held together and anchored to the surface by a complex filamentous web (Figure 5e, f, g and h). The web was composed of interconnected thin strands of 20 to 30 nm width that can reach nearly two µm in length (Figure 5g and h). Interestingly, these filamentous networks were observed neither in glass-adherent *C. metallidurans* CH34 biofilms (Figure 5a, b, c and d) nor in planktonic cells grown in the presence of Teflon and of glass (Supplementary Figure 3). Such structures were reported in biofilms of *Enterococcus faecalis* (Barnes et al., 2012), *P. aeruginosa* (Wang et al., 2015), *Ralstonia solanacearum* (Minh Tran et al., 2016) and *Streptococcus mutans* (Kim et al., 2018), and are most likely composed of extracellular DNA (eDNA). The latter is a key stabilizing element in many bacterial biofilms (Campoccia et al., 2021; Okshevsky and Meyer, 2015; Panlilio and Rice, 2021). The release of eDNA is facilitated either through cellular lysis or via membrane vesicles (Panlilio and Rice, 2021). Indeed, we observed that biofilm cells were covered with outer membrane vesicles (OMVs) of 20 to 50 nm width that putatively could release proteins or nucleic acids (Figure 5h). The resulting multilayered structure was capable of capturing solid components present in
the media such as suspended crystals or debris, reinforcing further the biofilm (Figure 5f). In addition, unique polar protrusions connecting cells in an organized manner were also observed (Supplementary Figure 4). Overall, SEM observations revealed two distinguishable adhesion patterns for *C. metallidurans* CH34, i.e. monolayers of scattered matrix-free cells and complex multilayered clusters or communities.

As previously described, glass and Teflon differ drastically in their physicochemical properties and it is possible that these dissimilarities induced a different attachment strategy. In fact, it has been shown that the presence of eDNA significantly increased the cell envelope hydrophobicity of *S. epidermidis* and allowed for a stronger preference to hydrophobic surfaces through acid-base interactions (Das et al., 2010). Likewise, for *C. metallidurans* CH34, eDNA putatively mediated attachment to the hydrophobic surface of Teflon and could be disadvantageous for the adhesion to hydrophilic glass. Many bacteria can actively regulate the release of eDNA (Ibanez de Aldecoa et al., 2017; Minh Tran et al., 2016) and we hypothesize that this is also the case for *C. metallidurans* CH34. To investigate the role of the observed net-like frameworks further, we exposed mature *C. metallidurans* CH34 biofilms on Teflon to DNaseI. This treatment apparently reduced the thickness and cell density at the edge of the cluster, suggesting that eDNA has a role in aggregation and cell build-up at the boundaries of the biofilms (Figure 6). Nevertheless, DNase I treatment did not affect the total adherent biomass quantified via CV (data not shown) and appeared to have a limited effect on the mature biofilms. In addition, it has been shown that the efficiency of DNase treatment was minimal in mature biofilms of *E. coli, Klebsiella pneumoniae, P. aeruginosa* and *S. mutans*, because mature biofilms accumulated more Z-form eDNA that is, unlike the B-form, resistant to DNaseI (Buzzo et al., 2021).
Elemental release from the test surfaces

Next, the possible release of elements from SS316 and TiAl64, and the role of *C. metallidurans* CH34 herein was investigated. SS316 is mainly composed of iron (at least 65%), next to chromium (16-18%), nickel (10-14%) and molybdenum (2-3%). A significant higher Fe release was observed in the media of abiotic controls at pH 7.0 compared to when SS316 was incubated with bacteria (Figure 7, bottom). Gluconate probably acted as a chelator and released Fe from the surface (Sawyer, 1964). Fe leaching from the surface in the presence of *C. metallidurans* is probably reduced as gluconate is consumed. No significant differences in Fe content of the bacterial biomass were observed in the presence or absence of SS316 (Figure 7, bottom). The TiAl6V4 alloy contains next to titanium, at least 6% aluminum and 4% vanadium. No significant differences in the aluminum levels of the cell-free supernatant of the biotic samples and abiotic controls were found at pH 5.0 and pH 7.0. Interestingly, when cells were incubated with the TiAl6V4 surface at pH 7.0 the biomass contained nearly 2 times more aluminum compared to the biotic control. This difference was not observed at pH 5.0. Overall, this indicated more release of Al from the titanium alloy at pH 7.0. Finally, elemental release from Teflon, which is considered one of the most chemically inert polymers and non-degradable by microorganisms under aerobic and anaerobic conditions, was not investigated.

