
FEATURED ARTICLE

Generalisation of the envelope
theory for systems with different

particles
L. Cimino, C. Chevalier, C.T. Willemyns, C. Semay
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The envelope theory is a method to easily obtain approximate, but reliable, solutions for
some quantum many-body problems. Quite general Hamiltonians can be considered for
systems in D dimensions, and the scope of the method can span many fields of Physics.
Recently, the method has been extended to treat systems with different particles, with good
results for power-law potentials and relativistic kinematics.

Introduction

The Schrödinger equation (− 1
2m∇2 + V)ψ = Eψ,

with h̄ = 1, is the equation of motion for quantum
systems for one particle or for a relative motion.
When solved, it gives access to the eigenvalues
E and eigenfunctions ψ of the system. Only
some Hamiltonians H like the harmonic oscillator
or the hydrogen atom can be solved analytically.
Some techniques like supersymmetric quantum
mechanics [1] can be used to determine if this is the
case. Otherwise, the equation can be numerically
solved with many methods.
The Schrödinger equation can also be written for
systems with many particles. We will consider the
following N-body Hamiltonian

H =
N

∑
i=1

Ti(pi) +
N

∑
i<j=2

Vij(rij), (1)

where Ti is an arbitrary kinetic energy, with some
constraints [2], depending on pi = |pi|, and Vij is a
two-body potential depending on rij = |ri − r j|. In
the following, all computations will be performed
in the centre of mass frame. Only a handful
of many-body systems can be solved analytically

such as the harmonic oscillator [3] or the Calogero
model at D = 1 dimension [4]. Otherwise,
numerical methods need to be used. We can cite
e.g. the oscillator basis expansion [5], the gaussian
basis expansion [6], the hyperspherical harmonic
expansion [7] or the Lagrange-mesh method [8].
These methods can be very accurate, but they are
generally very heavy to implement and need long
computation times. In this article, we would like to
present the method of the envelope theory (ET).

The key element of the ET is the fact that the
complete solution of an N-body harmonic oscillator
Hamiltonian, says Hho, exists as stated above. Then,
the idea is to build an auxiliary Hamiltonian,
H̃ = Hho + B, where B is a function unequivocally
determined from the structure of H. By using an
extremisation procedure, eigenvalues of H̃ can be
rendered very close to those of H. The procedure
to build H̃ and compute the approximate solutions
of H is described in the following sections. The big
advantage of the method is that its computational
cost is independent of the number of particles N,
which is especially useful when the number of
particles can be arbitrary large as for baryons in
the large-N formulation of QCD [9–12]. The ET has
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been first developed to treat systems with identical
particles (bosons or fermions) [13, 14]. In some
favourable situations, analytical upper or lower
bounds can be computed. Recently, the method
has been extended to treat systems with different
particles [15, 16]. This generalisation opens new
domains of applicability of the method such as in
hadronic physics with the study of hybrid baryons,
which are exotic states composed of 3 quarks (or
Nc quarks with the gauge group SU(Nc)) and a
constituent gluon.

Previous results for identical
particles

We would like first to present some previous results
computed with the ET to show the interest of the
method. We will explain the construction of the
method itself in the next sections.
At first, let us consider a non-relativistic kinematic
energy T(p) = p2/2m with a Coulomb potential
V(r) = −g/r at D = 3. The ET gives the following
analytical result for the bosonic ground state (BSG)
[17]:

EET = −N2(N − 1)
4

mg2

(ϕ + 1)2 .

