
Vol.:(0123456789)

Computational Optimization and Applications
https://doi.org/10.1007/s10589-022-00394-8

1 3

Inertial alternating direction method of multipliers 
for non‑convex non‑smooth optimization

Le Thi Khanh Hien1 · Duy Nhat Phan2 · Nicolas Gillis3 

Received: 25 November 2021 / Accepted: 25 June 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2022

Abstract
In this paper, we propose an algorithmic framework, dubbed inertial alternat-
ing direction methods of multipliers (iADMM), for solving a class of nonconvex 
nonsmooth multiblock composite optimization problems with linear constraints. 
Our framework employs the general minimization-majorization (MM) principle to 
update each block of variables so as to not only unify the convergence analysis of 
previous ADMM that use specific surrogate functions in the MM step, but also lead 
to new efficient ADMM schemes. To the best of our knowledge, in the nonconvex 
nonsmooth setting, ADMM used in combination with the MM principle to update 
each block of variables, and ADMM combined with inertial terms for the primal 
variables have not been studied in the literature. Under standard assumptions, we 
prove the subsequential convergence and global convergence for the generated 
sequence of iterates. We illustrate the effectiveness of iADMM on a class of noncon-
vex low-rank representation problems.

Keywords  Alternating direction methods of multipliers · Majorization 
minimization · Inertial block coordinate method · Acceleration by extrapolation · 
Low-rank representation

1  Introduction

In this paper, we consider the following nonconvex minimization problem with linear 
constraints
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where y ∈ ℝ
� , xi ∈ ℝ

�i , x ∶= [x1;… ;xs] ∈ ℝ
� , � =

∑s

i=1
�i , Ai is a linear map from 

ℝ
�i to ℝ� , B is a linear map from ℝ� to ℝ� , b ∈ ℝ

� , h ∶ ℝ
� → ℝ is a differentiable 

function, and F(x) = f (x) +
∑s

i=1
gi(xi) , where f ∶ ℝ

� → ℝ is a nonconvex nons-
mooth function and gi ∶ ℝ

�i → ℝ ∪ {+∞} are proper lower semi-continuous func-
tions for i = 1, 2,… , s . We assume that F satisfies �F(x) = �x1F(x) ×⋯ × �xsF(x) , 
where �F denote the limiting subdifferential of F (see the definition in “Appen-
dix 1”). Note that this condition is satisfied when f is a sum of a continuously differ-
entiable function and a block separable function; see [2, Proposition 2.1].

Notation. We denote [s] ∶= {1,… , s} . For the �-dimensional Euclidean space ℝ� , 
we use ⟨⋅, ⋅⟩ to denote the inner product, and ‖ ⋅ ‖ to denote the corresponding induced 
norm. For a linear map M , M∗ denotes the adjoint linear map with respect to the inner 
product, and ‖M‖ is the induced operator norm of M . We use I  to denote the identity 
map. For a positive definite self-adjoint operator Q , we denote ‖x‖2

Q
∶= ⟨x,Qx⟩ . We 

denote the smallest eigenvalue of a symmetric linear self-map (that is, M = M∗ ) by 
�min(M) . We use Im(B) to denote the image of B.

1.1 � Nonconvex low‑rank representation problem

Low-rank matrix approximations play a central role in various fields of computer sci-
ence and applied mathematics, and are used in many applications, e.g., recommender 
systems [26], topic modeling [28], system identification [37], graph clustering [57], 
compression and denoising [55], to cite a few; see also below for other examples. Given 
a data matrix, D, the goal of low-rank matrix approximations is to find a nearby low-
rank matrix, X. The low-rank assumption is valid in many applications as there are typi-
cally redundancy and correlations within large data sets; see, e.g., [46, 56] and the ref-
erences therein.

In this paper, we will illustrate the use of (1) on the following generalized nonconvex 
low-rank representation problem: given a data matrix D ∈ ℝ

d×n , solve

where X ∈ ℝ
m×n, Y ∈ ℝ

d×q, Z ∈ ℝ
d×n , A1 ∈ ℝ

d×m , A2 ∈ ℝ
q×n , �(X) is the vector of 

singular values of X, r1 is an increasing concave function to promote X to be of low 
rank (by promoting the sparsity of �(X) ), r2 is a regularization function, and r3 is a 
function that models some noise; e.g., taking r3(Z) =

1

2
‖Z‖2

F
 when Z models Gauss-

ian noise. Problem 2 generalize low-rank matrix approximations, taking A1 as the 
identity matrix and A2 = 0 , so that D = X + Z where X is low rank, and Z models 
the noise.

In particular, Problem (2) generalizes the following machine learning problems: 

	 (i)	 Let r1(t) =
∑

i
t
�

i
 with 0 < 𝜒 ≤ 1 , r2(Y) =

∑q−1

i=1
‖Yi − Yi+1‖ where Yi is the i-th 

column of Y, and let A1 and A2 be the identity matrices so that Problem (2) 

(1)min
x,y

F(x1,… , xs) + h(y) such that

s∑

i=1

Aixi + By = b,

(2)min
X,Y ,Z

r1(�(X)) + r2(Y) + r3(Z) such that D = A1X + YA2 + Z,
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decomposes the data matrix D into the sum of three components, X, Y and Z. 
An application is video surveillance where each column of D is a vector-
ized image of a video frame, X is a low-rank matrix that plays the role of the 
background, Y is the foreground that has small variations between its columns 
(such as slowly moving objectives), and Z represents some noise [58].

	 (ii)	 When A1 and A2 are identity matrices, r1(t) =
∑

i
t
i
 , and r2(Y) = �‖Y‖1 for 

some constant 𝜆 > 0 , Problem (2) recovers the robust principal component 
analysis (robust PCA) model, see, e.g., [12]. Robust PCA decomposes the 
input matrix D as the sum of a low-rank matrix X, a sparse matrix Y modeling 
gross corruptions and outliers, and an additional noise matrix Z (e.g., r3(Z) 
is a multiple of ‖Z‖2

F
 to model Gaussian noise). Robust PCA is also used for 

foreground-background separation in video surveillance.
	 (iii)	 When r1(t) =

∑
i
t
i
 and r2(Y) = ‖Y‖∗ , Problem (2) is the latent low-rank rep-

resentation problem [33]. In [33], authors used A1 = DP1 and A2 = P∗
2
D , 

where P1 and P2 are computed by orthogonalizing the columns of D∗ and D, 
respectively. We will use this application to illustrate the effectiveness of our 
proposed framework, iADMM, in Sect. 3.

Other applications of Problem (1) include statistical learning, see, e.g., [4, 59], and 
minimization on compact manifolds, see, e.g., [27, 60].

1.2 � Motivation and related works

Let A ∶= [A1 …As] and Ax ∶=
∑s

i=1
Aixi ∈ ℝ

� . The augmented Lagrangian for 
Problem (1) is

where 𝛽 > 0 is a penalty parameter. ADMM was first introduced by [18] and [17]. It 
has recently become popular because of its efficacy in solving emerging large-scale 
problems in machine learning and computer vision [9, 49, 64–66]. For simplicity, let 
us describe the iteration scheme of a classical ADMM for solving Problem (1) with 
2 blocks x and y: 

 For a multi-block problem, with s > 1 , the scheme is similar, see, e.g., [58]. The 
update of x in  (4a) (a similar discussion is applicable to  (4b)) can be rewritten as 
xk+1 ∈ argmin xF(x) + �k(x), where

(3)L(x, y,�) ∶= F(x) + h(y) + ⟨�,Ax + By − b⟩ + �

2
‖Ax + By − b‖2,

(4a)xk+1 ∈ argmin xL(x, y
k,�k),

(4b)yk+1 ∈ argmin yL(x
k+1, y,�k),

(4c)�k+1 = �k + �(Axk+1 + Byk+1 − b).
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Solving the subproblem  (4a) is usually very expensive especially when F is not 
smooth. A remedy is minimizing a suitable surrogate function of L(⋅, yk,�k) that 
allows a more efficient update for x. For example, since �k(x) is upper bounded by

where � ≥ ‖A∗A‖ (because ∇�k(x) is �‖A∗A‖-Lipschitz continuous), x can 
be updated by xk+1 ∈ argmin xF(x) + 𝜑̂(x), which leads to the linearized 
ADMM method, see [31, 61]. This update has a closed form for some nons-
mooth F; see [42]. When F = f + g and f is Lf -smooth then we can also use the 
upper bound F̂(x) = f (xk) + ⟨∇f (xk), x − xk⟩ + Lf

2
‖x − xk‖2 + g(x) of F to obtain 

xk+1 ∈ argmin xF̂(x) + 𝜑̂(x). This leads to the proximal linearized ADMM 
method, see [8, 34]. We note that L(⋅, yk,�k) is always upper bounded by 
L(⋅, yk,�k) + ��(x, x

k) , where �� is the Bregman distance associated with a continu-
ously differentiable convex function � on ℝn:

For example, if �(x) = ‖x‖2
Q
= ⟨x,Qx⟩ then ��(a, b) = ‖a − b‖2

Q
 . This upper bound 

leads to proximal ADMM, see [15, 29]. The above mentioned upper bound func-
tions are specific examples of surrogate functions for L(⋅, yk,�k) (see Definition 1 
at page 6 for the definition of a surrogate function) while each method of updating 
x corresponds to a majorization-minimization (MM) step that minimizes the cor-
responding majorizer/surrogate function (see [52] for more specific examples of the 
MM procedure). In the convex setting (that is, f (⋅, ⋅) is convex), [13] and [23] use 
the MM principle to unify and generalize the convergence analysis of many ADMM 
for multi-blocks problems (that is, s > 1 ). However, ADMM with the MM principle 
has not been studied for the nonconvex problem (1), to the best of our knowledge.

When the linear coupling constraint is absent, the block coordinate descent 
(BCD) method is a standard approach to solve (1). Razaviyayn et al. [45] proposed 
the block successive upper-bound minimization (BSUM) framework that employs 
the MM principle in each block update. By employing suitable surrogate functions 
in each block update, BSUM recovers the typical BCD methods, for example of [5, 
7, 19, 22, 44, 53, 54]. In the non-convex setting, BCD methods with inertial terms1 
have also been studied, and have showed significant improvement in their practical 
performance; see, e.g., [40] for inertial BCD methods with heavy-ball acceleration, 
[62, 63] for inertial BCD methods with Nesterov-type acceleration, and [20, 43] 
for inertial BCD methods that use two extrapolation points. Recently, the authors 
in [21] proposed a general inertial block MM framework for solving  (1) without 
the linear coupling constraint. To the best of our knowledge, inertial ADMM with 

(5)�k(x) =
�

2
‖Ax + Byk − b‖2 + ⟨�k,Ax + Byk − b⟩.

(6)𝜑̂(x) = 𝜑k(xk) + ⟨∇𝜑k(xk), x − xk⟩ + 𝜅𝛽

2
‖x − xk‖2,

(7)��(a, b) ∶= �(a) − �(b) − ⟨∇�(b), a − b⟩,∀a, b ∈ ℝ
n.

1  We use in this paper the terminology “inertial" to mean that an inertial term that involves the current 
iterate and the previous iterates is added to the objective of the subproblem to update each block, see 
[21].
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Nesterov-type acceleration for the primal variables have not been studied in the 
nonconvex case of (1) although some variants of ADMM with inertial terms for the 
primal variables have been analysed in the convex case (that is, when both F and h 
are convex); see e.g., [11, 30, 41].

