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Summary
Individual pitch control has shown great capability of alleviating the oscillating loads experienced
by wind turbine blades due to wind shear, atmospheric turbulence, yaw misalignment or wake
impingement. This work presents a novel controller structure that relies on the separation of
low-level control tasks and high-level ones. It is based on a neural network that modulates basic
periodic pitch angle signals. This neural network is trained with reinforcement learning, a trial and
error way of acquiring skills, in a low-fidelity environment exempt from turbulence. The trained
controller is further deployed in large eddy simulations to assess its performances in turbulent and
waked flows. Results show that the method enables the neural network to learn how to reduce
fatigue loads and to exploit that knowledge to complex turbulent flows. When compared to a
state-of-the-art individual pitch controller, the one introduced here presents similar load allevi-
ation capacities at reasonable turbulence intensity levels, while displaying very smooth pitching
commands by nature.
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1 INTRODUCTION
Increasing the size of wind turbines is one path to achieve the wind-sourced electrical production targets. Wind turbine producers are following
this path and announcing turbines with rated powers of 15 MW by 2025 and rotor diameters exceeding 200 m 1. Such sizes lead to ever greater
challenges in the domain of structure design and load alleviation, as lighter and thus more flexible structural components show more sensitivity
toward fatigue loading 2. Though the widespread variable-speed variable-collective-pitch controllers consider a uniform wind distribution across
the rotor plane 3, such gigantic swept surfaces demand to rethink the problem. Indeed, if all blades are pitched at the same angle, the spatial
variations of wind speed generate large oscillating loads on the blades over the course of the rotation. Individually controlling the pitch of each
blade has repeatedly proven its potential in reducing the rotor-unbalanced loads arising from wind shear, tower shadow, yaw misalignment and
atmospheric turbulent structures 4. A growing body of research has thus emerged in the wind energy community, seeking the best approach to
design these individual pitch controllers (IPC) 5.
Most of the IPC research 5 that has been conducted over the years relies on the generic structure depicted in Fig. 1, which is based on two
state spaces, the wind turbine space and the control space, linked by a transformation. The blade-root flapwise bending moments MFn1,2,3 are
oscillating by nature, mainly due to the presence of shear and turbulence, and it is thus expected from the pitching targets β1,2,3 to react to those
measured loads in an oscillatory manner. A transformation is therefore used to go from the wind turbine space, where the pitching targets β1,2,3
are oscillating, to the controller space, where targeted states xref are time-invariant. In practice, the bending momentsMFn1,2,3 are transformed
into a state x defined in the control space. The load regulation problem is solved in the control space by determining the command u. Various types
of controllers, from simple PIDs to optimal controllers or even robust controllers can be implemented. The control space command is eventually
transformed back to the turbine space, leading to a pitch angle command βi for each blade.
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FIGURE 1 Generic representation of IPC controllers.