As we can see, the number of particles N appears
as a simple parameter. We will discuss later the
meaning of the parameter ϕ. When ϕ = 2, we
can show that the ET gives an upper bound as we
can see in Fig. 1. Our approximate solution also
matches the general behaviour of the exact solution.
The ET can also be used to compute eigenfunctions
and so observables, as shown in Fig. 1 for the mean
relative distance ⟨r⟩.
Secondly, we consider the same non-relativistic
kinematics but with a central Gaussian potential
V(r) = −Vge−x2/a2

at D = 1. The approximate
eigenvalue for the BGS is given by [14]:

EET = −N(N − 1)
2

VgY2 1 + 2W0(Y)
W0(Y)2 ,

with Y = − 1
2a
√

2mVgN
,

where the Lambert function W0(z) is the inverse
of zez. This approximation as been compared to
very accurate results up to 100 bosons as we can
see in Fig. 2. Computing the energy for such a
large number of particles is not a problem for the

ET. The accuracy is also very good with a relative
error around 0.05% for N = 100. Similar results
have been found for the same system at D = 3 up
to N = 20 [17].

Harmonic oscillator

As mentioned in the Introduction, the only
many-body system that can be solved analytically
at D dimensions is the harmonic oscillator

Hho =
N

∑
i=1

p2
i

2mi
+

N

∑
i<j=2

kijr2
ij. (2)

The eigenvalues can be obtained by the
diagonalisation of a matrix of order (N − 1)
[3, 20–22].
It is useful to define the following global quantum
number for a set of M identical particles

Q(M) =
M−1

∑
k=1

(2nk + lk + D/2) , (3)

where {nk, lk} are the quantum numbers associated
with the internal Jacobi variables. This global
quantum number allows us to specify if we have a
system of bosons or fermions, or if we want the
ground state or excited states. Its computation
is not easy but some values are given in [14, 15].
For instance, for the BGS we have a simple value
QBGS = (M − 1)D

2 .
If we specify (2) for a system composed of N
identical particles, the diagonalisation procedure
gives the following eigenvalue

Eho = Q(N)

√
2Nk

m
. (4)

On the other hand, if we specify (2) for a system
composed of Na identical particles of type a plus a
different one of type b, we obtain the more complex
solution

Eho = Q(Na)

√
2

ma
(Nakaa + kab)

+ Q(2)

√
2(Nama + mb)

mamb
kab.

(5)

A generalisation of this formula has also been
determined for a system of Na + Nb particles [15].
These exact solutions will be the starting point of
the ET.
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Figure 1: Binding energies −E (left) and mean relative distances ⟨r⟩ (right) of self-gravitating bosons for m = g = 1: exact
results (circle) [18], ET results for ϕ = 2 (diamond) and improved ET results for ϕ = 1 (dashed line for visibility).

Figure 2: Energies in K for the Gaussian potential for 1/m =
43.3 (a.u.)2, a = 1 a.u. and Vg = 5.6 K: accurate
results (dot) from Lagrange-mesh (LM) method [19]
and upper bounds computed with the ET (solid line
for visibility).

Construction of the envelope theory

The idea of the ET is to replace the original
Hamiltonian H with the following auxiliary
Hamiltonian [23–26], where {α} = {{µi}, {ρij}},

H̃({α}) =
N

∑
i=1

[
p2

i
2µi

+ Ti(Gi(µi))−
G2

i (µi)

2µi

]
+

N

∑
i<j=2

[
ρijr2

ij + Vij(Jij(ρij))− ρij J2
ij(ρij)

]
,

(6)
where G and F are functions entirely determined
by the original Hamiltonian [15], and {α} are
auxiliary parameters to determine later. The
number of parameters can be reduced thanks to
the symmetries of the system. Indeed, we can show
that for a set of identical particles there is only

one parameter µ and one parameter ρ. For Na + 1
particles, we have thus four parameters µa, µb, ρaa

and ρab.
Another form of (6) is

H̃({α}) = Hho({α}) + B({α}), (7)

where B is a function obtained by subtracting the
harmonic oscillator contributions from (6). An
eigenvalue of (6) is thus

Ẽ({α}) = Eho({α}) + B({α}), (8)

where Eho is the eigenvalue of the harmonic
oscillator (either (4) or (5) for the two particular
systems presented above). The principle of the
method is to search for the set of parameters
{α0} = {{µi0}, {ρij0}} such that

