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Abstract: The application of artificial intelligence and increasing high-speed computational perfor-
mance is still not fully explored in the field of numerical modeling and simulation of machining
processes. The efficiency of the numerical model to predict the observables depends on various inputs.
The most important and challenging inputs are the material behavior of the work material and the
friction conditions during the cutting operation. The parameters of the material model and the friction
model have a decisive impact on the simulated results. To reduce the expensive experimentation
cost that gives limited data for the parameters, an inverse methodology to identify the parameter
values of those inputs is suggested to potentially have data of better quality. This paper introduces
a novel approach for the inverse identification of model parameters by implementing the Efficient
Global Optimization algorithm. In this work, a method relying on a complete automated Finite Ele-
ment simulation-based optimization algorithm is implemented to inversely identify the value of the
Johnson–Cook (JC) parameters and Coulomb’s friction coefficient correlatively, where the objective
function is defined as minimizing the error difference between experimental and numerical results.
The Ti6Al4V Grade 5 alloy material is considered as a work material, and the identified parameters
sets are validated by comparing the simulated results with experimental results. The developed
automation process reduces the computation time and eliminating human errors. The identified
model parameters value predicts the cutting force as 169 N/mm (2% deviation from experiments),
feed force as 55 N/mm (7% deviation from experiments), and chip thickness as 0.150 mm (11%
deviation from experiments). Overall, the identified model parameters set improves the prediction
accuracy of the finite element model by 32% compared with the best-identified parameters set in
the literature.

Keywords: orthogonal cutting; constitutive models; parameters set; finite element modeling; automation;
artificial intelligence; Bayesian optimization; Ti6Al4V; machine learning; surrogate model

1. Introduction

The virtual simulation of the manufacturing process is an interesting topic for many
researchers. The conventional machining process is necessary in the manufacturing in-
dustry to produce high-precision parts. The wide application of machined parts and the
high complexity involved in the machining of materials to achieve the desired shapes and
properties has motivated researchers for decades [1]. The analytical and experimental
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investigations provide certain information to develop the process, but still, this information
are inadequate. Experimental analysis is highly expensive and time-consuming, and it is
difficult to measure variables such as stresses, strain, and temperature distribution [2]. The
significant advancement in computation technologies enables us to develop a numerical
model of the orthogonal cutting process [1].

Finite Element (FE) modeling is the most prominent numerical modeling technique for
the simulation of the orthogonal metal cutting process [3] and the high-speed grinding of
titanium alloy [4]. The FE simulation of the chip-formation process replaces the expensive
experimental test and predicts the difficult-to-measure variables and results with higher
accuracy than an analytical model [5]. The modeling of the complex machining process by
the FE model is quite challenging as it involves various inputs. The efficiency of the cutting
model is dependent on the numerical parameters such as the formulation type (Lagrangian,
Eulerian, Arbitrary Lagrangian-Eulerian, or Coupled Eulerian–Lagrangian), the quality
of the mesh [6], boundary conditions, constitutive models [7], and contact conditions [8].
Accurate material models and friction conditions between the tool-chip are essential to
obtain accurate and reliable results from the simulation [9]. A reliable flow of stress data
which relates the large plastic strains (1–6) at the very high strain rates (106 s−1) and very
high temperatures (800 K to 1400 K) observed during the machining process is necessary to
frame the model. In this work, the Ti6Al4V alloy, an expensive alloy commonly used alloy
for its excellent properties in the aerospace, biomedical, and marine fields, is considered for
cutting process simulation.

In numerical modeling of the machining process, many different material models
are employed, and they are classified as empirical/phenomenological, physical-based,
and hybrid models [8]. The empirical models are highly recommended for their robust-
ness, lower number of parameters, and the large availability of data when compared with
physical-based and hybrid models [8]. Likewise, many friction models are available which
are directly associated with the behavior of the material [10]. However, the credibility of
the material model and the friction model depends on the pertinent parameters involved
in defining the behavior of the material during machining process. These material model
parameters are determined using a direct method or an inverse method [1]. The direct
method is the dedicated experimental tests to obtain information. The experimental meth-
ods use curve fitting techniques to describe the experimental data from quasi-static and
dynamic material tests such as the Split Hopkinson Pressure Bar (SHPB) test [11].

Nevertheless, these experiments can reach a maximum strain of 0.5 and a strain rate
near 103 s−1, which is well below the strain of 3 and the strain rate above 106 s−1 that are en-
countered during the cutting process, which makes the extrapolation of data necessary [12].
Although the pin-on ring, open and closed tribometers [13] friction test is available to de-
termine the friction characteristics during the cutting process, the information is uncertain
due to the phenomena taking place at the tool–chip contact area [14]. In [15], Sahoo et al.
worked on tool coating and its relation with friction coefficient. They stated that, due to
the lower friction coefficient of the coating material, the stress, strain, and temperature
generation and tool wear rate in the case of TiAlN-coated tools are comparatively lower
than uncoated WC tools. This adds further arguments for considering optimizing the
friction coefficient with the constitutive model parameters in the identification framework.

The inverse methods are mainly used to overcome the drawback of extrapolation.
In this context, Ozel and Altan developed the earliest approach to inversely identify the
parameters from the cutting process [16]. In their study, the authors claim that the method
can achieve less than 10% deviation from the measured and simulated cutting forces by
using the flow stress data from the low-strain and strain rate tests as an initial starting point.
In [17], Shrot and Baeker employed the Levenberg–Marquardt algorithm to re-identify
some of the parameters of the Johnson–Cook model.

In [18], Klocke et al. proposed an inverse approach to determine the JC material and
damage parameters for AISI 316L stainless steel. To determine the model parameters, the
lower and upper values that underestimated and overestimated the experimental results
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were guessed, and the material model parameters were interpolated to find the best fit with
the experimental data. Later, they adopted the same approach to determine the material
model parameters of AISI 1045 and Inconel 718.

In [19], Bosetti et al. compared Pure NMM (Nelder–Mead method), r-NMM, and
Hybrid (Genetic Algorithm and NMM) approaches to determine the five JC parameters
and Tresca friction parameter of AISI 304 stainless steel. Deviations up to 113% have been
observed between the simulated and experimental observables. The authors state that the
range of validity is limited, and the number of simulations and computation time depend
on the initial guess for the parameters. Denkena et al. utilized Particle Swarm Optimization
(PSO) algorithm in conjunction with Oxley’s machining theory [20]. This approach suffers
from the drawback of using the assumption of Oxley’s machining theory.

