Half-Positional Objectives Recognized by Deterministic Büchi Automata

Patricia Bouyer¹, Antonio Casares², Mickael Randour³, **Pierre Vandenhove**^{1,3}

¹Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France ²LaBRI, Université de Bordeaux, France ³F.R.S.-FNRS & UMONS – Université de Mons, Belgium

June 29, 2022 - Highlights of Logic, Games and Automata

Zero-sum turn-based games on graphs

Understand the **objectives** for which **simple** strategies suffice to win.

Half-Positional Objectives Recognized by DBA

P. Bouyer, A. Casares, M. Randour, P. Vandenhove

Half-positionality

Strategies

A **strategy** of \mathcal{P}_1 is a function $\sigma \colon E^* \to E$.

It is **positional** if the choices only depend on the **current** vertex.

Half-positionality

Strategies

A strategy of \mathcal{P}_1 is a function $\sigma \colon E^* \to E$. It is positional if the choices only depend on the current vertex.

Half-positional objectives

In all games, if \mathcal{P}_1 can win for objective W with a strategy $\sigma \colon E^* \to E$, can \mathcal{P}_1 also win with a **positional** strategy?

Half-positionality

Strategies

A strategy of \mathcal{P}_1 is a function $\sigma \colon E^* \to E$. It is positional if the choices only depend on the current vertex.

Half-positional objectives

In all games, if \mathcal{P}_1 can win for objective W with a strategy $\sigma \colon E^* \to E$, can \mathcal{P}_1 also win with a **positional** strategy?

Existing results

- Sufficient conditions for half-positionality.^{1,2}
- Structural characterization!³

¹Kopczyński, "Half-Positional Determinacy of Infinite Games", 2006.

²Bianco et al., "Exploring the boundary of half-positionality", 2011.

³Ohlmann, "Characterizing Positionality in Games of Infinite Duration over Infinite Graphs", 2022.

Objectives

Common class of objectives finitely representable: ω -regular objectives.

Common class of objectives finitely representable: ω -regular objectives.

Open problem

Half-positionality **not** completely understood for ω -regular objectives!

Common class of objectives finitely representable: ω -regular objectives.

Open problem

Half-positionality **not** completely understood for ω -regular objectives!

Here

Effective characterization of **half-positional** objectives recognized by **deterministic Büchi automata** (DBA).

DBA recognize a **sub**class of the ω -regular objectives.

Examples

- $C = \{a, b\}.$
 - $W = \text{Büchi}(a) = \text{"seeing } a \text{ infinitely often": half-positional.}^4$

⁴Emerson and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

P. Bouyer, A. Casares, M. Randour, P. Vandenhove

Examples

- $C = \{a, b\}.$
 - $W = \text{Büchi}(a) = \text{"seeing } a \text{ infinitely often": half-positional.}^4$

• *W* = Büchi(*a*) ∩ Büchi(*b*): **not** half-positional.

⁴Emerson and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

P. Bouyer, A. Casares, M. Randour, P. Vandenhove

Examples

- $C = \{a, b\}.$
 - $W = \text{Büchi}(a) = \text{"seeing } a \text{ infinitely often": half-positional.}^4$

• *W* = Büchi(*a*) ∩ Büchi(*b*): **not** half-positional.

• $W = \text{Büchi}(a) \cup C^*aaC^{\omega}$: half-positional.

⁴Emerson and Jutla, "Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)", 1991.

Let W be recognized by a DBA \mathcal{B} .

Main result

Characterization of half-positionality of W with a conjunction of **three** conditions.

Let W be recognized by a DBA \mathcal{B} .

Main result

Characterization of half-positionality of W with a conjunction of three conditions. $\sim N_0$ time to explain all of them :-)

Let W be recognized by a DBA \mathcal{B} .

Main result

Characterization of half-positionality of W with a conjunction of **three** conditions.

Intuition for one condition: what distinguishes these two DBA?

Let W be recognized by a DBA \mathcal{B} .

Main result

Characterization of half-positionality of W with a conjunction of **three** conditions.

Intuition for one condition: what distinguishes these two DBA?

• Left: needs two states for the objective, but "equivalent" (same objective when taken as initial states).

Let W be recognized by a DBA \mathcal{B} .

Main result

Characterization of half-positionality of W with a conjunction of **three** conditions.

Intuition for one condition: what distinguishes these two DBA?

- Left: needs two states for the objective, but "equivalent" (same objective when taken as initial states).
- Right: three states, all recognizing different objectives.

Let W be recognized by a DBA \mathcal{B} .

Main result

Characterization of half-positionality of W with a conjunction of **three** conditions.

Intuition for one condition: what distinguishes these two DBA?

- Left: needs two states for the objective, but "equivalent" (same objective when taken as initial states).
- Right: three states, all recognizing different objectives.

Being "Myhill-Nerode-like" is necessary for half-positionality.

Conclusion: two corollaries

Let W be recognized by a DBA \mathcal{B} .

Polynomial-time algorithm

Half-positionality of W can be **decided** in $\mathcal{O}(|\mathcal{B}|^4)$ time.

Conclusion: two corollaries

Let W be recognized by a DBA \mathcal{B} .

Polynomial-time algorithm

Half-positionality of *W* can be **decided** in $\mathcal{O}(|\mathcal{B}|^4)$ time.

One-to-two-player, finite-to-infinite lift

If W is half-positional over **finite one-player** graphs, then also in **infinite two-player** games!

Conclusion: two corollaries

Let W be recognized by a DBA \mathcal{B} .

Polynomial-time algorithm

Half-positionality of W can be **decided** in $\mathcal{O}(|\mathcal{B}|^4)$ time.

One-to-two-player, finite-to-infinite lift

If W is half-positional over **finite one-player** graphs, then also in **infinite two-player** games!

Thanks!