∂Ẽ
∂µi

∣∣∣
{α0}

=
∂Ẽ
∂ρij

∣∣∣
{α0}

= 0 ∀ i, j. (9)

After solving (9), we obtain the desired approximate
energy EET by substituting the set {α0} back
to (8), Ẽ({α0}) = Ẽ0. When (8) can be
written analytically, equations (9) correspond to
a simple optimisation problem which can be done
analytically or numerically.
An interesting property of the method is that,
when optimisation equations (9) are fulfilled, each
respective parts of Hamiltonians H and H̃({α0})
will be tangent at least at one point [15, 24], thus
forming an envelope and giving the name to the
method. When some conditions are fulfilled, lower
or upper bounds are possible, which was the case
for the examples given above.
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Compact equations

It has been shown that solving (9) for a system of
Na + 1 particles is equivalent to solve the following
set of five compact equations [27]

Ẽ0 = NaTa
(

p′a
)
+ Tb (P0)

+ C2
Na

Vaa (raa) + NaVab
(
r′0
)

,
(10a)

NaT′
a(p′a)

p2
a

p′a
= C2

Na
V ′

aa(raa)raa

+
Na − 1

2
V ′

ab(r
′
0)

r2
aa

r′0
,

(10b)

1
Na

T′
a(p′a)

P2
0

p′a
+ T′

b(P0)P0 = NaV ′
ab(r

′
0)

R2
0

r′0
, (10c)

Q(Na) =
√

C2
Na

paraa, (10d)

Q(2) = P0R0, (10e)

with p′a
2 = p2

a +
P2

0
N2

a
and r′0

2 = Na−1
2Na

r2
aa + R2

0.
These equations are called compact because all
the relevant variables appear in five equations
giving the definition of the energy (10a), the
equations of motion (10b,10c) and the rules for the
quantisation (10d,10e). Moreover, the uninteresting
auxiliary parameters and functions are not present.
Equations (10) can also be easily implemented and
solved as follow: first we compute the variables
pa, P0, raa and R0 by solving (10b-10e). Then we
substitute their values in (10a) to compute the
energy Ẽ0.
There are good reasons to prefer the compact
equations (10) over the optimisation equations
(9). First, the quantities pa, P0, raa and R0 give
direct access to more interesting expectation values
than {α0}. Secondly, these equations have a nice
semiclassical interpretation [13]. Thirdly, it is
possible to improve the ET starting from these
equations [28], which is the main motivation to
write these equations.
The compact equations for a system of Na + Nb
particles have also been determined in [27].

Improvement of the method

One reason for inaccuracies in the ET is the strong
degeneracy of the harmonic oscillator eigenvalue.
For systems with all identical particles, it has been

shown [17] that the modification of Q(M) in the
following way

Qϕ(M) =
M−1

∑
k=1

(
ϕnk + lk +

D + ϕ − 2
2

)
(11)

can allow a noticeable improvement of the ET
results when D ≥ 2 (this is why the parameter ϕ is
not introduced in the previous example at D = 1).
The parameter ϕ takes its origin from [29] where an
effective quantum number for centrally symmetric
2-body systems has been introduced. The modified
quantum number (11) is a generalisation to N-body
systems. We retrieve the original ET when ϕ = 2.
The value of ϕ can be determined either by
fitting some exact solutions, or by using the ET
in combination with a generalisation of another
method, the dominantly orbital state method
(DOSM) [28]. The DOSM has been initially
developed for 2-body systems but, thanks to the
compact equations of the ET, it can be generalised to
N-body systems. For instance, for the first example
given in the second section, computations give the
simple value ϕ = 1. Fig. 1 clearly shows an
improvement of the accuracy for the energy.
This improvement procedure has been recently
generalised for systems with Na + 1 particles [16]
where we need to introduce two parameters ϕa and
ϕb since we have two global quantum numbers in
(5).