In recent times, Bergs et al. [21] adapted a gradient-free approach called the Downhill
Simplex Algorithm (DSA) for the inverse identification of the material model parameters.
In this approach, they investigated the method with the inverse reidentification of a set
of initial material model parameters taken from the literature. He observed a close match
between the target and the simulated process observables. The authors applied this ap-
proach to experimental data from AISI 1045 and claim that the results are in agreement
with the experimental results [22]. Hardt et al. [23] investigated this approach to evaluate
the robustness of the algorithm to determine the parameter set and revealed the drawbacks
associated with the algorithm, such as the algorithm being stuck in local minima.

In [24], the authors also used the PSO meta-heuristic to determine the parameters
of the JC model for AISI 1045 steel. In this approach, the authors bound the upper limit
and lower limit with an empirical value and investigated different swarm sizes of the PSO
algorithm. The authors claim the approach can inversely re-identify the parameters of the
constitutive model in a few iterations when compared with his earlier work [23]. In [25],
Hardt et al. extended his work to include the automation of the post-processing of the
results and increased the number of observables in the objective function. The authors
concluded that different parameter sets identified by the algorithm result in the prediction
of identical temperature, stress, and strain profiles, highlighting the non-uniqueness.

In the literature, mostly the parameters of the constitutive model are considered
for the inverse identification process. The optimization algorithms implemented in the
literature for the inverse identification procedure is computationally expensive (9 to 30 days
minimum in parallel computation domain [24]). In addition, automatized optimization
procedures need to be improved to transfer and interpret the data more efficiently.

In this present work, an identification procedure is proposed to inversely identify
the value of the Johnson–Cook (JC) parameters and the Coulomb’s friction coefficient
correlatively, with the objective function being to minimize the error difference between
experimental and numerical results. The inverse identification problem is tackled with the
Finite Element simulation-based optimization concept. This work is a novel approach to
overcome the drawbacks stated in the literature for the inverse identification of parameters.
The first novelty of the work is the implementation of a complete automatized routine to
perform the surrogate-guided optimization procedure to identify the model parameters
values in the context of machining process simulation. The optimization process is based
on the Bayesian Optimization (BO) algorithm named Efficient Global Optimization (EGO).

The EGO algorithm, first introduced by Jones et al. [26], uses a surrogate model to
approximate the objective function (i.e., the difference between simulation and experiment)
and determine the value of a candidate point to be exactly evaluated with the simulator
(i.e., the FE model). It consequently alleviates the time cost associated with optimization
since only valuable candidate points are simulated. EGO rests on Gaussian Process (GP)
surrogate models for their ability to provide both a prediction and a measure of uncertainty
around it. This characteristic allows one to define an Acquisition Function (AF) that assesses
the value of a candidate point before evaluation (with the time-consuming simulator).
Intuitively, the AF can be seen as an agent deciding if a region of the search space is
worth sampling or not. It is then responsible for the Exploration/Exploitation trade-off in
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the optimization process. In the context of time-consuming objective function with low
budget and no place for parallel evaluations, the sequential EGO algorithm seems to be
appropriate [27] for this work. In addition, the influence of algorithm parameters such
as the influence of weight, the number of initial points to train the surrogate model, and
different sets of bounds are investigated in this work, which contributes to additional
novelty to the paper.

The Machine Learning algorithm combined with automation makes an efficient Ar-
tificial Intelligence (AI) platform to identify the parameter’s value of the models. The
proposed AI platform is significant in identifying the best parameter’s values for the JC
constitutive and Coulomb’s friction model to predict the observables with less deviation
from experiments when compared with the best parameter set stated in the literature by
Ducobu et al. [28]. In addition, the optimization procedure reduces the total computation
time to a maximum of 8 days without the need for a parallel computing domain.

The paper is organized as follows: In Section 2, Materials and Methods, the constitutive
and friction models of the surrogate-guided optimization theoretical background and
the EGO algorithm used within this work are outlined, followed by the experimental
reference. The Arbitrary Lagrangian–Eulerian Finite Element model implemented for the
simulation of orthogonal cutting is given in Section 3. In Section 4, the FE simulation-based
optimization procedure is discussed in detail, followed by the framing of the optimization
problem and the methodology to investigate the algorithm. The numerical results are
also presented and briefed in Section 4. The identified parameters’ values are analyzed
and their applicability for other cutting conditions is critically discussed in Section 5. The
conclusions are drawn based on the significance of the optimization procedure and the
identified parameter sets in Section 6.

2. Materials and Methods
2.1. Constitutive Model

Orthogonal cutting modeling involves the complex thermo-mechanical coupled mate-
rial behavior, which relates the flow stress to strain, the strain rate, and the temperature.
Material models are the most critical input that have a major impact on the accuracy of any
FE simulation. This model describes the high strain rate and high-temperature flow stress
response of metals in machining. These models should consider deformation variables
such as the plastic strain, plastic strain rate, and temperature under macroscopic scale. The
general form is given in Equation (1):

σ = σ(ε, ε̇, T), (1)

Many constitutive models have been developed and proposed for orthogonal cutting
processes based on real industrial machining applications in which empirical models are
considered for their flexibility in adapting for various materials [29].

Johnson–Cook Constitutive Model

The JC constitutive model [30] is a widely employed material models which relates the
strain, the strain rate, and temperature under machining conditions. The large availability of
data and its mathematical simplicity, low computation time, and low memory requirements
lead to the wide exploitation of this model in machining process simulations.

The JC flow stress equation is expressed by combining the plastic term representing
the strain-hardening effect as a function of strain in the first bracket, the viscous term
representing the strain rate in the second bracket, and the thermal softening term in the
third bracket. Its flow stress equation is represented by Equation (2):

σ = (A + Bεn)

[
1 + Cln

(
ε̇

ε̇0

)][
1−

(
T − Troom

Tmelt − Troom

)m]
(2)
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The JC equation is governed by the five material parameters values (A, B, C, m, n),
and their values depend on the material subjected to the orthogonal cutting process. The
parameters’ values are determined from the flow stress data observed from the experiments.
The yield stress of the material at a reference temperature gives the value of parameter
A, parameter B is the modulus of strain hardening, n is the strain-hardening exponent,
C is the strain rate sensitivity, and m is the thermal softening exponent. T is the current
temperature, Tmelt and Troom are the melting and the room temperatures, respectively, while
ε̇0 = 1 is the reference strain rate.