Recently, [51] proposes ADMM with inertial term for the dual variable, see the 
description in [51, Expression (17)]. We would like to remark that we realize a gap2 
in the proof of [51, Lemma 5]. Let us also mention stochastic ADMM methods for 
solving Problem (1) in which the objective is in expectation formulation, see, e.g., 
[24, 25], which is out of the scope of this paper.

1.3 � Contribution and Organization

In this paper, we propose iADMM, a framework of inertial alternating direction 
methods of multipliers, for solving the nonconvex nonsmooth problem (1). When no 
extrapolation is used, iADMM becomes a general ADMM framework that employs 
the minimization-majorization principle in each block update. For the first time in 
the nonconvex nonsmooth setting of Problem (1), we study ADMM and its inertial 
version combined with the MM principle when updating each block of variables. 
Moreover, our framework allows to use an over-relaxation parameter � ∈ (0, 2) to 
set �� as the constant stepsize for updating the dual variable � . Note that � = 1 , see, 
e.g., [23, 29, 58], or � ∈

�
0,

1+
√
5

2

�
 , see, e.g., [16, 65], are the standard choices in the 

nonconvex setting. Recently, [8] proposed proximal ADMM that use � ∈ (0, 2) for 
solving a special case of the nonconvex Problem (1) with s = 1 and A = −I .

Under standard assumptions and � ∈ (0, 2) , we analyse the subsequential conver-
gence for the generated sequence of iADMM and ADMM. When F(x) + h(y) satis-
fies the Kurdyka-Łojasiewicz (KŁ) property and � = 1 , we prove the global conver-
gence and provide the convergence rate for the generated sequence. We would like 
to emphasize that although proving convergence towards a critical point has become 
a typical task when considering the nonconvex nonsmooth Problem  (1), see e.g., 
[8, 29, 58], the techniques to accomplish this task heavily depend on the consid-
ered algorithms and the involved assumptions. As far as we are aware of, this has 
not been done for ADMM used in combination with the MM principle and inertial 
terms for the primal variables.

Finally, we apply the proposed framework to solve a class of nonconvex low-
rank representation to illustrate the efficacy of iADMM. More specifically, in order 
to illustrate the effect of MM procedure in Algorithm 1, we use suitable surrogate 
functions such that each block of variables has a close-form update rule (thus, we 
do not need to use an outer optimization solver to find a solution for the correspond-
ing subproblem), see details in Sect. 3.1. In order to illustrate the acceleration effect 
of Algorithm 1, we also employ inertial terms and the extrapolation parameters are 
appropriately chosen to guarantee a global convergence, see details in Sect.  3.2. 
Indeed, the numerical results presented in Sect. 3.3 (see also “Appendix 3 and 4”) 
empirically show the significant acceleration effect of using inertial terms.

2  Specifically, the second equality of [51, Expression (51)] is not correct.
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The paper is organized as follows. In the next section, we describe the proposed 
method, iADMM, and analyse its convergence properties. In Sect. 3, we report the 
numerical results of iADMM on a class of nonconvex low-rank representation prob-
lems. We conclude the paper in Sect.  4. All the technical proofs are presented in 
“Appendix 2”.

2 � An inertial ADMM framework

In this section, we describe the iADMM framework and prove its subsequential and 
global convergence. Throughout the paper, we make the following assumptions that 
are standard for studying Problem (1) and the convergence of ADMMs in the non-
convex setting, see for example [8, 29, 58].

Assumption 1 

	 (i)	 𝜎B ∶= 𝜆min(BB
∗) > 0.

	 (ii)	 F(x) + h(y) is lower bounded.
	 (iii)	 The function h is Lh-smooth, that is, ∇h is Lh-Lipschitz continuous.

2.1 � Description of iADMM

Let us first formally define a surrogate function. Some examples were given in the 
introduction. More examples can be found in [21, 36, 45].

Definition 1  (Surrogate function) Let X ⊆ ℝ
� . A function u ∶ X × X → ℝ is called 

a surrogate function of a function f on X  if the following two conditions are satisfied:

As we are considering multi-block problems, we need the following definition of 
a block surrogate function, which is a generalization of Definition 1.

Definition 2  (Block surrogate function) Let Xi ⊆ ℝ
�i , X ⊆ ℝ

� . A function 
ui ∶ Xi × X → ℝ is called a block i surrogate function of f on X  if the following con-
ditions are satisfied: 

(a)	 ui(zi, z) = f (z) for all z ∈ X ,
(b)	 ui(xi, z) ≥ f (xi, z≠i) for all xi ∈ Xi and z ∈ X ,

where (xi, z≠i) denotes (z1,… , zi−1, xi, zi+1,… , zs). The block approximation error is 
defined as ei(xi, z) ∶= ui(xi, z) − f (xi, z≠i).

A separability condition is necessary in [13, Def. 3] for the surrogate function of 
f (i.e., when fixing z, the surrogate function u of f satisfies û(x) =

∑s

i=1
ûi(xi) , where 

û(x) = u(x, z) and ûi(xi) = ui(xi, z) ) while our upcoming analysis does not require 
such a condition.

(a) u(z, z) = f (z) for all z ∈ X, and (b) u(x, z) ≥ f (x) for all x, z ∈ X.
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The inertial alternating direction method of multipliers (iADMM) framework 
is described in Algorithm 1. iADMM cyclically update the blocks x1,… , xs and y. 
We use xk,i to denote (xk+1

1
,… , xk+1

i
, xk

i+1
,… , xk

s
) , let xk,0 = xk and xk+1 = xk,s , where 

k is the outer iteration index, and i the cyclic inner iteration index ( i ∈ [s] ). The 
update of block xi in (8) (note that xk+1

i
= x

k,i

i
 ) means that iADMM chooses a sur-

rogate function for xi ↦ L(xi, x
k,i

≠i
, yk,�k) , which is formed by summing a surrogate 

function of xi ↦ f (xi, x
k,i

≠i
) + gi(xi) and a surrogate function of xi ↦ �k(xi, x

k,i

≠i
) where 

�k is defined in (5), then apply extrapolation to the latter surrogate function3. To 
update block y, as h(y) is Lh-smooth, we apply Nesterov type acceleration on h as in 
(9). Together with Assumption 1, we make the following standard assumption for ui 
throughout the paper.

Assumption 2 

	 (i)	 The block surrogate function ui(xi, z) is continuous.
	 (ii)	 Given z ∈ ℝ

� , for i ∈ [s] , there exists a function xi ↦ ēi(xi, z) such that ēi(⋅, z) 
is continuously differentiable at zi , ēi(zi, z) = 0 , ∇xi

ēi(zi, z) = 0 , and the block 
approximation error ei satisfies 

3  It is important noting that it is possible to embed the general inertial term Gk
i
 to the surrogate of 

xi ↦ L(xi, x
k,i

≠i
, yk,�k) as in [21]. This inertial term may also lead to the extrapolation for the block sur-

rogate function of f(x) or for both the two block surrogates. However, to simplify our analysis, we only 
consider here the effect of the inertial term for the block surrogate of �k(x).
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Assumption  2 (ii) is satisfied when we simply choose ui(xi, z) = f (xi, z≠i) (i.e., 
f (xi, z≠i) is a surrogate function of itself), or when ei(⋅, z) is continuously differenti-
able at zi and ∇xi

ei(zi, z) = 0 , or when ei(xi, z) ≤ c‖xi − zi‖1+� for some 𝜖 > 0 and 
c > 0 ; see [21, Lemma 3]. In the following, we provide some examples of block sur-
rogate functions satisfying Assumption 2.

•	 The block proximal surrogate function, see, e.g., [1, 3, 20], has the following 
form 

 where 𝜌i > 0 is a scalar. We have ei(xi, z) =
�i

2
‖xi − zi‖2 . In this case, ēi = ei.

•	 The Lipschitz gradient surrogate function, see, e.g., [20, 62, 63], has the form 

 where �i ≥ 1 and we assume xi ↦ f (xi, z≠i) is differentiable and ∇if (xi, z≠i) is L(z)
i

-Lipschitz continuous (we note that L(z)
i

 may depend on z). We have 

 Hence ∇xi
ei(zi, z) = 0 . In this case ēi = ei.

•	 The quadratic surrogate, see e.g., [14, 40], has the following form 

 where �i ≥ 1 and we assume f is twice differentiable, H(z)

i
 is a positive definite 

matrix such that (H(z)

i
− ∇2

i
f (xi, z≠i)) is positive definite (we note that H(z)

i
 may 

depend on z). Similarly, we also have ēi = ei in this case.

Choosing parameters for iADMM The parameters of iADMM include: � in (10), 
�i and the extrapolation parameters � k

i
 in the update (8) of block xi , the extrapola-

tion parameter �k in the update  (9) of y, and the penalty parameter � . In the next 
section, Proposition 1 provides the formulas for �i and �k

i
 that involve � , �i , and � k

i
 , 

while Proposition  2 provides the formulas for �y and �k
y
 that involve � and �k . To 

guarantee a subsequential convergence, we choose � ∈ (0, 2) , and the parameters �y , 
�k
y
 , �i and �k

i
 satisfying the conditions of Proposition 4; see Theorem 1. To guarantee 

a global convergence, we choose � = 1 , use no extrapolation for y, and choose the 
other parameters to satisfy (21); see Theorem 2. It is important noting that the con-
vexity of xi ↦ ui(xi, z) + gi(xi) allows larger extrapolation parameters in the update 
of xi (Proposition 1), while the convexity of h allows larger extrapolation parameters 
in the update of y (Proposition 2).

(11)ei(xi, z) ≤ ēi(xi, z) for all xi.

ui(xi, z) = f (xi, z≠i) +
�i

2
‖xi − zi‖2,

(12)ui(xi, z) = f (z) + ⟨∇if (z), xi − zi⟩ +
�iL

(z)

i

2
‖xi − zi‖2,

∇xi
ei(xi, z) = L

(z)

i
(xi − zi) + ∇if (z) − ∇if (xi, z≠i).

(13)ui(xi, z) = f (z) + ⟨∇if (z), xi − zi⟩ +
�i

2
(xi − zi)

TH
(z)

i
(xi − zi),
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Remark 1  As we target Nesterov-type acceleration to update of y (h is assumed 
to be Lh-smooth), we analyse the update rule as in  (9) for y. Updating y using 
yk+1 ∈ argmin yL(x

k+1, y,�k) would work as well, and the convergence analysis of 
iADMM would be simplified by using the same rationale to obtain subsequential as 
well as global convergence. We hence omit this case in our analysis.

2.2 � Convergence analysis

Assumptions. Throughout the paper we assume Assumption  1 and Assumption  2 
hold, and � ∈ (0, 2).

Let xk,i , yk and �k be the iterates generated by iADMM. We define some addi-
tional notations as follows. We denote �xk

i
= xk

i
− xk−1

i
 , �yk = yk − yk−1 , 

��k = �k − �k−1 , �1 =
|1−�|

��B(1−|1−�|)
 , �2 =

3�

�B(1−|1−�|)2
 and Lk = L(xk, yk,�k) . We let �i , 

i ∈ [s] , and �y be arbitrary constants in (0, 1). We take the following convention in 
the notation that allows us to analyse iADMM and its non-inertial version in 
parallel:

•	 If � k
i
= 0 (i.e., there is no extrapolation in the update of xk

i
 ), then � k

i
∕�i = 0 and 

�i = 0.
•	 If �k = 0 (i.e., there is no extrapolation in the update of y), then �k∕�y = 0 and 

�y = 0.

Now we present our main convergence results; see the proofs in “Appendix 2”.
As iADMM allows to use extrapolation in the update of xk

i
 and yk , the Lagrangian 

is not guaranteed to decrease at each iteration. Instead, it has the following nearly 
sufficiently decreasing property as stated in the following Propositions 1 and 2.