Conclusions

Our study on biofilm formation of *C. metallidurans* CH34 on four space-relevant surfaces showed that stainless steel SS316 and the titanium alloy TiAl6V4 were less prone to biofouling in the tested conditions (i.e. mineral growth medium with gluconate as sole carbon source in turbulent flow conditions). The use of these materials for spaceflight applications, such as water management systems, can thus be beneficial.
to prevent the build-up of *Cupriavidus metallidurans* biofilms. However, as the contamination in such systems is composed of multiple interacting species, multispecies experiments should be scrutinized in a next step. Interestingly, in the water-dispensing unit designed lately by NASA, stainless steel sections in contact with water were replaced by tubing in Teflon. As we demonstrated here, Teflon surfaces are highly attractive for *Cupriavidus metallidurans* and the frequent dispensing function of such equipment represents a potential entry point for this resilient bacterium (Maryatt, 2018). It is reasonable to assume that coating and grafting of the studied materials with antimicrobials may improve their performance in time as well as versus other bacterial contaminants.

Our experiments also revealed that surface hydrophobicity and roughness alone or even combined are not the only factors that drive bacterial adhesion. Despite the differences in their physicochemical characteristics, both hydrophobic fluoropolymeric (Teflon) and hydrophilic borosilicate (glass) material allowed extensive biofilm formation via monolayers of scattered matrix-free cells and complex multilayered clusters or communities. In addition, *C. metallidurans* CH34 likely employs a distinct attachment machinery depending on the physicochemical characteristics of the surface. We showed that filamentous structures described as extracellular DNA networks were specific to the complex multilayered clusters growing on Teflon.

These biofilms were only locally sensitive to the enzymatic action of DNaseI, suggesting that the filamentous eDNA mesh may have a specific role in CH34 biofilm’s architecture. As such, the use of enzyme-based antifouling products that induce the hydrolysis of DNA should be carefully studied (Okshevsky et al., 2015). These products are reported to weaken biofilm interactions and increase the permeability to antimicrobial treatments (Okshevsky et al., 2015). For developing anti-biofilm protocols
it is important to take into account that bacterial adhesion is a complex phenomenon where attached cells from multiple different species can be in different phenotypic and metabolic states and consequently have different sensitivity to treatments.

Finally, it is important to remind that water recycling and recovery systems are composed of numerous other materials and all are interacting indirectly through the flowing liquid. Therefore, possible consequences of the observed iron leaching and aluminum accumulation should be investigated in long-term experiments.
References

Jacobsen, M., Clausen, P.P., Smidth, S., 1980. The effect of fixation and trypsinization on the immunohistochemical demonstration of intracellular immunoglobulin in paraffin