The parameters’ values are taken mostly from dynamic experimental material tests such
as Split Hopkinson Pressure Bar (SHPB) [16,31]. These parameters’ values are extrapolated,
as experimental data are inadequate to represent the deformation behavior of the material.
This significantly gives rise to the proposition of numerous parameter sets for the same
material [16,32]. In [32,33], the authors concluded and justified that the parameters’ values have
a significant impact on the simulated results by conducting extensive research.

Identifying the values of the parameters is still a major concern for the successful
simulation of the orthogonal cutting process of Ti6Al4V alloy. Other than the JC model,
many other material models have been developed by modifying the JC model to represent
the unique behavior of a Ti6Al4V alloy. Calamaz et al. [34] incorporated strain-softening
terms into the JC model to predict the segmented chip in the orthogonal cutting simulation
of a Ti6Al4V alloy. Sima and Özel [35] made some modifications to better control the thermal
softening effect. However, this model involves more parameters, and these parameters
are determined by fitting a curve between the measured and the predicted results from
orthogonal cutting tests, without considering the material characterization. Nevertheless,
due to the limited number of parameters and the wide availability and applicability of the
JC model, it has been selected for this work. The novel method for inverse identification
of parameters value to determine the JC model parameters presented in this paper is
applicable to any material model.

2.2. Friction Model

In addition to the material model, the simulation results of the orthogonal cut-
ting model significantly depend on the friction conditions [9]. Along with the mate-
rial model and its parameters, the friction model coefficient between the tool and chip
is another important problem that needs to be taken into consideration for successful
simulation [1,8,36]. In [8], the authors conducted extensive research on the importance
of friction conditions in modeling the cutting process. In these articles, many friction
models are compared, and their applications to numerical simulation have been criti-
cally discussed. To name a few, Coulomb’s friction, Velocity-dependent friction, Sticking-
sliding friction models (Zorev’s model) are some notable models employed in machining
process modeling.

Coulombs Friction

In this work, Coulomb’s (or Sliding) friction model is considered to define the friction
conditions at the tool–chip interface. The classical Coulomb’s friction model states that
the frictional sliding force is proportional to the applied normal load. The coefficient of
friction µ is termed as the ratio of the frictional sliding force to the applied normal force.
The coefficient of friction is constant in all the contact lengths between the chip and tool.
The Coulomb’s friction law is given in Equation (3):

τ = µσ (3)

Even though it has been criticized by the researchers [29], Coulomb’s model is still
extensively employed for its simple mathematical expression and the good qualitative
trends it provides. To determine the friction characteristics during the cutting process,
experimental methods such as pin-on ring and open tribometer friction tests are available.
However, the information is inadequate and uncertain due to complex phenomena taking
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place at the tool–chip contact area [8,14]. Therefore, the friction parameters of the Coulomb’s
model are not reliable. In [9], the authors justify the importance of optimizing the friction
coefficient value in correlation with the material model parameter value to have a better
prediction on the observables through orthogonal cutting simulation.

2.3. Surrogate-Guided Optimization

JC model and Coulomb’s friction parameters are optimized so that the numerical
simulation is as close as possible to the physical experiment. Let us consider for now the
inverse identification problem as an optimization problem taking the following form:

min
x∈Ω

f (x), (4)

where x ∈ Rd is the decision vector including the model’s parameters and f : Rd → R;
x 7→ y = f (x) is the objective function representing the error function to be defined more
precisely in the following. Considering that the objective function is time-consuming as it
involves the numerical simulation, it is proposed to rely on a surrogate model in order to
approximate the behavior of the objective function and alleviate the overall time-cost of the
optimization process. Over the past years, BO has imposed itself as a reference approach
for time-consuming optimization problems [37]. The strength of BO relies on its capability
to select the next design point to be added to the data set. The candidate design point is
selected not only according to the prediction provided by the surrogate model but also to
its uncertainty. Indeed, BO uses a probabilistic model, mostly GP regression models, that
provides a distribution of probability for each potential design point.

2.3.1. Gaussian Process Regression Surrogate Model

Following the description of Rassmussen and Williams in [38], let us assume that the
simulator’s output value y can be modeled by the following linear model:

y = ωTx + ε. (5)

In GP, the weights ω follow a Gaussian distribution, ω ∼ N (0, Σ), which constitutes
the prior belief. The ε noise is also assumed to be Gaussian N (0, σ2). Given the data, the
posterior distribution over the weights can be expressed using the Bayes rule as:

p(ω|X, y) =
p(y|X, ω)p(ω)

p(y|X)
=

p(y|X, ω)p(ω)∫
ω p(y|X, ω)p(ω)dω

. (6)

The term p(y|X) is often referred to as the evidence and can be expressed as the
marginal likelihood by marginalizing over the weights ω.

Input data X can be projected into a feature space using a set of basis functions
Φ(x) = (φ1(x), . . . , φk(x))T , which leads to the following model: y = ωTΦ(x) + ε. Denot-
ing Φ = Φ(X), Equation (6) can be written replacing X by Φ. Knowing the distribution of
the posterior p(ω|Φ, y) ∼ N

(
1

σ2 A−1Φy, A−1
)

with A = σ−2ΦΦT + Σ−1, it is possible to
make inference. The predictive distribution of a design point x∗ can be written as:

p(y∗|Φ, y, x∗) =
∫

ω
p(y∗|ω)p(ω|Φ, y)dω (7)

∼ N
(

1
σ2 Φ(x∗)T A−1Φy, Φ(x∗)T A−1Φ(x∗)

)
,

and is also Gaussian. It can be shown that Equation (7) can be equivalently written as:

p(y∗|Φ, y, x∗) ∼ N
(
Φ(x∗)TΣΦ(K + σ2 I)−1y,

K∗∗ − K∗·(K + σ2 I)−1K·∗
)
,

(8)
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where K = ΦTΣΦ is known as the covariance matrix and K(1)(2) = Φ(x(1))TΣΦ(x(2)) =
k
(

x(1), x(2)
)

. The k function is referred to as the covariance kernel and

K =
(

k(x(i), x(j))
)

i,j∈{1,...,n}

as the covariance matrix. Hence, K∗∗ denotes k(x∗, x∗) and K∗· the row vector composed
of k(x∗, x(j))∀j, j = 1, . . . , n. The kernel function is of particular importance and is chosen
as an hyper-parameter among a family of kernel functions. The choice of the kernel is
investigated in the experimental section.