Proposition 1 

(i)	 Considering the update in (8), in general (when xi ↦ ui(xi, z) + gi(xi) can be 
nonconvex), we choose 𝜅i > ‖A∗

i
Ai‖ . Denote ak

i
= �� k

i
(�i + ‖A∗

i
Ai‖) . Then we 

have 

where

 (ii) If xi ↦ ui(xi, z) + gi(xi) is convex, we take �i = ‖A∗
i
Ai‖ (note that if 

‖A∗
i
Ai‖ = 0 then we can choose �i as in case (i)). Inequality (14) is then satis-

fied with

(14)L(xk,i, yk,�k) + �i‖�xk+1i
‖2 ≤ L(xk,i−1, yk,�k) + �k

i
‖�xk

i
‖2,

(15)�i =
(1 − �i)(�i − ‖A∗

i
Ai‖)�

2
, �k

i
=

(ak
i
)2

2�i(�i − ‖A∗
i
Ai‖)�

.



	 L. T. K. Hien et al.

1 3

Proposition 2  Considering the update in (9), we have

where �y =
(1−�y)(��min(B

∗B)+Lh)

2
 and �k

y
=

2L2
h
�2
k

�y(��min(B
∗B)+Lh)

 when h(y) is nonconvex, and 
�y =

Lh

2
 and �k

y
=

Lh�
2
k

2
 when h(y) is convex.

From Propositions 1 and  2, we obtain the following recursion for {Lk}.

Proposition 3  We have

where 𝛿k = 2 if �k = 0 for all k and 4(1 + �k)
2 otherwise.

Now we characterize the chosen parameters for Algorithm 1 in the following 
proposition.

Proposition 4  Let �y , �ky  , �i , and �k
i
 , i ∈ [s] , be defined in Propositions  1 and 2. 

Denote � = �y −
�2L

2
h

�
. For k ≥ 1 , suppose the parameters are chosen such that 𝜇 > 0 , 

𝜂i > 0 , and the following conditions are satisfied for some constants 0 < Cx,Cy < 1:

where 
{

C1 = Cy andC2 = 0 if 𝛿k = 0∀ k,

0 < C1 < Cy andC2 = Cy − C1 otherwise ,
 and 𝛿k is defined in Proposi-

tion 3. Furthermore, suppose we use one of the following methods:

•	 We choose �k = 0 for all k, that is, there is no extrapolation in the update of y,
•	 We use extrapolation in the update of y and choose the parameters such that

(16)�k
i
=

�‖A∗
i
Ai‖(� ki )

2

2
, �i =

�‖A∗
i
Ai‖

2
.

L(xk+1, yk+1,�k) + �y‖�yk+1‖2 ≤ L(xk+1, yk,�k) + �k
y
‖�yk‖2,

(17)

Lk+1 + 𝜂y‖𝛥yk+1‖2 +
s�

i=1

𝜂i‖𝛥xk+1i
‖2

≤ Lk +

s�

i=1

𝛾k
i
‖𝛥xk

i
‖2 + 𝛾k

y
‖𝛥yk‖2 +

𝛼1

𝛽
(‖B∗𝛥𝜔k‖2 − ‖B∗𝛥𝜔k+1‖2)

+
𝛼2

𝛽
L2
h
‖𝛥yk+1‖2 +

𝛼2

𝛽

�
𝛿kL

2
h
‖𝛥yk‖2 + 4L2

h
𝛿2
k−1

‖𝛥yk−1‖2
�
,

(18)𝛾k
i
≤ Cx𝜂i,

4𝛼2L
2
h
𝛿2
k−1

𝛽
≤ C2𝜇,

𝛼2L
2
h
𝛿k

𝛽
+ 𝛾k

y
≤ C1𝜇,

(19)� ≥
4Lh�

�B(1 − |1 − �|) , � ≥
6�L2

h

��B(1 − |1 − �|) max
{
1,

12�2
k

1 − C1

}
.
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	 (i)	 For K > 1 we have

	 (ii)	 The sequences {�yk} , {�xk
i
} and {��k} converge to 0.

We will assume that Algorithm  1 generates a bounded sequence in our subse-
quential and global convergence results. Let us provide a sufficient condition that 
guarantees this boundedness assumption.

Proposition 5  If b + Im(A) ⊆ Im(B) , 𝜆min(B
∗B) > 0 and F(x) + h(y) is coercive 

over the feasible set {(x, y) ∶ Ax + By = b} then the sequences {xk} , {yk} and {�k} 
generated by Algorithm 1 are bounded.

It is important noting that the coercive condition of F(x) + h(y) over the feasible 
set is weaker than the coercive condition of F(x) + h(y) over x ∈ ℝ

�, y ∈ ℝ
� . Let us 

now present the subsequential convergence, the global convergence of the generated 
sequence and its convergence rate.

Theorem  1  (Subsequential convergence) Suppose the parameters of Algorithm  1 
are chosen satisfying the conditions in Proposition 4. If the generated sequence of 
Algorithm 1 is bounded, then every limit point of the generated sequence is a critical 
point of L.

Theorem 2  (Global convergence) Suppose we do not use extrapolation to update y, 
that is, �k = 0 for all k (note that extrapolation to update xi is still applicable), and 
we take � = 1 . Then the conditions in (18) become

for some constants 0 < Cx,Cy < 1 . Furthermore, we assume that (i) for any 
x, z ∈ ℝ

� , xi ∈ dom(gi) , we have

and (ii) for any x,  z in a bounded subset of ℝ� , if �i ∈ �xiui(xi, z) , there exists 
�i ∈ �xi f (x) such that

(20)

LK+1 + �‖�yK+1‖2 +
s�

i=1

�i‖�xK+1i
‖2 +

�1

�
‖B∗�wK+1‖2 + (1 − C1)�‖�yK‖2

+

K−1�

k=1

�
(1 − Cy)�‖�yk‖2 + (1 − Cx)

s�

i=1

�i‖�xk+1i
‖2
�

≤ L1 +
�1

�
‖B∗��1‖2 + Cx

s�

i=1

�i‖�x1i ‖
2 + �‖�y1‖2 + C2�‖�y0‖2.

(21)�k
i
≤ Cx�i,

2�2L
2
h

�
≤ Cy�, for all k ≥ 0, i ∈ [s]

(22)
�xi

(
f (x) + gi(xi)

)
= �xi f (x) + �xigi(xi),

�xi

(
ui(xi, z) + gi(xi)

)
= �xiui(xi, z) + �xigi(xi),
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If the generated sequence of Algorithm  1 is bounded and F(x) + h(y) has the KŁ 
property (see “Appendix 1”), then the whole generated sequence converges to a crit-
ical point of L.

We refer the readers to [48, Corollary 10.9] for a sufficient condition for  (22) 
(see “Appendix  1” for more details). Some specific examples that satisfy (22) 
include: (i) gi = 0 , (ii) the functions xi ↦ f (x) and xi ↦ ui(xi, z) are strictly differ-
entiable (see [48, Exercise 10.10]), (iii) the functions xi ↦ f (x) and xi ↦ ui(xi, z) 
are convex and the relative interior qualification conditions are satisfied: 
ri(dom(f (⋅, x≠i)) ∩ ri(domgi) ≠ � and ri(dom(g(⋅, z)) ∩ ri(domgi) ≠ � , where ri is 
short for relative interior. We note that although the condition in (23) is necessary 
for our convergence proof, the constant Li does not influence how to choose the 
parameters in our framework. The condition in (23) is satisfied when both ui and f 
are twice continuously differentiable and ∇xi

ei(xi, x) = 0 for all x (which implies that 
∇xi

ui(xi, x) = ∇xi
f (x) for all x). Indeed, in this case we have

for some Li because ∇xi
ui(xi, z) is continuously differentiable and thus is Lipschitz 

continuous over any bounded subset. We note that all the examples given after 
Assumption 2 in Sect. 2 satisfy the condition in (23) when f is twice continuously 
differentiable.

Convergence rate A convergence rate for the generated sequence of iADMM can 
be derived using the same technique as in [1, Theorem 2]. To the best of our knowl-
edge, in the nonconvex setting, the convergence rate for block coordinate methods 
(including inertial as well as non-inertial algorithms) appears to be the same in dif-
ferent papers in the literature since all papers use the technique in [1]. As it is similar 
to establish the rate for iADMM, we omit the details. Instead, we refer the readers to 
[62, Theorem 2.9] and [20, Theorem 3] for some examples of using this technique 
to establish the convergence rate. The type of the convergence rate depends on the 
value of the KŁ exponent, which is the coefficient � such that � (t) in Definition 6 
(see “Appendix 1”) equals ct1−� , where c is a constant. Specifically, when � = 0 , the 
algorithm converges after a finite number of steps, when � ∈ (0, 1∕2] , the algorithm 
has linear convergence, and when � ∈ (1∕2, 1) , the algorithm has sublinear conver-
gence. Determining the value of the KŁ exponent is out of the scope of this paper, 
and is an active and challenging topic.

3 � Numerical results

In this section, we apply iADMM to solve a latent low-rank representation problem. 
We consider Problem (2) with

(23)‖�i − �i‖ ≤ Li‖x − z‖ for some constant Li.

‖∇xi
ui(xi, z) − ∇xi

f (x)‖ = ‖∇xi
ui(xi, z) − ∇xi

ui(xi, x)‖ ≤ Li‖x − z‖
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•	 r1(t) = �1
∑

i
t
i to promote X to be of low-rank, since 

r1(�(X)) = �1
∑

i �i(X) = �1‖X‖∗ is the nuclear norm [46].
•	 r2(Y) = �

∑q

i=1
�(‖Yi‖2) , where �(t) = 1 − exp(−�t) is concave, 𝜃 > 0 is a 

parameter, and Yi is the i-th column of Y. This is a nonconvex regularization that 
promotes Y to be column sparse, that is, it promotes Y to have many columns 
equal to the zero vector [10]. In fact, �(t) = 0 when t = 0 , while �(t) quickly 
goes to 1 as t increases.

•	 r3(Z) =
1

2
‖Z‖2 to model Gaussian noise.

•	 A1 = DP1 and A2 = P∗
2
D , where P1 and P2 are computed by orthogonalizing 

the columns of D∗ and D, respectively, as proposed in [33]. In [33], the authors 
showed that this resulting problem is a simpler equivalent form of the one in 
which D is considered as a dictionary, i.e. A1 = A2 = D . Hence, it can be scaled 
for data sets with a large number of observations.

In this scenario, Problem (2) takes the form of (1) with B being the identity operator, 
b being the data set D, x1 and x2 being the matrices X and Y, y being the matrix Z, 
gi = 0 , h(Z) = 1

2
‖Z‖2 and f (X, Y) = �1‖X‖∗ + r2(Y).

3.1 � Surrogate functions and iADMM updates.