544 Mumme, T., Müller-Rath, R., Jakobi, N., Weißkopf, M., Dott, W., Marx, R., Wirtz, D.-
549 https://doi.org/10.17226/9892.
550 Okshevsky, M., Meyer, R.L., 2015. The role of extracellular DNA in the establishment,
551 maintenance and perpetuation of bacterial biofilms. Crit. Rev. Microbiol. 41(3), 341-
556 Panlilio, H., Rice, C.V., 2021. The role of extracellular DNA in the formation,
557 architecture, stability, and treatment of bacterial biofilms. Biotechnol Bioeng 118(6),
560 Biotechnol 23(2), 112-117. https://doi.org/10.1038/sj.jim.2900712.
562 development on 304 and 316 stainless steels in a potable water system. Water and
566 Water Disinfected by Ionic Silver: Kinetic Experiments and Modeling. Water 12(1),
567 258. https://doi.org/ARTN 258
568 10.3390/w12010258.
569 Roman, M.C., Minton-Summers, S., 1998. Assessment of biofilm formation in the
570 International Space Station Water Recovery and Management system. Life Support
571 Biosph. Sci. 5(1), 45-51.
572 Santomartino, R., Waajen, A.C., de Wit, W., Nicholson, N., Parmitano, L., Loudon,
573 C.M., Moeller, R., Rettberg, P., Fuchs, F.M., Van Houdt, R., Finster, K., Coninx, I.,
574 Krause, J., Koehler, A., Caplin, N., Zuiderduijn, L., Zolesi, V., Balsamo, M., Mariani,
575 A., Pellari, S.S., Carubia, F., Luciani, G., Leys, N., Doswald-Winkler, J., Herova, M.,
577 Effect of Microgravity and Simulated Mars Gravity on Fin
578 al Bacterial Cell
579 Concentrations on the International Space Station: Applications to Space
583 https://doi.org/10.1021/ct60232a003.
584 Schultz, J.R., Taylor, R.D., Flanagan, D.T., Carr, S.E., Bruce, R.J., Svoboda, J.V., Huls,
586 Spacecraft Water System: Two-Year Results. SAE Transactions 100, 1056-1066.

Yang, J., Barrila, J., Mark Ott, C., King, O., Bruce, R., McLean, R.J.C., Nickerson, C.A., 2021. Longitudinal characterization of multispecies microbial populations recovered from spaceflight potable water. NPJ Biofilms Microbiomes 7(1), 70.

Figure 1. SEM images of the test materials, i.e. glass (a), stainless steel SS316 (b), Teflon (c) and titanium alloy TiAl6V4 (d).

Figure 2: Contact angle measurements of test materials in MM284 at pH 5.0 (red) and pH 7.0 (blue), and water (green). The average values of three independent experiments (n=6) with standard deviations are shown. Brackets indicate which samples within the surface set are statistically different (p < 0.05) based on ANOVA and post-hoc Tukey.

Figure 3: Growth of *C. metallidurans* CH34 in the absence (black) or presence of glass (red), stainless steel SS316 (blue), titanium alloy TiAl6V4 (green) or Teflon (purple) surface. The average values of three independent experiments with standard deviations are shown.

Figure 4. Crystal violet quantification of *C. metallidurans* CH34 biofilm formation after 168 hours at pH 5.0 (red) and 7.0 (blue) on the test materials. The average values of three independent experiments with standard deviations are shown. For each pH value, the different letters above the error bars indicate significant differences (p < 0.05) based on ANOVA and post-hoc Tukey.

Figure 5. Representative SEM images of *C. metallidurans* CH34 biofilms on glass (a, b, c and d) and Teflon (e, f, g and h).

Figure 6. Effect of DNAseI treatment (b) versus control (a) on Teflon-grown *C. metallidurans* biofilms visualized by crystal violet staining.

Figure 7. ICP-MS analysis of Al release from titanium alloy TiAl6V4 (top panel) and Fe from stainless steel SS316 (bottom panel) by *C. metallidurans* CH34 (left) and uninoculated growth medium (middle), and compared with their content in *C. metallidurans* cells (right) for both the liquid (light grey) and bacterial cell (dark grey) fraction. The average values of three independent experiments (n=3) with standard deviations are shown.

Supplementary Figure 1: Crystal violet staining illustrating biofilm formation by *C. metallidurans* CH34 on glass (left panel) and Teflon (right panel) after 168h in pH 5.0.

Supplementary Figure 2: Crystal violet quantification (dark grey) and plate count (light grey) of *C. metallidurans* CH34 biofilm formation after 168 hours at pH 5.0 on glass
and Teflon. The average values of three independent experiments with standard deviations are shown. The different letters above the error bars indicate significant differences (p < 0.05) based on ANOVA and post-hoc Tukey.

Supplementary Figure 2: (a) Planktonic cells of *C. metallidurans* CH34 cultured in the presence of Teflon versus (b) planktonic cells cultured in the presence of glass.

Supplementary Figure 3: Polar protrusions and linear organisation of *C. metallidurans* CH34 cells adherent to Teflon.