2.3.2. Efficient Global Optimization Algorithm

In EGO, the surrogate model is used to propose a new candidate point by optimizat-
ing the AF, which is Expected Improvement (EI). The EI function is stated as follows in
Equation (9):

EI(x) = (y∗ − ypred(x))Φ

(
y∗ − ypred(x)

σ(x)

)
+ σ(x)φ

(
y∗ − ypred(x)

σ(x)

)
, (9)

where y∗, ypred(x), σ(x) stand for the best current objective value, the prediction of x from
the surrogate model, and its standard deviation, respectively. Φ is the cumulative density
function ofN (0, 1), and φ is the corresponding probability density function. The important
thing to be noticed is that EI will be high if σ is high (high uncertainty, hence high potential
of improvement for the surrogate model) and also if the prediction is low compared to
y∗ (in case of minimization). EI is consequently responsible for the trade-off between
exploration and exploitation in the optimization process.

Algorithm 1 shows the essential steps of the EGO algorithm. Given the hyper-
parameters relative to the surrogate model and the AF, the optimization process is initialized
with a first set of points evaluated with the simulator, named the Design of Experiment
(DoE) at line 1. A GP model is fitted with this data set at line 3 in order to select the next
point to be evaluated thanks to the optimization of the AF displayed at line 4. Once this
candidate is chosen, it is evaluated with the time-consuming simulator and integrated
into the data set as shown at line 6. Lines 3 to 6 are referred to as a cycle and operate,
respectively, until the allocated budget runs out.

Algorithm 1 Efficient Global Optimization algorithm.

1: Initial DoE: D = {X, y}
2: while Budget available do
3: M = GP(Ω)
4: xnew = argmaxD(EI(x))
5: ynew = f (xnew)
6: (X, y) = (X, y) ∪ (xnew, ynew)
7: end while

2.4. Experimental Reference

The experimental work from Ducobu et al. [39] is considered for this work. The
orthogonal cutting experiments were performed with Ti6Al4V with the same cutting
condition as the model for uncut chip thickness of 0.1 mm is considered as a reference for
this study. The experimental setup proposed by Ducobu et al. [39] aims to remove a layer of
material that resembles the orthogonal configuration. Each cutting test was performed for
0.02 s, the time required to travel the 10 mm length. The orthogonal cutting configuration
is given in the Figure 1.
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Figure 1. Cutting configuration on the milling machine.

The cutting conditions of the experimental tests conducted by Ducobu et al. [39] are
given in Table 1.

Table 1. Cutting conditions of the experiments.

Cutting speed (m/min) 30
Uncut chip thickness (mm) 0.1 6 repetitions

Width of cut (mm) 1
Length of cut (mm) 10

Rack angle (°) 15
Clearance angle (°) 2

Cutting edge radius (mm) 0.02

To guarantee the repeatability of the tests, 6 repetitions were performed. The forces
were measured with a Kistler 9257B dynamometer (Kistler Ibérica S.L, Barcelona, Spain)
and a useful part of the signal during cutting operation was considered to compute the
RMS value of forces. The chips from the orthogonal cutting were observed with an optical
microscope to measure the cut chip thickness.

A continuous chip was observed from the orthogonal cutting experiment for an uncut
chip thickness of 0.1 mm. The chip observed from the experiment is shown in Figure 2. The
experimental outputs are given in Table 2.

Figure 2. Experimental reference chip morphology for uncut chip thickness of 0.1 mm.
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Table 2. Experimental results summary (6 repetitions for h = 0.1 mm).

h (mm) Fc (N/mm) Ff (N/mm) h′ (mm)

0.1 173 ± 2 51 ± 1 0.135 ± 0.006

3. Finite Element Orthogonal Cutting Model

In FE modeling, the Eulerian and the Lagrangian formulations [1,5] are usually con-
sidered. In the Eulerian approach, the computational mesh is fixed, and the material moves
with respect to the grid, which allows handling large distortions. Prior information on the
chip geometry is required to model the machining simulations with the Eulerian formula-
tion [1], and it is adopted only for steady-state chip formation. In Lagrangian formulation,
the nodes of the mesh are attached to the material and follow the material’s deformation. It
may induce large distortions in the domain, and frequent remeshing operations may be
necessary to adapt large deformations. In addition, without remeshing, the Lagrangian
formulation needs chip separation criteria [5].

To overcome the drawbacks of the purely Eulerian and purely Lagrangian formula-
tions, two other formulations which combine the merits of Lagrangian and Eulerian have
been developed. They are the Arbitrary Lagrangian–Eulerian (ALE) and the Coupled
Eulerian–Lagrangian (CEL) formulations. In the ALE formulation, the material flows
through the mesh like in the Eulerian formulation. Because of this freedom in movement of
the mesh, the ALE description can accommodate high distortions with more resolution [40].
In the CEL formulation, a Lagrangian part is modeled within a Eulerian domain, and
the efficiency of the model depends on the Eulerian mesh definition; no mesh distortion
occurs [6].

In this work, an explicit ALE finite element formulation was adopted to simulate the
orthogonal cutting process of Ti6Al4V. This ALE formulation combines the advantage of
Lagrangian and Eulerian formulations, which allows one to take into account the large
deformations during the material flow around the cutting edge of the tool without using
a chip separation criterion. A two-dimensional (2D) plane strain model with orthogonal
cutting assumption was considered for this work. The finite element software Abaqus was
used to model the thermo-mechanical chip formation process.