We choose u1(X,X
k, Yk) = �1‖X‖∗ + r2(Y

k) , and 
u2(Y ,X

k+1, Yk) = r2(Y
k) +

∑q

i=1
�k
i
(‖Yi‖2 − ‖Yk

i
‖2) + �1‖Xk+1‖∗ , where 

�k
i
= �∇�(‖Yk

i
‖2) . The function u1 satisfies Assumption 2, and u2 satisfies Assump-

tion 2 (i). Since � is continuously differentiable with Lipschitz gradient on [0,+∞) , 
and the Euclidean norm is Lipschitz continuous, it follows from Section 4.5 of [21] 
that u2 also satisfies Assumption 2 (ii). We derive from [47, Corollary 5Q] that the 
condition in (23) is satisfied. According to the update (8), Xk+1 is computed by solv-
ing the following nuclear norm problem

where �1 ≥ ‖A∗
1
A1‖ and X̄k = Xk + 𝜁 k

1
(Xk − Xk−1) . Let diag(u) denote a diag-

onal matrix whose diagonal elements are the entries of u, and [.]+ denote 
the projection onto the nonnegative orthant. Problem (24) has a closed-
form solution given by Xk+1 = US�1∕(�1�)V

T , where USVT is the SVD of 
X̄k − A∗

1
(A1X̄

k + YkA2 + Zk − D +Wk)∕(𝜅1𝛽) and S�1∕(�1�) = diag([Sii − �1∕(�1�)]+) . 
Letting �2 ≥ ‖A2A

∗
2
‖ and Ȳk = Yk + 𝜁 k

2
(Yk − Yk−1) , the update (9) for Y is

(24)

min
X

𝜆1‖X‖∗ +
�
A∗
1

�
𝛽(A1X̄

k + YkA2 + Zk − D) +Wk
�
,X

�
+

𝜅1𝛽

2
‖X − X̄k‖2,

Yk+1 ∈ argmin
Y

q�

i=1

𝜍k
i
‖Yi‖2 + ⟨(Wk + 𝛽(A1X

k+1 + ȲkA2

+ Zk − D))A∗
2
, Y⟩ +

𝜅2𝛽

2
‖Y − Ȳk‖2.
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It has a closed-form solution given by Yk+1
i

=
�
‖Pk

i
‖ − �k

i
∕(�2�)

�
+

Pk
i

‖Pk
i
‖ , where Pk

i
 is 

the i-th column of Ȳk − (A1X
k+1 + ȲkA2 + Zk − D)∕𝜅2 −Wk∕(𝜅2𝛽).

The update (9) for Z is Zk+1 = −(Wk + �(A1X
k+1 + Yk+1A2 − D))∕(1 + �) , and 

the update (10) for W is Wk+1 = Wk + ��(A1X
k+1 + Yk+1A2 + Zk+1 − D).

3.2 � Choosing parameters

We have Lh = 1 , �B = 1 , and �k = 0 . As h(Z) is convex and we do not apply extrapo-
lation for Z, by Proposition 2, �y =

1

2
 and �k

y
= 0 . Since ‖X‖∗ and 

∑q

i=1
�k
i
‖Yi‖2 are 

convex, we choose �1 = ‖A∗
1
A1‖ , �2 = ‖A2A

∗
2
‖ , and the conditions in  (21) become 

� k
i
≤
√
Cx ( i = 1, 2 ) and (2+Cy)�2

�
≤

Cy

2
 . We take Cx = 1 − 10−15 , � = 1 , Cy = 1 − 10−6 , 

� = 2(2 + Cy)�2∕Cy , a0 = 1 , ak =
1

2
(1 +

√
1 + 4a2

k−1
) , and � k

i
= min

�
ak−1−1

ak
,
√
Cx

�
 . 

We set � = 1 as we target global convergence. We have also conducted experiments 
with other values of � (namely 0.5, 1.4 and 1.8); see “Appendix 3”.

3.3 � Experiments

We compare the following three methods: (1) ADMM-mm: iADMM without 
extrapolation, (2) iADMM-mm: iADMM with extrapolation, (2) linearizedADMM: 
a linearized ADMM which is different from ADMM-mm for updating Y. linearize-
dADMM updates Y by solving min−� exp(‖Yi‖2) +

�2�

2
‖Yi − Vk

i
‖2 , where Vk

i
 is the 

i-the column of Xk − (Wk + 𝛽(A1X
k+1 + ȲkA2 + Zk − D))A∗

2
∕(𝜅2𝛽) . Since these sub-

problems do not have closed-form solutions, we employ an MM scheme to solve 
them. To examine the performance of the three algorithms, we consider subspace 
segmentation tasks. After obtaining a solution X∗ , we follow the setting in [32] to 
construct the affinity matrix Q by Qij = (ŨŨT )ij , where Ũ is formed by U∗(�∗)1∕2 
with normalized rows and U∗�∗(V∗)T being the SVD of X∗ . Finally, we apply the 
Normalized Cuts [50] on Q to cluster the data into groups. The experiments are run 
on three data sets: Hopkins 155, extended Yale B and Umist. Hopskins 155 consists 
of 156 sequences, each of which has from 39 to 550 vectors drawn from two or 
three motions (one motion corresponds to one subspace). Each sequence is a sole 
segmentation task and thus there are 156 clustering tasks in total. Yale B contains 
2414 frontal face images with 38 classes, and Umist contains 564 images with 20 
classes. To avoid computational issues when computing the segmentation error rate, 
we construct clustering tasks by using the first 10 classes of these two data sets [35]. 
All tests are preformed using Matlab R2019a on a PC 2.3 GHz Intel Core i5 of 8GB 
RAM.

In our experiments, we choose � = 5 , �1 = � = 0.01 for Hopkins 155, and 
�1 = � = 1 for the two other data sets. We set the initial points to zero, that is, 
X0 = 0 , Y0 = 0 , Z0 = 0 , W0 = 0 . We do not optimize numerical results by tweak-
ing the parameters and initial points as this is beyond the scope of this work. It 
is important noting that we evaluate the algorithms on the same models with the 
same initializations. We run each algorithm 10, 300, and 500 s for each sequence 
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of Hopkins 155, Umist10, and Yaleb10, respectively. Figure 1 displays the values 
of the segmentation error rate and the objective function versus the training time, 
and Table  1 reports the final values. Since there are 156 sequences (data sets) in 
Hopkins 155, we plot the average values, and report the final average results and 
standard deviation over these sequences. We observe that iADMM-mm converges 
the fastest on all the data sets, providing a significant acceleration of ADMM-mm. 
iADMM-mm achieves not only the best final objective function values but also the 
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Fig. 1   Evolution of the segmentation error rate and the objective function value with respect to time. For 
Hopkins155, the results are the average values over 156 sequences
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best segmentation error rates. This illustrates the usefulness of the acceleration tech-
nique. In addition, ADMM-mm outperforms linearizedADMM which illustrates the 
usefulness of properly choosing a proper surrogate function. The conclusions are the 
same for other values of � ; see “Appendix 3”.

4 � Conclusion

We have proposed and analysed iADMM, a framework of inertial alternating direc-
tion methods of multipliers, for solving a class of nonconvex nonsmooth optimi-
zation problem with linear constraints. The preliminary computational results in 
solving a class of nonconvex low-rank representation problems not only show the 
efficacy of using inertial terms for ADMM but also show the advantage of using 
suitable block surrogate functions that provide closed-form solutions in the block 
update of ADMM. We conclude the paper by mentioning two important questions 
that we consider as a future research directions: (i) Can we extend the cyclic update 
rule of iADMM to randomized/non-cyclic setting? (ii) To guarantee the global con-
vergence, iADMM does not allow extrapolation in the update of y; see Theorem 2. 
Can we extend the analysis to allow the extrapolation in the update of y?

Appendix 1: Preliminaries of non‑convex non‑smooth optimization

In this appendix, we recall some basic definitions and results, namely directional 
derivative and subdifferentials in Definition  3, critical point in Definition  4, 
the subdifferential of a sum of function in Proposition  6, and KŁ functions in 
Definition 6.

Table 1   Comparison of 
segmentation error rate and 
final objective function values 
obtained within the allotted time

Bold values indicate the best results

Method Error Obj. value
Mean ± std Mean ± std

Hopkins
LinearizedADMM 0.1579 ± 0.1550 3.0254 ± 2.4189
ADMM-mm 0.1472 ± 0.1513 1.8081 ± 1.6674
iADMM-mm 0.0562 ± 0.1006 0.2023 ± 0.1062
Umist
LinearizedADMM 0.5170 1.0838 × 109

ADMM-mm 0.5170 1.0167 × 109

iADMM-mm 0.2604 0.1694 × 109

Yaleb
LinearizedADMM 0.7656 5.2317 × 103

ADMM-mm 0.7047 4.4829 × 103

iADMM-mm 0.1984 0.6951 × 103
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Let g ∶ 𝔼 → ℝ ∪ {+∞} be a proper lower semicontinuous function.

Definition 3  [48, Definition 8.3] 

	 (i)	 For any x ∈ dom g, and d ∈ � , we denote the directional derivative of g at x 
in the direction d by 

	 (ii)	 For each x ∈ dom g, we denote 𝜕̂g(x) as the Frechet subdifferential of g at x 
which contains vectors v ∈ � satisfying 

 If x ∉ dom g, then we set 𝜕̂g(x) = �.

	 (iii)	 The limiting-subdifferential �g(x) of g at x ∈ dom g is defined as follows: 

	 (iv)	 The horizon subdifferential �∞g(x) of g at x is defined as follows: 

Definition 4  We call x∗ ∈ domF a critical point of F if 0 ∈ �F(x∗).

Definition 5  [48, Definition 7.5] A function f ∶ ℝ
� → ℝ ∪ {+∞} is called sub-

differentially regular at x̄ if f (x̄) is finite and the epigraph of f is Clarke regular at 
(x̄, f (x̄)) as a subset of ℝ� ×ℝ (see [48, Definition 6.4] for the definition of Clarke 
regularity of a set at a point).

Proposition 6  [48, Corollary 10.9] Suppose f = f1 + ⋅ + fm for proper lower semi-
continuous function fi ∶ ℝ

� → ℝ ∪ {+∞} and let x̄ ∈ domf  . Suppose each function 
fi is subdifferential regular at x̄ , and the condition that the only combination of vec-
tor 𝜈i ∈ 𝜕∞fi(x̄) with �1 +… �m = 0 is �i = 0 for i ∈ [m] . Then we have

To obtain a global convergence, we need the following Kurdyka-Łojasiewicz 
(KŁ) property for F(x) + h(y).

Definition 6  A function �(⋅) is said to have the KŁ property at �̄ ∈ dom 𝜕 𝜙 if there 
exists � ∈ (0,+∞] , a neighborhood U of �̄ and a concave function � ∶ [0, �) → ℝ+ 

g�(x;d) = lim inf
�↓0

g(x + �d) − g(x)

�
.

lim inf
y≠x,y→x

1

‖y − x‖ (g(y) − g(x) − ⟨v, y − x⟩) ≥ 0.

𝜕g(x) ∶=
{
v ∈ � ∶ ∃x(k) → x, g

(
x(k)

)
→ g(x), v(k) ∈ 𝜕̂g

(
x(k)

)
, v(k) → v

}
.

𝜕∞g(x) ∶=
{
v ∈ � ∶ ∃𝜆(k) → 0, 𝜆(k) ≥ 0, 𝜆(k)x(k) → x, g(x(k)) → g(x),

v(k) ∈ 𝜕̂g(x(k)), v(k) → v
}
.

𝜕f (x̄) = 𝜕f1(x̄) +… 𝜕fm(x̄).
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that is continuously differentiable on (0, �) , continuous at 0, � (0) = 0 , and 𝛶 �(t) > 0 
for all t ∈ (0, �), such that for all � ∈ U ∩ [𝜙(�̄) < 𝜙(�) < 𝜙(�̄) + 𝜍], we have

where dist (0, ��(�)) = min {‖�‖ ∶ � ∈ ��(�)} . If �(�) has the KŁ property at each 
point of dom �� then � is a KŁ function.

When � (t) = ct1−� , where c is a constant, we call � the KŁ coefficient.