Three main types of transformation have been reported in the literature. First, many IPC studies have focused on the Coleman 6 transformation,
which emerged from the field of helicopter rotor control. The Coleman transformation consists in projecting the loads expressed in the frame
of the rotating blades on the fixed coordinate frame of the rotor disc. First investigations of individual pitch control using this transformation
were reported in Bossanyi 4 and Caselitz 7, with a first controller design method proposed in van Engelen 8. Another coordinate transformation
was reported by Zhang 9, who uses the Clarke 10 transformation, widely used for electrical machines. The flapwise bending moments are mapped
onto a set of orthogonal axes associated to the rotating rotor. Eventually, Leithead and co-workers 11,12,13 extensively studied the case of no
transformation of the loads, which, following the aforementioned representation, could mathematically translate to an identity transform. This
type of formulation is often referred to as individual blade control instead of individual pitch control.
As the Coleman transformation is the most widely used 5, we focus on this approach to show the multiple types of controllers that have been
implemented to alleviate fatigue loads on wind turbines. First, a wide variety of what could roughly be described as feedback controllers have
been tested. The original controller presented in Bossanyi 4 and still used in many applications for its simplicity of implementation consists in
two separate proportional-integral (PI) loops, one for the tilt axis and one for the yaw axis. This controller architecture then assumes that the
tilt and yaw dynamics of the rotor are decoupled, which was shown to be incorrect by Selvam 14 and Geyler 15. The existence of this dynamic
tilt-yaw coupling motivated the investigation of multi-variable control strategies and optimal control was therefore a good candidate. Among the
numerous studies, one can highlight the implementation of a Linear Quadratic Regulator (LQR) in Stol 16, where both the collective pitch and
individual pitch targets are dealt with in the optimization problem. The reference IPC study 4 also presented a Linear Quadratic Gaussian (LQG)
regulator, with a Kalman filter as state estimator. Studies like that of Mirzaei 17 also investigated Model Predictive Control (MPC). A well-known
problem with optimal controllers is that they offer no guaranteed stability margins 18, as they do not take into account uncertainty in the model of
the system, here the turbine, used for the optimization. This is what motivated the use of robust control approaches, that account for parametric
and dynamic uncertainties. Among the possible methods,H∞ loop-shaping has been widely used, see examples in Lu 3 and Geyler 15. It is indeed
well adapted to IPC as the control design is performed in the frequency domain. The aforementioned controllers represent the common basis
to many IPC controllers, yet additional control loops are sometimes added. On the one hand, feedforward has been investigated. The control
approach presented in Selvam 14 consists in an optimal LQG controller working along with a feedforward disturbance rejection controller based
on estimated wind speed signals, while Dunne 19 considered the state-of-the-art PI supplemented by a feedforward loop providing the LIDAR
measurement of incoming wind speed. On the other hand, repetitive control has also been reported due to its ability to deal with periodic signals
and track periodic references 20. Kallen 21 takes advantage of that and uses the information perceived on a blade to anticipatively pass it on to the
next blade. Friis 22 used repetitive model predictive control by including a repetitive wind disturbance in the MPC prediction.
This review shows that the field of feedback control, completed with add-ons like repetitive control and feedforward control, has been thoroughly
studied in the literature. Nonetheless, recent years have seen Machine Learning (ML) become a new fundamental way of problem solving in a
growing number of domains. ML is commonly divided into (1) supervised learning, dealing with classification and regression tasks; (2) unsupervised
learning, addressing clustering and dimensionality reduction topics, and (3) reinforcement learning, focusing on the determination of the optimal
actions that an agent should take to achieve a given goal 23. First studies of ML in the field of fluid dynamics are reported in Koumoutsakos 23.
Reinforcement Learning (RL) 24 is typically the ML paradigm used for control applications and it has been applied for wind power control. Tomin 25
used RL for optimal generator torque and collective pitch control, while Sierra-García 26 focused on the collective pitch controller for above-rated
wind speeds. RL investigations were also carried for wind farm power maximization using yaw control: Saénz-Aguirre 27 reported results on
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optimally aligning a wind turbine with the upcoming wind, where as Stanfel 28 presented distributed yaw steering for wind farm energy capture
maximization. When it comes to load alleviation, reinforcement learning has not been reported so far, though supervised learning has been used
as an add-on to classical control theory paradigms. One can mention the data-driven controller selection based on wind conditions clustering
proposed by Collet 29 or the Bayesian Optimization ML approach of Mulders 30 for the efficient tuning of Coleman transform-based IPC.
This paper thus aims at investigated the IPC problem as a whole under the eye of RL. This would offer IPC the opportunity to benefit from the ability
of RL to learn non-linear problems or high-dimensionality ones, but also to be independent from predetermined control paradigms. A subsidiary
goal therefore consists in providing a framework that handles more information and more flexibly than the usual ones. The envisioned paradigm
should enable an improved management of the aerodynamic loads that will be encountered in future large rotors. To do so, this work builds on
previous investigations by the authors 31 to go further in terms of controller architecture and performance assessment. RL is sometimes referred
to as a bio-inspired control mechanism, as it mimics an animal’s way of learning by experience 23. We took the option to go further in terms of
bio-inspiration and present, in section 2, a control framework that mimics animal locomotion, as it entails rhythmic motion and is able to adapt to
environmental conditions, just as IPC should. The control policy is trained in a low-fidelity environment using blade element momentum theory
and a synthetic flow generator, yet it is further tested in a higher fidelity environment using Large Eddy Simulations (section 3). This goes a step
further in terms of fidelity from what is seen in the literature: in the aforementioned RL studies 25,26,27,28, the intelligent controllers are trained and
tested in low-fidelity environments. Conclusions are drawn in section 4.

2 METHODOLOGY
We first present the structure developed to address the IPC challenge in 2.1. The controller training through reinforcement learning is then discussed
in 2.2. The reference controllers against which the reinforcement-learned IPC is compared are eventually presented in 2.3.