In this FE model, the tool is fixed, and the workpiece moves at the prescribed cutting
speed. The tool and the workpiece are meshed with quadrilateral elements with reduced
integration for a coupled temperature–displacement calculation (CPE4RT). The length of
the workpiece is 3 h, where h is the uncut chip thickness. To achieve a better trade-off
between the element size and computation time, the area near the cutting zone (near
the tool-tip) was modeled with a finer mesh of size 5 µm. In this approach, the initial
geometry of the chip must be predefined with respect to the uncut chip thickness (h). The
workpiece inflow and outflow surfaces, as well as the chip top surface, were modeled as
Eulerian surfaces, and adaptive constraints were applied. For the tool, tungsten carbide
was considered, and the linear elastic law was imposed [41]. The chemical composition of
Ti6Al4V is given in Table 3.

Table 3. Chemical Composition of Ti6Al4 V [42].

Element Al C Fe H 0 N V Ti

Composition (mass %) 6 0.1 0.4 0.015 0.05 0.2 3.5–4.5 Balance

The material properties of Ti6Al4V considered for this work are given in Table 4.
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Table 4. Material properties considered for this study [43,44].

Material Properties Ti6Al4V Tungsten Carbide

Young’s modulus (GPa) 113.8 800
Density (kg/m3) 4430 15,000

Poisson’s ratio 0.342 0.2
Expansion (K−1) 8.6 × 10−6 4.7 × 10−6

Conductivity (W/mK) 7.3 46
Specific heat (J/KgK) 580 203
Inelastic heat fraction 0.9

Hardness [Rockwell C] 41

The tool geometry and the cutting conditions are given in Table 5.

Table 5. Cutting conditions.

Cutting and Tool Parameters Values

Cutting speed (m/min) 30
Uncut chip thickness (mm) 0.1

Rack angle (°) 15
Clearance angle (°) 2

Cutting edge radius (mm) 0.02

The initial geometry and the boundary conditions are illustrated in Figure 3. The
thermal properties are adopted from the literature [44,45]. The initial temperature for tool
and work piece is set to 298 K. The mass scaling was considered to artificially increase the
critical time increment in the simulations. A mass scaling factor of 1000 was considered, as
it shows a significant decrease in the computational time without affecting the results [28].
This approach is crucial to reach the steady state (it is enough in these cutting conditions)
for force calculations with less computation time (42 min with 6 cores Intel® Core™ i7-10700
CPU @2.90 GHz with the memory of 16 GB). The specifications of the PC machine used for
the FE simulations are given in Table 6.

Figure 3. Finite element model with initial geometry, initial mesh structure, and boundary conditions.
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Table 6. PC machine specification.

Memory 16 GB
CPU Intel® Core™ i7-10700 CPU @2.90 GHz

No. of cores 6 cores

The reaction forces and the chip characteristics from the FE simulation were processed
to calculate the cutting force, feed force, and the chip thickness

3.1. Post-Processing Automation

A post-processing automation script has been created. It investigates the output file
(.ODB in Abaqus) stored in a specific folder after processing the input file and the comple-
tion of the computation. This post-processing is the crucial part, where the information
from the specific nodes is examined and mathematical works (such as Root Mean Square
calculations of forces and euclidean distance between the chip sides) are carried out to deter-
mine the desired results. In the orthogonal cutting simulation, the cutting force, feed force,
and chip thickness are usually analyzed and are compared with the experimental results.

The cutting force and feed force were evaluated by considering the average value
in the steady-state. The information on the coordinate points of the chip was required to
calculate the chip thickness. The chip produced by the simulation was continuous (it has
the shape of a curve). The direct measurement of the chip thickness was unlikely due to
the shape of the chip. Both sides of the chip were modeled with Bézier curves, and the
chip thickness was measured as an average of distance between those curves evaluated on
several points. In addition, kinetic energy vs. internal energy information was acquired to
check the stability of the ALE model with mass scaling. The post-processing script helps to
analyze the result faster and more accurately.

3.2. Numerical Simulation and Results

The numerical results for the uncut chip thickness of h = 0.1 mm are investigated with
the JC parameters identified by Seo et al. [46] and Coulomb’s friction coefficient of 0.2 from
Arrazola et al. [1]. The parameters set adopted for the numerical simulation is given in
Table 7.

Table 7. Parameters set adopted [1,46].

Parameters Values

A (MPa) 997.9
B (MPa) 653.1

C 0.0198
m 0.7
n 0.45
µ 0.2

Troom (K) 298
Tmelt (K) 1878

The morphology of the numerically simulated chips was continuous, as in the experi-
mental reference. The temperature distribution of numerical chips is given in Figure 4a.
As expected, the temperature is maximum in the secondary deformation zone for all the
numerical chips. This confirms the fact that the heat transfer in the machining process takes
place primarily in the shear zones, where the plastic work is converted into heat and at the
chip–tool interface, where frictional heat is generated.

The temperature fraction between the work piece, tool, and chip was also obeserved.
For all the numerical chips, high plastic strain around 3.5 is observed at the chip side in
contact with the tool rake face. The Equivalent Plastic strain (PEEQ) contour is given in
Figure 4b.
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(a) Temperature Contour with Temperature Scale (b) PEEQ contour with PEEQ Scale

Figure 4. (a) Temperature contour (in K) with temperature scale; (b) Equivalent Plastic strain (PEEQ)
contour with PEEQ Scale for h = 0.1 mm at 4 ms of cutting time.

The Root Mean Square (RMS) values of the cutting force and feed force were investi-
gated through automation script and are given in Table 8.

Table 8. RMS cutting force (Fc), feed force (Ff ), chip thickness (h′), and ∆x differences with the
experimental values.

Uncut Chip
Thickness h

(mm)
Models Fc (N/mm) ∆Fc (%) Ff (N/mm) ∆Ff (%) h′ (mm) ∆h′ (%)

0.1 Experiment 173 ± 2 - 51 ± 1 - 0.135 ± 0.006 -
Seo et al. [46] 177 2 41 22 0.177 27

The forces were evaluated at their steady-state to calculate the RMS value. The plot
between forces vs. time, representing both the total and steady-state evolution, is shown in
Figure 5a. The evaluation of chip thickness is given in Figure 5b. The plot between kinetic
energy vs. internal energy to show the ratio of kinetic energy to the internal energy is less
than 5%, which determines the stability of the ALE model, is given the Figure 5c.