Many non-convex non-smooth functions in practical applications belong to the 
class of KŁ functions, for examples, real analytic functions, semi-algebraic func-
tions, and locally strongly convex functions, see for example [6, 7].

Appendix 2: Proofs

In this appendix, we provide the proofs of all propositions and theorems of our 
paper. Before that, let us give some preliminary results. We use x, z to denote vectors 
in ℝn.

Lemma 1  [21, Lemma 2.8] If the function xi ↦ �(xi, z) is �-strongly convex, differ-
entiable at zi , and ∇xi

�(zi, z) = 0 then we have

We recall the notation (xi, z≠i) = (z1,… , zi−1, xi, zi+1,… , zs) . Suppose we are try-
ing to solve

Proposition 7  [21, Theorem 2.7] Suppose Gk
i
∶ ℝ

�i ×ℝ
�i → ℝ

�i be some extrapo-
lation operator that satisfies Gk

i
(xk

i
, xk−1

i
) ≤ ak

i
‖xk

i
− xk−1

i
‖ . Let ui(xi, z) is a block sur-

rogate function of �(x) . We assume one of the following conditions holds:

•	 xi ↦ ui(xi, z) + gi(xi) is �i-strongly convex,
•	 the approximation error �(xi, z) ∶= ui(xi, z) −�(xi, z≠i) satisfying 

�(xi, z) ≥
�i

2
‖xi − zi‖2 for all xi.

Note that �i may depend on z. Let

Then we have

(25)𝛶 �(𝜙(�) − 𝜙(�̄)) dist (0, 𝜕𝜙(�)) ≥ 1,

�(xi, z) ≥
�

2
‖xi − zi‖2.

min
x

� (x) ∶= �(x) +

s∑

i=1

gi(xi).

xk+1
i

= argmin xi
ui(xi, x

k,i−1) + gi(xi) − ⟨Gk
i
(xk

i
, xk−1

i
), xi⟩.
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where

and 0 < 𝜈 < 1 is a constant. If we do not apply extrapolation, that is ak
i
= 0 , then 

(26) is satisfied with �k
i
= 0 and �k

i
= �i∕2.

The following proposition is derived from [20, Remark 3] and [62, Lemma 2.1].

Proposition 8  Suppose xi ↦ �(x) is a Li-smooth convex function and gi(xi) is 
convex. Define x̄k,i−1 = (xk+1

1
,… , xk+1

i−1
, x̄k

i
, xk

i+1
,… , xk

s
) , x̂k

i
= xk

i
+ 𝛼k

i
(xk

i
− xk−1

i
) and 

x̄k
i
= xk

i
+ 𝛽k

i
(xk

i
− xk−1

i
) . Let xk+1

i
= argmin xi

⟨∇𝛷(x̄k,i−1), xi⟩ + gi(xi) +
Li

2
‖xi − x̂k

i
‖2. 

Then we have Inequality (26) is satisfied with

If �k
i
= �k

i
 then we have Inequality (26) is satisfied with

Proof of Proposition 1

(i) Suppose we are updating xk
i
 . Let us recall that

where

Denote �i(xi, z, y,𝜔) = ui(xi, z) + h(y) + 𝜑̂i(xi, z, y,𝜔), where

We see that 𝜑̂i(xi, z, y,𝜔) is a block surrogate function of x ↦ �(x, y,�) 
with respect to block xi , and �i(xi, z, y,�) is a block surrogate function of 
x ↦ f (x) + h(y) + �(x, y,�) with respect to block xi . The update in (8) can be rewrit-
ten as follows.

(26)� (xk,i−1) + �k
i
‖xk

i
− xk−1

i
‖2 ≥ � (xk,i) + �k

i
‖xk+1

i
− xk

i
‖2,

�k
i
=

(ak
i
)2

2��i
, �k

i
=

(1−�)�i

2
,

�k
i
=

Li

2

(
(�k

i
)2 +

(�k
i
− �k

i
)2

�

)
, �k

i
=

(1 − �)Li
2

.

�k
i
=

Li

2
(�k

i
)2, �k

i
=

Li

2
.

L(x, y,�) ∶= f (x) +

s∑

i=1

gi(xi) + h(y) + �(x, y,�),

(27)�(x, y,�) =
�

2
‖Ax + By − b‖2 + ⟨�,Ax + By − b⟩.

𝜑̂i(xi, z, y,𝜔) = 𝜑(z, y,𝜔) + ⟨A∗
i

�
𝜔 + 𝛽(Az + By − b)

�
, xi − zi⟩ +

𝜅i𝛽

2
‖xi − zi‖2.
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where

The block approximation error function between �i(xi, z, y,�) and 
x ↦ f (x) + h(y) + �(x, y,�) is defined as

We have ∇xi
�i(xi, z, y,�) = �i�(xi − zi) + ∇xi

�(z, y,�) − ∇xi
�((xi, z≠i), y,�) . So 

∇xi
�i(zi, z, y,w) = 0 . On the other hand, note that xi ↦ �((xi, z≠i), y

k,�k) is �‖A∗
i
Ai‖ 

- smooth. So, xi ↦ �i(xi, z, y,�) is a �(�i − ‖A∗
i
Ai‖) - strongly convex function. 

From Lemma  1 we have �i(xi, z, y,w) ≥
�(�i−‖A∗

i
Ai‖)

2
‖xi − zi‖2 . The result follows 

from (28), (30) and Proposition (7).
(ii) When xi ↦ ui(xi, z) + gi(xi) is convex and we apply the update as in (8), it fol-

lows from Proposition 8 (see also [21, Remark 4.1]) that

On the other hand, note that ui(xki , x
k,i−1) = f (xk,i−1) and ui(xk+1i

, xk,i−1) ≥ f (xk,i) . The 
result follows then.

Proof of Proposition 2

Denote

Then we have ĥ(y, y�) +
𝛽

2
‖Ax + By − b‖2 is a surrogate function of 

y ↦ h(y) + �(x, y,�) . Note that the function y ↦ ĥ(y, y�) +
𝛽

2
‖Ax + By − b‖2 is 

(Lh + ��min(B
∗B))-strongly convex. The result follows from Proposition 7 (see also 

[21, Section 4.2.1]).
Suppose h(y) is convex. We note that y ↦ �

2
‖Ax + By − b‖2 is also convex and 

plays the role of gi in Proposition 8. The result follows from Proposition 8.

(28)xk+1
i

= argmin xi
�i(xi, x

k,i−1, yk,�k) + gi(xi) − ⟨Gk
i
(xk

i
, xk−1

i
), xi⟩,

(29)Gk
i
(xk

i
, xk−1

i
) = 𝛽A∗

i
A
(
xk,i−1 − x̄k,i−1)

)
+ 𝜅i𝛽𝜁

k
i
(xk

i
− xk−1

i
).

(30)

�i(xi, z, y,𝜔) = �i(xi, z, y,𝜔) −
�
f (xi, z≠i) + h(y) + 𝜑((xi, z≠i), y,𝜔)

�

= ui(xi, z) − f (xi, z≠i) + 𝜑̂i(xi, z, y,𝜔) − 𝜑((xi, z≠i), y,𝜔)

≥ 𝜃i(xi, z, y,𝜔)

∶= 𝜑(z, y,𝜔) − 𝜑((xi, z≠i), y,𝜔) + ⟨A∗
i

�
𝜔 + 𝛽(Az + By − b)

�
, xi − zi⟩ +

𝜅i𝛽

2
‖xi − zi‖2.

(31)
ui(x

k
i
, xk,i−1) + gi(x

k
i
) + �(xk,i−1, yk,�k) +

�‖A∗
i
Ai‖

2
(� k

i
)2‖xk

i
− xk−1

i
‖2

≥ ui(x
k+1
i

, xk,i−1) + gi(x
k+1
i

) + �(xk,i, yk,�k) +
�‖A∗

i
Ai‖

2
‖xk+1

i
− xk

i
‖2.

ĥ(y, y�) = h(y�) + ⟨𝜔,Ax + By� − b⟩ + ⟨B∗𝜔 + ∇h(y�), y − y�⟩ +
Lh

2
‖y − y�‖2.



1 3

Inertial alternating direction method of multipliers for…

Proof of Proposition 3

Note that

From the optimality condition of (9) we have

Together with (10) we obtain

Hence,

which implies that

where �zk+1 = zk+1 − zk and zk+1 = ∇h(ŷk) + Lh(𝛥y
k+1 − 𝛿k𝛥y

k) . We now consider 2 
cases.

Case 1: 0 < 𝛼 ≤ 1 . From the convexity of ‖ ⋅ ‖ we have

Case 2: 1 < 𝛼 < 2 . We rewrite (35) as B∗�wk+1 = −(� − 1)B∗�wk −
�

2−�
(2 − �)�zk+1. 

Hence

Combine (36) and (37) we obtain

which implies

On the other hand, when we use extrapolation for the update of y we have

(32)L(xk+1, yk+1,�k+1) = L(xk+1, yk+1,�k) +
1

��
⟨�k+1 − �k,�k+1 − �k⟩

∇h(ŷk) + Lh(y
k+1 − ŷk) + B∗𝜔k + 𝛽B∗(Axk+1 + Byk+1 − b) = 0.

(33)∇h(ŷk) + Lh(𝛥y
k+1 − 𝛿k𝛥y

k) + B∗𝜔k +
1

𝛼
B∗(wk+1 − wk) = 0.

(34)B∗wk+1 = (1 − 𝛼)B∗𝜔k − 𝛼(∇h(ŷk) + Lh(𝛥y
k+1 − 𝛿k𝛥y

k)),

(35)B∗�wk+1 = (1 − �)B∗�wk − ��zk+1,

(36)‖B∗�wk+1‖2 ≤ (1 − �)‖B∗�wk‖2 + �‖�zk+1‖2

(37)‖B∗�wk+1‖2 ≤ (� − 1)‖B∗�wk‖2 + �2

(2 − �)
‖�zk+1‖2

(38)‖B∗�wk+1‖2 ≤ �1 − ��‖B∗�wk‖2 + �2

1 − �1 − ��‖�z
k+1‖2,

(39)

(1 − �1 − ��)‖B∗�wk+1‖2 ≤ �1 − ��(‖B∗�wk‖2 − ‖B∗�wk+1‖2) + �2

1 − �1 − ��‖�z
k+1‖2.



	 L. T. K. Hien et al.

1 3

If we do not use extrapolation for y then we have

Furthermore, note that �B‖�wk+1‖2 ≤ ‖B∗�wk+1‖2 . Therefore, it follows from (39) 
that

The result is obtained from (42), (32) and Proposition 1.

Proof of Proposition 4

(i) From Inequality (17) and the conditions in (18),

By summing from k = 1 to K Inequality  (43) and noting that C1 + C2 = Cy we 
obtain (20).

(ii) Let us prove {�yk} and {�xk
i
} converge to 0. Let us first prove the sec-

ond situation, that is we use extrapolation for the update of y and Inequality  (19) 
is satisfied. From  (34) we have �B∗wk+1 = −(1 − �)B∗��k+1 − �zk+1, where 
zk+1 = ∇h(ŷk) + Lh(𝛥y

k+1 − 𝛿k𝛥y
k) . Using the same technique that derives Inequal-

ity (38), we obtain the following

On the other hand, we have

(40)

‖𝛥zk+1‖2 = ‖∇h(ŷk) − ∇h(ŷk−1) + Lh(𝛥y
k+1 − 𝛿k𝛥y

k) − Lh(𝛥y
k − 𝛿k−1𝛥y

k−1)‖2

≤ 3L2
h
‖ŷk − ŷk−1‖2 + 3L2

h
‖𝛥yk+1‖2 + 3‖(1 + 𝛿k)Lh𝛥y

k − Lh𝛿k−1𝛥y
k−1‖2

≤ 6L2
h

�
(1 + 𝛿k)

2‖𝛥yk‖2 + 𝛿2
k−1

‖𝛥yk−1‖2
�
+ 3L2

h
‖𝛥yk+1‖2

+ 6(1 + 𝛿k)
2L2

h
‖𝛥yk‖2 + 6L2

h
𝛿2
k−1

‖𝛥yk−1‖2

= 3L2
h
‖𝛥yk+1‖2 + 12(1 + 𝛿k)

2L2
h
‖𝛥yk‖2 + 12L2

h
𝛿2
k−1

‖𝛥yk−1‖2.