Results

Now that the method and the equations have
been established, we will check the accuracy by
computing the BGS for a variety of different
Hamiltonians. ET results are given in [15] and
improved results (IET) in [16]:

1. D = 3 Hamiltonian for a three-body system of
ultra-relativistic harmonic oscillators (arbitrary
units)

H =
3

∑
i=1

|pi|+ r2
12 + λ

2

∑
i=1

r2
i3. (12)

The ET (ϕ = 2) predicts an upper bound as we
can see in the table below.

Exact [30] ET IET
λ = 0.1 5.288 5.597 (5.8) 5.307 (0.4)
λ = 10 14.506 15.353 (5.8) 14.699 (1.3)
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The relative errors in % are indicated between
parentheses. With the original ET, the accuracy
is around 6% which is great for such a simple
method as the ET. When the improvement is
considered, the relative errors drop to 1% or
less.

2. D = 3 Hamiltonian for a three-body system
with power-law potential (arbitrary units)

H =
2

∑
i=1

p2
i

2
+

p2
3

2m
+

1
2

sgn(β)
3

∑
i<j=2

rβ
ij. (13)

The ET (ϕ = 2) predicts an upper bound for
β < 2 and a lower bound when β > 2. When
β = 2, we retrieve the harmonic oscillator and
so the ET gives the exact result. In the results
below we took m = 0.2.

β Exact [31] ET IET
−1 −0.1398 −0.0645 (54) −0.1316 (5.9)
0.1 1.9452 1.9804 (1.8) 1.9489 (0.2)
1 4.9392 5.2278 (5.8) 4.9687 (0.6)
3 9.7389 8.9925 (7.7) 9.6703 (0.7)

The relative accuracy obtained by the ET is
better than 8%, except for the Coulomb case.
The improvement is again quite large with
the IET, even if its magnitude seems quite
unpredictable. Similar results have been found
for m = 5 [16].

3. Hamiltonian of atoms (a.u.)

H =
1
2

Ne

∑
i=1

p2
i +

1
2m

p2
N − Z

Ne

∑
i=1

1
riN

+
Ne

∑
i<j=2

1
rij

.

(14)
Due to the mixing of attractive and repulsive
potentials, the ET has no variational character.
Binding energies below are given in eV.

ET IET Exp.
4He 33 47 79
6Li 66 95 203

6Li+ 85 123 198

Unlike the previous examples, the accuracy of
the ET is quite bad, even with the improvement
procedure. We have here an example of the
limitation of the method. It is not clear why for
such systems the accuracy of the ET is not good,
but the singularity of the Coulomb potential is
a possible explanation. More research have to
be conducted to predict the accuracy of the ET.

Conclusion

In this article, we have explained the main
properties of the envelope theory, with a focus for
systems with identical particles plus a different
one. The approximate energies can be computed
with either optimisation equations, or with a set
of five compact equations. The accuracy is tested
with three different systems: relativistic oscillators,
power-law potential and atoms. As in the case
of identical particles, fairly good results can be
obtained with the original envelope theory for some
kinds of potentials, and an improvement of the
accuracy can always be obtained thanks to the IET.
We have also seen some limitations of the method.
Even if the envelope theory method can lack
accuracy in certain cases, it is remarkably easy
to implement. The low computational cost of
this method and the fact that the computational
cost is independent of the number of particles
make it worthwhile. With the generalisation
presented above, new domains of applicability are
open, especially in hadronic physics where the
method is proven to be useful as mentioned in
the Introduction [9–12, 32]. Other applications of
the method could be found in the estimation of
the binding energies of systems such as nuclei
or clusters of cold atoms for which ab-initio
calculations are already available, as for instance
in [33,34], or for more particular quantum problems
[35]. The method can also be simply used to check
other, more accurate, methods.
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