The results from the numerical analysis show that the ALE model is well defined. The
RMS value of the cutting force from JC with the parameters identified by Seo et al. [46]
and Coulomb’s friction coefficient of 0.2 are very close to the experimental ones, with a
small deviation of 2%, whereas the feed force and the chip thickness are in the deviation
of 22 to 27%. The above analysis depicts the fact that the ALE model is suitable to obtain
qualitative results. This shows that the ALE model is relevant to be incorporated in an FE
simulation-based optimization algorithm for the inverse identification of parameters.
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Figure 5. Result analysis for the Seo model (h = 0.1 mm): (a) Force Evolution vs. Time plot; (b) Chip
Thickness Evaluation plot; (c) ALE Model Stability Analysis plot.

4. Methodology: Machining Simulation Based Optimization

In this work, the EGO algorithm was employed to inversely determine the parameters’
value of the JC constitutive model and of the Coulomb’s friction coefficient. The FE model
of the orthogonal cutting process of the Ti6Al4V alloy is denoted as the simulator, and EGO
was used to minimize the deviation between simulated results and the experimental results.

The algorithm was completely automated to eliminate human intervention, and
following the scheme presented in Algorithm 1, the following steps were carried out:

1. Generation of the initial set of design points according to the Latin Hypercube Sam-
pling (LHS) space filling methodology;

2. Processing of the initial design points to find the observables (Ff , Fc, h′) via numerical
simulator;

3. Evaluation of the objective function according to the observables;
4. Building of the GP surrogate model to approximate the objective function;
5. Optimization of the AF yielding new design point;
6. Evaluation of the new design point (numerical simulation and objective function);
7. Integration of the new design point in the data set;
8. Steps 4 to 7 are repeated until the budget runs out.
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4.1. Problem Definition

The JC model parameters (B, C, n, m) and the Coulomb friction parameters (µ) are
expressed as design variables, input variables, or decision vectors of the optimization
problem. Parameter A is the yield stress in JC model. To realize the mechanical properties
of the Ti6Al4V, the yield stress parameter value A of Ti6Al4V in the JC model was set to
997.9 MPa [43,46]. It is therefore not included in the variable.

Hence, the decision vector of the optimization problem is given in Equation (10):

x =
(

B C m n µ
)
∈ R5 (10)

The objective function is defined based on minimizing the deviation in the FE numer-
ical simulation outcomes: the cutting force Fc

(sim), feed force Ff
(sim), and chip thickness

h′(sim) with experimental (physical) outcomes and cutting force Fc
(exp), feed force Ff

(exp),

chip thickness h′(exp) for the uncut chip thickness h = 0.1 mm. The weighted sum method
was considered in this study, which allowed the multi-objective problem to act as a single
objective mathematical problem. This real-value objective function is given in Equation (11):

F(x) = wFc

|Fc
(sim) − Fc

(exp)|
max |Fc

(sim) − Fc
(exp)|

+ wFf

|Ff
(sim) − Ff

(exp)|
max |Ff

(sim) − Ff
(exp)|

+ wh′
|h′(sim) − h′(exp)|

max |h′(sim) − h′(exp)|
(11)

where wi represents the weight coefficient of individual observables with (∑ wi = 1). The
weight of an observable is chosen according to its application. In this work, two different
sets of weight coefficients w = (wFc , wFf , wh′) are investigated to determine their influence
in identifying the parameter values. The first set of weights,
w(1) = (1/3, 1/3, 1/3), is a uniform distribution on the three observable contributions
(Fc, Ff , h′). The second set of weights, w(2) = (0.40, 0.35, 0.20) gives more weight to the
cutting force Fc than feed force Ff and less weight to chip thickness h′ to take into account
the hierarchy of the observables for cutting process optimization in an industrial context.

The parameters to be identified were limited within meaningful physical boundaries.
Two sets of bounds have been considered for the JC parameters (B, C, m, n) in this study.
The first set of bounds (B1) are the upper and lower value of the bounds are chosen from the
work of Ducobu et al. [32], where the authors extensively investigated the available sets of
parameters in the literature for Ti6Al4V alloy. The second set of bounds (B2) were the upper
and lower bounds are chosen empirically with in the physical limit of the TI6Al4V alloy to
study the influence of bounds. A single bound is chosen for a friction coefficient is chosen
within physical meaning (µ ∈ [0, 1]). The two sets of bounds are given in Tables 9 and 10.

Table 9. First Set of Bounds (B1).

Parameters Lower Limit Upper Limit

B (MPa) 331.2 1092
C 0.000022 0.05
m 0.6437 1.51
n 0.122 1.01
µ 0 1

Table 10. Second Set of Bounds (B2).

Parameters Lower Limit Upper Limit

B (MPa) 300 1100
C 0.00001 0.06
m 0.5 1.55
n 0.1 1.1
µ 0 1
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The numerical simulator (Abaqus) used to compute the observables for each design
point is computationally expensive. Indeed, the computation time to obtain the results for
the uncut chip thickness h = 0.1 mm for one complete simulation is about 42 min. Increasing
the number of initial design points will proportionally increase the total computation time.
To determine the number of initial points to obtain qualitative results from the optimization
algorithm, an investigation has also been carried out to analyze the influence of the number
of initial design points.

4.2. Optimization Methodology

Following common recommendations of BO [26], an initial data set containing 60
(12× d, with the problem dimension d = 5) design points was generated according to the
LHS approach [47] in order to ensure a good space filling. Based on this initial data set,
an analysis is conducted to explore various combinations of hyper-parameters for the GP
model. The procedure involves several kernels and mean functions for the model, as well
as various learning rates for the optimization of the model. A grid search is performed
among the mentioned parameters within the objective of identifying the best model’s hyper-
parameters according the Leave-One-Out Cross-Validation score [48]. All the experiments
are performed using the GPyTorch framework in Python [49] and revealed that the constant
mean and spectral mixture kernel achieves good results with a learning rate of 0.1.

The AI-based concept involving the optimization algorithm (ML algorithm) and
automation makes the decision on the best parameter sets for the JC and Coulomb’s friction
model efficiently. AI reduces the time taken to perform optimization runs and human
errors. Different optimization runs for inverse identification of the JC constitutive model
and Coulomb’s friction model are carried out utilizing the advantage of AI. Table 11
presents the four optimization models.