(41)

‖�zk+1‖2 = ‖∇h(yk) − ∇h(yk−1) + Lh�y
k+1 − Lh�y

k‖2

≤ 3L2
h
‖�yk‖2 + 3L2

h
‖�yk+1‖2 + 3L2

h
‖�yk‖2 = 6L2

h
‖�yk‖2 + 3L2

h
‖�yk+1‖2.

(42)

‖𝛥wk+1‖2 ≤ �1 − 𝛼�
𝜎B(1 − �1 − 𝛼�) (‖B

∗𝛥wk‖2 − ‖B∗𝛥wk+1‖2)

+
𝛼23L2

h

𝜎B(1 − �1 − 𝛼�)2
(‖𝛥yk+1‖2 + 𝛿k‖𝛥yk‖2 + 4𝛿2

k−1
‖𝛥yk−1‖2).

(43)

Lk+1 + �‖�yk+1‖2 +
s�

i=1

�i‖�xk+1i
‖2 +

�1

�
‖B∗�wk+1‖2

≤ Lk + C1�‖�yk‖2 + C2�‖�yk−1‖2 + Cx

s�

i=1

�i‖�xki ‖
2 +

�1

�
‖B∗�wk‖2.

(44)��B‖wk+1‖2 ≤ �‖B∗wk+1‖2 ≤ �1 − ��‖B∗��k+1‖2 + �2

1 − �1 − ��‖z
k+1‖2.
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Together with (44) and

we obtain

Since h(y) is Lh-smooth, for all y ∈ ℝ
q and 𝛼L > 0 we have, (see [39])

Let us choose �L such that �L(1 −
Lh�L

2
) =

4�

2��B(1−|1−�|)
 . Note that this equation always 

has a positive solution when � ≥
4Lh�

�B(1−|1−�|)
 . Then we have

Together with (45) we get

So from �1
�
≥

|1−�|
2���B

 , � ≥
�12L2

h

2��B(1−|1−�|)
 , (1 − C1)� ≥

�12L2
h
12�2

k

2��B(1−|1−�|)
 we have

Hence LK+1 + �‖�yK+1‖2 + �1

�
‖B∗�wK+1‖2 + (1 − C1)�‖�yK‖2 is lower bounded.

Furthermore, since �i and � are positive numbers we derive from Inequality (20) 
that 

∑∞

k=1
‖𝛥yk‖2 < +∞ and 

∑∞

k=1
‖𝛥xk

i
‖2 < +∞ . Therefore, {�yk} and {�xk

i
} con-

verge to 0.
Let us now consider the first situation when �k = 0 for all k.

Lk = F(xk) + h(yk) +
�

2
‖Axk + Byk − b +

�k

�
‖2 − 1

2�
‖�k‖2 ≥ F(xk) + h(yk) −

1

2�
‖�k‖2.

‖zk‖2 = ‖∇h(ŷk−1) − ∇h(yk) + ∇h(yk) + Lh(𝛥y
k − 𝛿k−1𝛥y

k−1)‖2

≤ 4‖∇h(ŷk−1) − ∇h(yk)‖2 + 4‖∇h(yk)‖2 + 4L2
h
‖𝛥yk‖2 + 4L2

h
𝛿2
k−1

‖𝛥yk−1‖2

≤ 12L2
h
‖𝛥yk‖2 + 12𝛿2

k−1
‖𝛥yk−1‖2 + 4‖∇h(yk)‖2.

(45)

Lk
≥ F(xk) + h(yk) −

1

2���B

�
�1 − ��‖B∗��k‖2 + �2

1 − �1 − ��‖z
k‖2

�

≥ F(xk) + h(yk) −
�1 − ��
2���B

‖B∗��k‖2

−
�

2��B(1 − �1 − ��)
�
12L2

h
‖�yk‖2 + 12�2

k−1
‖�yk−1‖2 + 4‖∇h(yk)‖2

�

h(y − �L∇f (y)) ≤ h(y) − �L(1 −
Lh�L

2
)‖∇h(y)‖2.

h(yk) −
4�

2��B(1 − �1 − ��)‖∇h(y
k)‖2 ≥ h(yk − �L∇f (y

k)).

(46)
Lk

≥ F(xk) + h(yk − �L∇f (y
k)) −

�1 − ��
2���B

‖B∗��k‖2

−
�

2��B(1 − �1 − ��) (12L
2
h
‖�yk‖2 + 12�2

k−1
‖�yk−1‖2).

(47)
LK+1 + �‖�yK+1‖2 +

�1

�
‖B∗�wK+1‖2 + (1 − C1)�‖�yK‖2

≥ F(xK+1) + h(yK+1 − �L∇f (y
K+1)).
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From Inequality (17) and the conditions in (18) we have

By summing Inequality (48) from k = 1 to K we obtain

Denote the value of the right side of Inequality (48) by L̂
k
 . Note that 0 < Cx,Cy < 1 , 

then from  (48) we have the sequence {L̂
k
} is non-increasing. It follows from [38, 

Lemma 2.9] that L̂
k
≥ 𝜗 for all k, where � is is the lower bound of F(xk) + h(yk) . For 

completeness, let us provide the proof in the following. We have

Assume that there exists k0 such that L̂
k
< 𝜗 for all k ≥ k0 . As L̂

k
 is non-increasing 

we have

Hence 
∑∞

k=1
(L̂

k
− 𝜗) = −∞ . However, from (50) we have

which gives a contradiction.
Since L̂

K
≥ 𝜗 and �i and � are positive numbers we derive from Inequality (20) 

that 
∑∞

k=1
‖𝛥yk‖2 < +∞ and 

∑∞

k=1
‖𝛥xk

i
‖2 < +∞ . Therefore, {�yk} and {�xk

i
} con-

verge to 0.
Now we prove {��k} goes to 0. Since 

∑∞

k=1
‖𝛥yk‖2 < +∞ , we derive from (40) 

that 
∑∞

k=1
‖𝛥zk‖2 < +∞ . Summing up Equality (38) from k = 1 to K we have

(48)

Lk+1 + �‖�yk+1‖2 +
s�

i=1

�i‖�xk+1i
‖2 +

�1

�
‖B∗�wk+1‖2

≤ Lk + Cy�‖�yk‖2 + Cx

s�

i=1

�i‖�xki ‖
2 +

�1

�
‖B∗�wk‖2.

(49)

LK+1 + Cy�‖�yK+1‖2 + Cx

s�

i=1

�i‖�xK+1i
‖2 +

�1

�
‖B∗�wK+1‖2

+

K�

k=1

�
(1 − Cy)�‖�yk+1‖2 + (1 − Cx)

s�

i=1

�i‖�xk+1i
‖2
�

≤ L1 +
�1

�
‖B∗��1‖2 +

s�

i=1

�0
i
‖�x1

i
‖2 + C�‖�y1‖2.

(50)

L̂
k
≥ Lk = F(xk) + h(yk) +

𝛽

2
‖Axk + Byk − b‖2 + 1

𝛼𝛽
⟨𝜔k,𝜔k − 𝜔k−1⟩

≥ 𝜗 +
1

2𝛼𝛽
(‖𝜔k‖2 − ‖𝜔k−1‖2 + ‖𝛥𝜔k‖2) ≥ 𝜗 +

1

2𝛼𝛽
(‖𝜔k‖2 − ‖𝜔k−1‖2),

K∑

k=1

(L̂
k
− 𝜗) ≤

k0∑

k=1

(L̂
k
− 𝜗) + (K − k0)(L̂

k
− 𝜗)

K�

k=1

(L̂
k
− 𝜗) ≥

K�

k=1

1

2𝛼𝛽
‖𝜔k‖2 − 1

2𝛼𝛽
‖𝜔k−1‖2 ≥ 1

2𝛼𝛽
(−‖𝜔0‖2),
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which implies that 
∑∞

k=1
‖B∗𝛥𝜔k‖2 < +∞ . Hence, ‖B∗��k‖2 → 0 . Since 𝜎B > 0 we 

have {��k} goes to 0.

Proof of Proposition 5

We remark that we use the idea in the proof of [58, Lemma 6] to prove the proposi-
tion. However, our proof is more complicated since in our framework � ∈ (0, 2) , the 
function h is linearized and we use extrapolation for y.

Note that as 𝜎B > 0 we have B is a surjective. Together with the assumption 
b + Im(A) ⊆ Im(B) we have there exist ȳk such that Axk + Bȳk − b = 0.

Now we have

From (33) we have

Therefore, it follows from (51) and Lh-smooth property of h that

On the other hand, we have

We have proved in Proposition 4 that ‖��k‖ , ‖�xk‖ and ‖�yk‖ converge to 0. Further-
more, from Proposition 4 we have Lk is upper bounded. Therefore, from (52), (53) 
and (20) we have F(xk) + h(ȳk) is upper bounded. So {xk} is bounded. Consequently, 
Axk is bounded.

Furthermore, we have

(1 − �1 − ��)
K�

k=1

‖B∗��k‖2 + ‖B∗��K+1‖2 ≤ ‖B∗��1‖2 + �2

1 − �1 − ��

K�

k=1

‖�zk+1‖2,

(51)
Lk = F(xk) + h(yk) +

𝛽

2
‖Axk + Byk − b‖2 + ⟨𝜔k,Axk + Byk − b⟩

= F(xk) + h(yk) +
𝛽

2
‖Axk + Byk − b‖2 + ⟨B∗𝜔k, yk − ȳk⟩

⟨B∗𝜔k, yk − ȳk⟩ =
�
∇h(ŷk) + Lh(𝛥y

k+1 − 𝛿k𝛥y
k) +

1

𝛼
B∗(wk+1 − wk), ȳk − yk

�

≥ ⟨∇h(yk), ȳk − yk⟩ −
�
‖∇h(yk) − ∇h(ŷk)‖ + Lh‖𝛥yk+1‖ + Lh𝛿k‖𝛥yk‖

+
1

𝛼
‖B∗𝛥𝜔k+1‖

�
‖ȳk − yk‖.

(52)
Lk

≥ F(xk) + h(ȳk) −
Lh

2
‖yk − ȳk‖2 −

�
2Lh𝛿k‖𝛥yk‖ + Lh‖𝛥yk+1‖ +

1

𝛼
‖B∗𝛥𝜔k+1‖

�
‖ȳk − yk‖.

(53)

‖ȳk − yk‖2 ≤ 1

𝜆min(B
∗B)

‖B(ȳk − yk)‖2 = 1

𝜆min(B
∗B)

‖Axk + Byk − b‖2 = 1

𝜆min(B
∗B)

��
1

𝛼𝛽
𝛥𝜔k��

2
.

‖yk‖2 ≤ 1

�min(B
∗B)

‖Byk‖2 = 1

�min(B
∗B)

��
1

��
��k −Axk − b��

2
.
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Therefore, {yk} is bounded, which implies that ‖∇h(ŷk)‖ is also bounded. Finally, 
from  (33) and the assumption 𝜆min(BB

∗) > 0 we also have {�k} is bounded.