Table 11. Optimization Methodology—Algorithm Models.

Optimization Model No. of Initial Points Weight Coefficients Bound Set

M1 60 w(1) = (1/3, 1/3, 1/3) B1
M2 60 w(2) = (0.40, 0.35, 0.20) B1
M3 10 w(1) = (1/3, 1/3, 1/3) B1
M4 10 w(1) = (1/3, 1/3, 1/3) B2

All the optimization models were run on the same machine (therefore, with the same
computational power). In a PC, parallel computing is already used inside the simulator
(Abaqus) in order to reduce the computation time of a single simulation. Then, sequential
EGO is preferred to parallel versions [27,50].

The parameter sets identified by the model M1 and the relevant information are given
in Table 12. The characteristics of models M2, M3, and M4 are given in Table 11, and
relevant information on their objective values and computation times is given in Table 12.

Table 12. Identified parameter sets by the Efficient Global Optimization algorithm Models.

Optimization
Models B (MPa) n m C µ

Objective
Value

Computation
Time

M1 331.2 0.594 0.6434 0.050000 0.19 0.019 8 days 2 h
M2 331.2 0.620 0.6437 0.050000 0.24 0.021 8 days 4 h
M3 356.0 0.323 0.6834 0.045286 0.12 0.017 7 days 8 h
M4 434.4 0.187 1.4761 0.008613 0.07 0.022 7 days 10 h

4.3. Numerical Results

The optimized values from the EGO algorithm for the JC model and the Coulomb’s
friction coefficient parameters are employed to build the FE model. The results from these
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FE simulations are compared with the experimental results for validation of the identified
parameters. The RMS values of the forces and the chip thickness for uncut chip thickness
h = 0.1 mm considering the influence of the algorithm parameters are given in Table 13.

Table 13. RMS cutting force (Fc), feed force (Ff ), chip thickness (h′), and ∆x differences with the
experimental results for h = 0.1 mm.

Uncut
Chip

Thickness
h (mm)

Models Fc (N/mm) ∆Fc (%) Ff (N/mm) ∆Ff (%) h′ (mm) ∆h′ (%) ∆Total (%)

0.1

Experiment 173 ± 2 - 51 ± 1 - 0.135 ± 0.006 - -
Seo et al. [46] 177 2 41 22 0.177 27 51

M1 163 6 53 4 0.147 9 19
M2 169 2 55 7 0.150 11 20
M3 157 10 55 8 0.134 1 19
M4 158 9 47 8 0.153 12 29

The influence of the algorithm parameters plays a significant role in identifying
parameters. Nevertheless, the parameters identified by EGO with any algorithm parameters
are able to predict the observables considered in this study with an overall deviation in
the range of 19% to 29%, a significant improvement compared to the initial deviation of
51%. The deviation can further be reduced by increasing the number of iterations, which
correspondingly increases the computation time.

With 300 iterations, models M1 and M2 perform better in predicting the cutting force
and the feed force. The model M2 predicts the cutting force within the deviation of 2%, as
more weights are put on the cutting force than on the feed force and the chip thickness,
whereas, in model M1, the weights are equally distributed, which reflects the prediction
of observables with a deviation of 6% and 4% for the forces and 9% for the chip thickness.
M3 with less initial design samples and with equally distributed weights predicts the
observables with a total deviation of 19% but shows a high deviation for the cutting force
(10%) and less deviation for the chip thickness (1%). As expected, model M4 shows more
deviation (29%) because of the increasing upper and lower bound values.

5. Discussion

The four optimization models (M1, M2, M3, M4) considered in this work perform well
in determining the model parameters value with a maximum computation time of 8.5 days.
Indeed, the total deviation of the simulated results from the experimental results lies in the
range of 19% to 29%. The identified parameter sets from the optimization for the JC model
along with the friction coefficient can predict the forces and the chip thickness 62% more
efficiently than the best parameter sets determined by Ducobu et al. [32] (Their method was
a critical investigation of the available parameter sets in the literature for the machining of
Ti6Al4V alloys, and friction was not included).

In the machining process, knowledge about the forces is of utmost importance in
optimizing the cutting process. Taking that into account, more interest is put on the forces’
prediction with the identified parameter sets. The difference (∆x) of simulated results with
the experimental results with respect to the forces is given in Table 14.



Metals 2022, 12, 976 17 of 21

Table 14. RMS cutting force (Fc), feed force (Ff ), and ∆x differences with the experimental forces.

Uncut Chip
Thickness h

(mm)
Models Fc (N/mm) ∆Fc (%) Ff (N/mm) ∆Ff (%) ∆Force (%)

0.1

Experiment 173 ± 2 - 51 ± 1 - -
Seo et al. [46] 177 2 41 22 24

M1 163 6 53 4 10
M2 169 2 55 7 9
M3 157 10 55 8 18
M4 158 9 47 6 15

The parameters set found by the optimization models M1 and M2 predict the cutting
force and feed force with less deviation from the experimental results when compared with
models M3 and M4. Indeed, the cutting force predicted by the parameter sets identified by
M3 and M4 is in the range of 9% to 10%, which is slightly more when compared with the
reference parameter sets considered in this study [1,46]. However, the feed force predicted
by the identified parameter sets by the optimization models M3 and M4 significantly
reduces the deviation in the numerical results from the experimental results. The parameter
set from M2 predicts the cutting force near the experimental result, as the optimization
model is defined with a greater weight coefficient on the cutting force than the feed force,
which is reflected in the parameter identification process of the algorithm. Even though
the parameter set from M1 predicts the total forces with a deviation of around 10%, the
cutting force deviation could be improved. This is due to the definition in the equal weight
coefficients of the observables. The model M3 predicts the forces with a deviation of 18%
from the experimental results. Indeed, the identified parameter sets can predict the same
chip thickness as the experimental reference but fail to predict the forces with less deviation
from the experiments. The model M4 predicts the forces with a deviation of 15%; this can
be explained by the increase in the range of the B2.

The JC parameter sets and the Coulomb’s friction coefficient identified by the op-
timization models M1 and M2 are selected for further analysis, as they provide a good
trade-off between the predicted forces and the chip thickness. Two other values of uncut
chip thickness, h = 0.04 mm and h = 0.06 mm, are introduced to further analyze and validate
the identified parameters from the optimization. The results from these FE simulations
are compared with the experimental results. The RMS values of the forces and the chip
thickness for uncut chip thicknesses of h = 0.04 mm and 0.06 mm are given in Table 15.

The identified parameter sets for the JC and Coulomb’s friction coefficients by the
M1 and M2 optimization models can accurately predict the cutting force (deviation within
4%) for uncut chip thicknesses of h = 0.04 mm and 0.06 mm. Meanwhile, the feed force
is overestimated (16% to 33%). The chip thickness prediction shows some improvement
when compared with the reference model, even though they are overestimated (14% to
19%) when compared with the experimental measurements.

The inversely identified parameters values of the JC model and Coulomb’s friction
coefficient value qualitatively predict the observables for the cutting condition considered
for optimization. The accuracy is lower for the other cutting conditions but still quite
good, particularly for the cutting force. However, this analysis on cutting conditions is
different than the one conducted for the optimization, showing the limits of an optimization
performed for a single cutting condition. Nevertheless, the prediction of the cutting forces
with the identified parameter sets are in close agreement (<10%) with the industrial trends,
where the cutting force prediction has fundamental importance for the optimization of
cutting conditions, tool design, and also for tool wear/life prediction [1]. Indeed, the
identified parameter sets can predict the cutting forces within a deviation of 6% for all
the cutting conditions considered in this study, while Arrazola et al. [1] state that the
experimental measurement trials and the variations in the material properties of the same
material can cause variations of around 10% in forces.
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Table 15. RMS cutting force (Fc), feed force (Ff ), chip thickness (h′), and ∆x differences with the
experimental results for h = 0.04 mm and h = 0.06 mm.

Uncut
Chip

Thickness
h (mm)

Models Fc (N/mm) ∆Fc (%) Ff (N/mm) ∆Ff (%) h′ (mm) ∆h′ (%) ∆Total (%)

0.06

Experiment 112 ± 2 - 45 ± 1 - 0.080 ± 0.004 - -
Seo et al. [46] 120 7 41 9 0.112 33 49

M1 112 - 56 22 0.093 15 37
M2 116 4 53 16 0.097 19 39

0.04

Experiment 86 ± 2 - 41 ± 1 - 0.059 ± 0.005 - -
Seo et al. [46] 92 7 35 16 0.083 34 57

M1 86 - 57 33 0.068 14 47
M2 88 2 52 24 0.071 18 44

6. Conclusions

In this research work, a novel approach introducing an automated FE-based Bayesian
optimization algorithm for inverse identification of the parameters value of the JC model
and Coulomb’s friction model for orthogonal cutting FE modeling of Ti6Al4V alloy has
been explored. The optimization procedure searches for the best parameter values for the
JC model and Coulomb’s friction model by minimizing the error between the numerical
prediction and experimental data related to the cutting force, feed force, and chip thickness.
To conclude, the applicability of the EGO algorithm for the inverse identification of param-
eters’ values in the context of the orthogonal cutting of a Ti6Al4V alloy was successfully
realized. The best parameter sets were identified by the optimization models M1 and M2.
The identified parameter sets are incorporated in the FE modeling of the orthogonal cutting
process and are validated with the experimental results. The following outcomes are drawn
from the above study:

• The parameter sets identified by the EGO algorithm provide highly qualitative results
for the cutting condition considered for optimization.

• The identified parameter sets from the optimization models M1 and M2 predicted
cutting forces that are in close agreement with the experimental measurements, with
deviations less than 10% for all the cutting conditions considered in this study.

• The parameter sets from the models M1 and M2, along with the ALE model devel-
oped in this work, predict the forces and chip thickness 31% more effectively for the
considered cutting condition than the best parameter sets identified and stated in the
literature.

• The feed force and chip thickness prediction had deviations of around 10% for an
uncut chip thickness of h = 0.1 mm. However, for the uncut thicknesses of h = 0.06 mm
and 0.04 mm, the feed force and the chip thickness are overestimated. Anyhow, the
identified parameters predict the forces and chip thicknesses 13–10% more effectively
than the best parameter sets identified and stated in the literature.

• Overall, the proposed algorithm is computationally efficient and reasonably accurate
in predicting the observables. The algorithm procedure requires 8 days to complete
the whole optimization process in a computing machine without the need for a
parallel computing domain. These significant factors highlight its capability for
implementation at the industry level.

Based on the analysis, either of the parameter sets from the optimization models M1 or
M2 can be selected according to the user’s interest in the observables. In the future, further
investigation should be carried out to identify the model parameters via optimization by
considering multiple cutting conditions. In addition, parallel computing can be used to
reduce the optimization time or increase the budget in order to obtain better results within
the same time.
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Abbreviations and Symbols

BO Bayesian Optimization
EGO Efficient Global Optimization
FE Finite Element
JC Johnson–Cook
RMS Root Mean Square
D Set of samples
M Gaussian regression surrogate model
R Set of real numbers
A Yield stress of the material
B Modulus of strain hardening
C Strain rate sensitivity
E (GPa) Young’s modulus of the material
h Uncut chip thickness
m Thermal softening exponent
n Strain-hardening exponent
T Current temperature
B1 First set of bounds
B2 Second set of bounds
Fc Cutting force
Ff Feed force
h′ Chip thickness
Tmelt Melting temperature of the material
Troom Room temperatures of the material
Vc Cutting speed
(α(x)) Acquisition function
e Error term or noise prediction
F(x) Objective function
µ Coulomb’s friction coefficient
∆x Difference with the experimental reference
ρ (kg/m3) Density of the material
ν Poisson’s ratio
σ Flow stress
ε Strain
ε̇ Strain rate
ε̇0 Reference strain rate
∈ Element of
EI(x) Expected Improvement
ω Weights Gaussian distribution term
y∗ Best current objective value
ypred(x) Prediction of x from the surrogate model
σ(x) Standard deviation
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Φ Cumulative density function of N (0, 1)
φ Probability density function
K = ΦTΣΦ Covariance matrix
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