Proof of Theorem 1

Suppose (xkn , ykn ,�kn ) converges to (x∗, y∗,�∗) . Since �xk
i
 goes to 0, we have xkn+1

i
 and 

x
kn−1

i
 also converge to x∗

i
 for all i ∈ [s] . From (28), for all xi,

Choosing xi = x∗
i
 and k = kn − 1 in (54) and not-

ing that �i(xi, z) is continuous by Assumption  2 (i), we have 
lim supn→∞ �i(x

∗
i
, x∗, y∗,�∗) + gi(x

kn
i
) ≤ �i(x

∗
i
, x∗, y∗,�∗) + gi(x

∗
i
). On the other 

hand, as gi(xi) is lower semi-continuous. Hence, gi(x
kn
i
) converges to gi(x∗i ) . Now we 

choose k = kn → ∞ in (54) for all xi we obtain

where L0(x, y,�) = f (x) + h(y) + �(x, y,�) and �i is the approximation error defined 
in (30). We have

Note that ēi(x∗i , x
∗) = 0 by Assumption 2. From (55) we have x∗

i
 is a solution of

Writing the optimality condition for this problem we obtain 0 ∈ �xiL(x
∗, y∗,�∗) . 

Totally similarly we can prove that 0 ∈ �yL(x
∗, y∗,�∗) . On the other hand, we have

Hence, ��L(x∗, y∗,�∗) = Ax∗ + By∗ − b = 0.

As we assume �F(x) = �x1F(x) ×⋯ × �xsF(x) , we have

So 0 ∈ �L(x∗, y∗,�∗).

(54)
�i(x

k+1
i

, xk,i−1, yk,�k) + gi(x
k+1
i

) ≤ �i(xi, x
k,i−1, yk,�k) + gi(xi) − ⟨Gk

i
(xk

i
, xk−1

i
), xi − xk+1

i
⟩.

(55)
L0(x

∗, y∗,�∗) + gi(x
∗
i
) ≤ �i(xi, x

∗, y∗,�∗) + gi(xi)

= L0(xi, x
∗
≠i
, y∗,�∗) + �i(xi, x

∗, y∗,�∗) + gi(xi),

�i(xi, x
∗, y∗,𝜔∗) = ui(xi, x

∗) − f (xi, x
∗
≠i
) + 𝜑̂i(xi, x

∗, y∗,𝜔∗) − 𝜑((xi, x
∗
≠i
), y∗,𝜔∗)

≤ ēi(xi, x
∗) + 𝜑̂i(xi, x

∗, y∗,𝜔∗) − 𝜑((xi, x
∗
≠i
), y∗,𝜔∗).

min
xi

L(xi, x
∗
≠i
, y∗,𝜔∗) + ēi(xi, x

∗) + 𝜑̂i(xi, x
∗, y∗,𝜔∗) − 𝜑((xi, x

∗
≠i
), y∗,𝜔∗).

��k = �k − �k−1 = ��(Axk + Byk − b) → 0.

�L(x, y,�) = �F(x) + ∇
�
h(y) + ⟨�,Ax + By − b⟩ + �

2
‖Ax + By − b‖2

�

= �x1L(x, y,�) ×⋯ × �xsL(x, y,�) × �yL(x, y,�) × ��L(x, y,�).
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Proof of Theorem 2

Note that we assume the generated sequence of Algorithm 1 is bounded. The following 
analysis is considered in the bounded set that contains the generated sequence of Algo-
rithm 1. We first prove some preliminary results.

(A) The optimality condition of (28) gives us

As (22) holds, there exists �k+1
i

∈ �ui(x
k+1
i

, xk,i−1) and �k+1
i

∈ �gi(x
k+1
i

) such that

As (23) holds, there exists �k+1
i

∈ �xi f (x
k+1) such that

Denote �k+1
i

∶= �k+1
i

+ �k+1
i

∈ �xiF(x
k+1) (as (22) holds). Then, from (57) we have

On the other hand, we note that

Let dk+1
i

∶= �k+1
i

+A∗
i

(
�k+1 + �(Axk+1 + Byk+1 − b)

)
∈ �xiL(x

k+1, yk+1,�k+1) . 
From (59),

Together with (58) we obtain

It follows from (9) that

Let dk+1
y

∶= ∇h(yk+1) + B∗
(
�k+1 + �(Axk+1 + Byk+1 − b)

)
. Then 

dk+1
y

∈ �yL(x
k+1, yk+1,�k+1) and

(56)
Gk
i
(xk

i
− xk−1

i
) −A∗

i

(
�k + �(Axk,i−1 + Byk − b)

)
− �i�(x

k+1
i

− xk
i
)

∈ �xi

(
ui(x

k+1
i

, xk,i−1) + gi(x
k+1
i

)
)
.

(57)
Gk
i
(xk

i
− xk−1

i
) −A∗

i

(
�k + �(Axk,i−1 + Byk − b)

)
− �i�(x

k+1
i

− xk
i
) = �k+1

i
+ �k+1

i

(58)‖�k+1
i

− �k+1
i

‖ ≤ Li‖xk+1 − xk,i−1‖.

(59)
�k+1
i

= �k+1
i

+ Gk
i
(xk

i
− xk−1

i
) −A∗

i

(
�k + �(Axk,i−1 + Byk − b)

)
− �i�(x

k+1
i

− xk
i
) − �k+1

i
.

(60)�xiL(x
k+1, yk+1,�k+1) = �xiF(x

k+1) +A∗
i

(
�k+1 + �(Axk+1 + Byk+1 − b)

)
.

(61)

‖dk+1
i

‖ =
����

k+1
i

+ Gk
i
(xk

i
− xk−1

i
) −A∗

i

�
�k + �(Axk,i−1 + Byk − b)

�
− �i�(x

k+1
i

− xk
i
)

− �k+1
i

+A∗
i

�
�k+1 + �(Axk+1 + Byk+1 − b)

����

(62)

‖dk+1
i

‖ ≤ ak
i
‖�xk

i
‖ + �‖A∗

i
A‖‖xk+1 − xk,i−1‖ + �‖A∗

i
B‖‖�yk+1‖ + ‖A∗

i
‖‖��k+1‖

+ �i�‖�xk+1i
‖ + Li‖xk+1 − xk,i−1‖.

B∗𝜔k + ∇h(ŷk) + 𝛽B∗(Axk+1 + Byk+1 − b) + Lh(y
k+1 − ŷk) = 0.
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Let dk+1
�

∶= Axk+1 + Bk+1 − b . We have dk+1
�

∈ ��L(x
k+1, yk+1,�k+1) and

(B) Let us now prove F(xkn ) converges to F(x∗) . This implies L(xkn , ykn ,�kn ) con-
verges to L(x∗, y∗,�∗) since L is differentiable in y and � . We have

So F(xkn ) converges to us(x∗i , x
∗) +

∑s

i=1
gi(x

∗
i
) = F(x∗).

We now proceed to prove the global convergence. Denote � = (x, y,�) , 
�̃ = (x̃, ỹ, 𝜔̃) , and �k = (xk, yk,�k) . We consider the following auxiliary function

The auxiliary sequence L̄(�k, �k−1) has the following properties. 

1.	 Sufficient decreasing property From (48) we have 

2.	 Boundedness of subgradient In the proof (A) above, we have proved that 

 for some constant a1 and dk+1 ∈ �L(�k+1) . On the other hand, as we use � = 1 , 
from (35) we obtain 

 Hence, 

 for some constant a2 . Note that 

‖dk+1
y

‖ = ‖∇h(yk+1) − ∇h(ŷk) + B∗(𝜔k+1 − 𝜔k) − Lh(y
k+1 − ŷk)‖

≤ 2Lh‖yk+1 − ŷk‖ + ‖B∗‖‖𝛥𝜔k+1‖ ≤ 2Lh(‖𝛥yk+1‖ + 𝛿k‖𝛥yk‖) + ‖B∗‖‖𝛥𝜔k+1‖.

dk+1
�

= (�k+1 − �k)∕(��) = ��k+1∕(��).

F(xkn ) = f (xkn ) +

s∑

i=1

gi(x
kn
i
) = us(x

kn
s
, xkn ) +

s∑

i=1

gi(x
kn
i
).

L̄(�, �̃) = L(x, y,𝜔) +

s�

i=1

𝜂i + Cx𝜂i

2
‖xi − x̃i‖2 +

(1 + Cy)𝜇

2
‖y − ỹ‖2 +

𝛼1

𝛽
‖B∗(𝜔 − 𝜔̃)‖2.

L̄(�k+1, �k) +

s�

i=1

𝜂i − Cx𝜂i

2

�
‖xk+1

i
− xk

i
‖2 + ‖xk

i
− xk−1

i
‖2
�

+
(1 − Cy)𝜇

2

�
‖yk+1 − yk‖2 + ‖yk − yk−1‖2

�
≤ L̄(�k, �k−1).

‖dk+1‖ ≤ a1(‖xk+1 − xk‖ + ‖xk − xk−1‖ + ‖yk+1 − yk‖ + ‖�k+1 − �k‖)

(63)
√
�B‖�k+1 − �k‖ ≤ ‖B∗(�k+1 − �k)‖ = ‖�zk+1‖
= ‖∇h(yk) − ∇h(yk−1) + Lh(�y

k+1 − �yk)‖ ≤ 2Lh‖yk − yk−1‖ + Lh‖yk+1 − yk‖.

‖dk+1‖ ≤ a2(‖xk+1 − xk‖ + ‖xk − xk−1‖ + ‖yk+1 − yk‖ + ‖yk − yk−1‖)

𝜕L̄(�, �̃) = 𝜕L(�, �̃) + 𝜕

� s�

i=1

𝜂i + Cx𝜂i

2
‖xi − x̃i‖2 +

(1 + Cy)𝜇

2
‖y − ỹ‖2 +

𝛼1

𝛽
‖B∗(𝜔 − 𝜔̃)‖2

�
.
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 Hence, it is not difficult to show that 

 for some constant a3 and �k+1 ∈ 𝜕L̄(�k+1, �k).
3.	 KL property Since F(x) + h(y) has KL property, then L̄(�, �̃) also has KŁ property.
4.	 A continuity condition Suppose �kn converges to (x∗, y∗,�∗) . In the proof (B) 

above, we have proved that L(�kn ) converges to L(x∗, y∗,�∗) . Furthermore, from 
Proposition 4 we proved that ‖�k+1 − �k‖ goes to 0. Hence we have �kn−1 converges 
to (x∗, y∗,�∗) . So, L̄(�k+1, �k) converges to L̄(�∗, �∗).

Using the same technique as in [7, Theorem 1], see also [20, 40], we can prove that

which implies {(xk, yk)} converges to (x∗, y∗) . From (63) we obtain

Hence, {�k} also converges to �∗.

Appendix 3: Additional experiment for different values of ̨

In this experiment, we rerun the experiments from Sect.  3 with other values for � , 
namely 0.5, 1.4 and 1.8; see Figs. 2, 3 and 4 (on pages 31-33). The penalty parameter � 
is computed by � = 2(2 + Cy)�2∕Cy , where Cy = 1 − 10−6 and �2 =

3�

(1−|1−�|)2 . 
Although the segmentation errors and objective function values differ for different val-
ues of � , we observe that, in all cases, iADMM-mm outperforms ADMM-mm which 
outperforms linearizedADMM. This confirms our observations from Sect. 3. On the 
other hand, we observe that the performances of ADMM-mm and linearizedADMM 
are similar for different values of � ; however, the performances of iADMM-mm (that 
is, ADMM-mm with inertial terms) for � = 0.5 and � = 1.4 are slightly worse than for 
� = 1 , and the value � = 1.8 leads to significantly worse performances for iADMM-
mm. It is known that, in the convex setting, the ADMM variants often perform better 
for 𝛼 > 1 . However, in our experiments, � = 1 provides the best performance for 
iADMM-mm. A possible reason is that the global convergence of iADMM-mm has 
been established only for the case � = 1 (see Theorem 2) while � ∈ (0, 2) only guaran-
tees a subsequential convergence (see Theorem 1).

‖�k+1‖ ≤ a3(‖xk+1 − xk‖ + ‖xk − xk−1‖ + ‖yk+1 − yk‖ + ‖yk − yk−1‖)

∞�

k=1

�
‖xk+1 − xk‖ + ‖xk − xk−1‖ + ‖yk+1 − yk‖ + ‖yk − yk−1‖

�
< ∞.

∞�

k=1

‖𝜔k+1 − 𝜔k‖ ≤

∞�

k=1

�
‖yk+1 − yk‖ + ‖yk − yk−1‖

�
< ∞.
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Appendix 4: Additional experiments for a regularized nonnegative 
matrix factorization problem

In the previous example, the function f (X, Y) = �1‖X‖∗ + r2(Y) was separable 
while our framework allows non-separable functions; see (1) and the discussion 
that follows. To illustrate the use and effectiveness of iADMM on a non-separable 
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Fig. 2   Evolution of the average value of the segmentation error rate and the objective function value with 
respect to time on Hopkins155
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case, let us consider the following regularized nonnegative matrix factorization 
(NMF) problem

where X ∈ ℝ
n×m is a given nonnegative matrix, and c1 > 0 and c2 > 0 are regular-

ized parameters. Problem (64) can be rewritten in the form of (1) as follows:

(64)min
W∈ℝn×r

+ ,H∈ℝr×m
+

1∕2‖X −WH‖2 + c1‖W‖2
F
+ c2‖H‖2

F
,
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Fig. 3   Evolution of the segmentation error rate and the objective function value with respect to time on 
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In this case, x1 = W , x2 = H , y = Y  , f (W,H) =
1

2
‖X −WH‖2 + �‖W‖2

F
 , g1(W) and 

g2(H) are indicator functions of ℝn×r
+

 and ℝr×m
+

 respectively, h(Y) = c2‖Y‖2F , A1 = 0 , 
A2 = I  , B = −I  (where I  is identity operator), and b = 0 . As W ↦ f (W,H) 
is LW-Lipschitz smooth and H ↦ f (W,H) is LH-Lipschitz smooth, where 

(65)
min

W∈ℝn×r
+ ,H∈ℝr×m

+

1∕2‖X −WH‖2 + c1‖W‖2
F
+ c2‖Y‖2F,

such that H − Y = 0.
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LW = ‖HH⊤‖ + 2c1 and LH = ‖W⊤W‖ , we use the Lipschitz gradient surrogate for 
block W and H as in (12), and apply the inertial term as in the footnote 3 (that is, we 
apply inertial terms that also lead to the extrapolation for the block surrogate of f). 
The augmented Lagrangian for (65) is

Applying iADMM for solving (65), the update of W is

where W̄k = Wk + 𝜁 k
1
(Wk −Wk−1) . Note that we have used extrapolation for the sur-

rogate of W ↦ f (W,H) . The update of H is

where H̄k = Hk + 𝜁 k
2
(Hk − Hk−1) . We do not use extrapolation for Y (that is, �k = 0 ), 

and simply choose � = 1 . The update of Y is

while the update of � is

Choosing parameters By Proposition 8, the update of W in (66) implies that Inequal-
ity (14) is satisfied:

where

L(W,H, Y ,�) = f (W,H) + h(Y) + ⟨H − Y ,�⟩ + �

2
‖H − Y‖2.

(66)

Wk+1 ∈ arg min
W∈ℝn×r

+

⟨−(X − W̄kHk)(Hk)⊤ + 2c1W̄
k,W⟩ +

LW (H
k)

2
‖W − W̄k‖2

= max
�
W̄k −

1

LW (H
k)

�
− (X − W̄kHk)(Hk)⊤ + 2c1W̄

k
�
, 0
�
,

(67)

Hk+1 ∈ arg min
H∈ℝr×m

+

⟨−(Wk+1)⊤(X −Wk+1H̄k) + 𝜔k + 𝛽(H̄k − Yk),H⟩

+
𝛽 + LH(W

k+1)

2
‖H − H̄k‖2

= max
�
H̄k −

1

𝛽 + LH(W
k+1)

�
− (Wk+1)⊤(X −Wk+1H̄k) + 𝜔k + 𝛽(H̄k − Yk)

�
, 0
�
,

(68)
Yk+1 ∈ argmin

Y
⟨−�k + 2c2Y

k, Y⟩ + �

2
‖Y − Hk+1‖2 + c2‖Y − Yk‖2

=
1

� + 2c2
(�Hk+1 + �k),

�k+1 = �k + �(Hk+1 − Yk+1).

L(Wk+1,Hk, Yk,�k) + �k
1
‖Wk+1 −Wk‖2 ≤ L(Wk,Hk, Yk,�k) + �k

1
‖Wk −Wk−1‖2,

�k
1
=

LW (H
k)

2
, �k

1
=

LW (H
k)

2
(� k

1
)2.
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Note that we use �k
1
 instead of �1 as this value varies along with the update of H 

(because we used the extrapolation for the surrogate of W ↦ f (W,H) ). Similarly, the 
update of H in (67) implies that Inequality (14) is satisfied:

where

Because of the update of Y in (68), the inequality in Proposition (2) is satisfied:

where �y = c2 and �k
y
= 0 . Following the same rationale that leads to Theorem 1, we 

obtain, as in (18),

where �2 =
3�

�B(1−|1−�|)2
= 3 and 0 < Cx,Cy < 1 . In our experiments, we choose

where a0 = 1 , ak =
1

2
(1 +

√
1 + 4a2

k−1
) , and � ≥ 4c2

(6+3Cy)

Cy

.
Experiments We will compare iADMM with (i) ADMM (that is iADMM without 

using the inertial terms: � k
1
= � k

2
= 0 ), and (ii) TITAN - the inertial block majoriza-

tion minimization proposed in [21] that directly solves Problem (64) and competes 
favorably with the state of the art on the NMF problem (see [20] which is a special 
case of TITAN). In our implementation, we use Lipschitz gradient surrogate for W 
and H and use default parameter setting for TITAN.

In the following experiments, we set the parameters c1 and c2 of Problem (64) to 
be c1 = 0.001 and c2 = 0.01.

In the first experiment, we generate 2 synthetic low-rank data sets X with 
(n,m, r) = (500, 200, 20) and (n,m, r) = (500, 500, 20) : we generate U and V by 
using the MATLAB command rand(n,r) and rand(r,m) respectively, and 
then let X=U*V. For each data set, we run each algorithm with the same 30 ran-
dom initial points W0=rand(n,r), H0=rand(r,m) (for iADMM and ADMM 
we let Y0=H0 and �0=zeros(r,m)), and for each initial point we run each algo-
rithm for 15 s. We report the evolution of the average objective function values of 
Problem (64) with respect to time in Fig. 5 and the mean ± std of the final objective 
function values in Table 2. We observe that iADMM outperforms ADMM which 
illustrates the acceleration effect. Among the algorithms, TITAN converges the fast-
est, but only slightly faster than iADMM. However, iADMM provides the best final 
objective function values on average.

L(Wk+1,Hk+1, Yk,�k) + �k
2
‖Hk+1 − Hk‖2 ≤ L(Wk+1,Hk, Yk,�k) + �k

2
‖Hk − Hk−1‖2,

�k
2
=

LH(W
k+1) + �

2
, �k

2
=

LH(W
k+1) + �

2
(� k

2
)2.

L(Wk+1,Hk+1, Yk+1,�k) + �y‖Yk+1 − Yk‖2 ≤ L(Wk+1,Hk+1, Yk,�k) + �k
y
‖Yk − Yk−1‖2,

�k
i
≤ Cx�

k−1
i

,
2�2(2c2)

2

�
≤ Cy(�y −

�2(2c2)
2

�
),

� k
1
= min

{ak−1 − 1

ak
,

√

Cx

LW (H
k−1)

LW (H
k)

}
, � k

2
= min

{ak−1 − 1

ak
,

√

Cx

LH(W
k+1) + �

LH(W
k) + �

}
,
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In the second experiment, we test the algorithms on 4 image data sets CBCL4 
(2429 images of dimension 19 × 19 ), ORL5 (400 images of dimension 92 × 112 ), 
Frey6(1965 images of dimension 28 × 20 ), and Umist7 (565 images of dimension 
92 × 112 ). For each data set, we run each algorithm with the same 20 random initial 
points. We run each algorithm 100 s for the data sets Umist and ORL and 30 s for 
the data sets CBCL and Frey. We draw the evolution of the average objective func-
tions values with respect to time in Fig. 6 and the mean ± std of the final objective 
function values in Table 3.

Once again we observe that although iADMM converges slighly slower than 
TITAN, iADMM always produces the best objective function values among the 

Table 2   Mean and standard deviation of the objective function value over 30 random initializations on 
the synthetic data sets

The best result is highlighted in bold

(n, m, r) iADMM ADMM TITAN

(500, 200, 20) ��.��� ± �.��� × ��−� 35.873 ± 2.299 17.751 ± 1.092
(500, 500, 20) ��.��� ± �.��� 135.037 ± 6.409 35.799 ± 1.525

Table 3   Mean and standard deviation of the objective function value over 20 random initializations on 
the image data sets

The best result is highlighted in bold

Data set iADMM ADMM TITAN

CBCL ����.��� ± �.��� 1800.626 ± 1.156 × 101 3321.104 ± 7.271
ORL ����.��� ± �.��� 13,825 ± 1.312 × 102 16,844.426 ± 1.439 × 101

Frey ����.��� ± �.��� 1706.385 ± 7.380 3048.246 ± 4.737
Umist ��,���.��� ± �.��� × ��� 18,195.557 ± 1.059 × 102 29,316.019 ± 3.433 × 101
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Fig. 5   Evolution of the average value of the objective function value of Problem (64) with respect to time 
on synthetic data sets with (n,m, r) = (500, 200, 20) (left) and (n,m, r) = (500, 500, 20) (right)

4  http://​cbcl.​mit.​edu/​softw​are-​datas​ets/​heise​le/​facer​ecogn​ition-​datab​ase.​html.
5  https://​cam-​orl.​co.​uk/​faced​ataba​se.​html.
6  https://​cs.​nyu.​edu/​~roweis/​data.​html.
7  https://​cs.​nyu.​edu/​~roweis/​data.​html.

http://cbcl.mit.edu/software-datasets/heisele/facerecognition-database.html
https://cam-orl.co.uk/facedatabase.html
https://cs.nyu.edu/%7eroweis/data.html
https://cs.nyu.edu/%7eroweis/data.html
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three algorithms. On the other hand, ADMM also outperforms TITAN in term of 
the final objective function values. This means that, for some reason, ADMM and 
iADMM are able to avoid spurious local minima more effectively than TITAN.
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Fig. 6   Evolution of the average value of the objective function value of Problem (64) with respect to time 
on the image data sets CBCL (top left), ORL (top right), Frey (bottom left) and Umist (bottom right)
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