2.1 Controller structure
As mentioned in section 1, the individual pitch controller structure is somewhat inspired by animal locomotion. Animal locomotion is enabled
by a hierarchical structure separating central pattern generators present in the spinal chord and generating the low-level rhythmic patterns from
the brain controlling high-level gaits based on the perception of the environment 32. A similar approach can be used for the IPC problem due to
its important once-per-revolution (1P) periodicity. Our control scheme is made of three blocks: a sensing module to provide information on the
turbine state, a neural network reacting to it with high-level signals and oscillators generating low-level periodic signals. The generic IPC of Fig. 1
actually fits within this paradigm: the load transformation is the sensing module, the controller corresponds to the trained neural network and the
command translators are the oscillators.
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FIGURE 2 Reinforcement-learned individual pitch controller.
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2.1.1 Sensing module: load transformation
We present a novel load transformation approach that is based on the decomposition of the flapwise load into two contributions: the load resulting
from the mean flow over the rotor and the azimuthal load oscillation due to the non uniformities in the flow field impacting it. Note that throughout
this discussion, temporal variables will be defined in the discrete time formalism: the index k corresponds to the value of a variable at time t = k∆t,
where ∆t is the control time step. We thus introduce εb,k , the blade-effective load imbalance of blade b at time k, defined as

εb,k = MFnb,k −Mf
k . (1)

MFnb,k is the blade root flapwise bending moment and Mf
k is the filtered value of
Mk =

1

nB

nB∑
b=1

MFnb,k, (2)
with nB is the number of blades. As we consider a three-bladed turbine, the mean flapwise loadMk shows a significant three-times per revolution
(3P) component 4, here we use a notch filter rejecting that 3P frequency. The digital filter transfer function is expressed in the z-domain 33 as

G(z) =
M
f

(z)

M(z)
=
b0 + b1z−1 + b2z−2

1 + a1z−1 + a2z−2
, (3)

leading to the discrete time domain expression of Mf
k when using the inverse z-transform 33:

M
f
k = b0Mk + b1Mk−1 + b2Mk−2 − a1Mf

k−1 − a2M
f
k−2. (4)

The coefficients, recovered from the bilinear transformation of a second-order analog notch filter 33, write
{b0, b1, b2} = {(1 + γ) /2,− (1 + γ) cos (ω0) , (1 + γ) /2}, (5)
{a1, a2} = {(1 + γ) cos (ω0) , γ}, (6)

with ω0 = 2π fc ∆t (fc is the cutting frequency and 1/∆t is the sampling frequency) and γ =
1−tan(BW/2)
1+tan(BW/2)

(BW is the the -3dB bandwidth) 33.
The blade-effective load oscillation εb,k , as the name suggests, is a quantity associated to the blade and is thus observed at the blade azimuthal
position θb,k . This quantity, which is expressed in a rotating frame, can be translated into a fixed-frame quantity. To do so, we consider the disk
swept by the blades and decompose it into nS sectors of equal size ∆θ = 2π/nS . We define the sector-effective load oscillation εs,k as the mean
value of εb,k seen during the passage of any blade b in sector s. To translate from the blade-effective to the sector-effective load oscillation, we
make use of two additional variables: sb,k , the sector through which blade b is passing at time k, andNb, the number of time steps that blade b has
already spent in its current sector. In practice, sector-related information is updated every time a blade leaves a sector following the procedure
described in algorithm 1. The chosen number of sectors in this study in nS = 24, as it offers a fair azimuthal discretisation of the rotor.

Algorithm 1 Algorithm to translate from εb,k to εs,k
M
f
0 = M0 ,M

f
1 = M1, εs,1 = 0 ∀ s, Nb = 1 ∀ b, sb,1 = integer (θb,1/∆θ) ∀ b

while k ≥ 2 and controller is active do
εs,k ← εs,k−1 ∀ s
Mk = 1/nB

∑nB
b=1MFnb,k

M
f
k = b0Mk + b1Mk−1 + b2Mk−2 − a1Mf

k−1 − a2M
f
k−2for b in nB do

εb,k = MFnb,k −Mf
k

sb,k = integer (θb,k/∆θ)
if sb,k 6= sb,k−1 then

s∗ = sb,k−1

εs∗,k ← 1
Nb

∑k−1
κ=k−Nb

εb,κ

Nb ← 1

else
Nb ← Nb + 1

end if
end for

end while
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The presented sensing module stores the loads temporally within sectors to provide an azimuthal representation of the rotor load imbalances
that is updated every time a blade leaves a sector. It is thus recorded information that is used to create a control trajectory, as it is discussed
hereunder. This is slightly different from the the Coleman transform, which uses measured loads and directly transforms them using a matrix
multiplication. Some temporal relaxation, reduced as the number of sectors increases, therefore exists in this sensing module, but it allows to retain
more spatial information than the Coleman transform. Indeed, the latter transforms the loads into a yawing momentMyaw and a tilting oneMtilt.
Mathematically, this amounts to representing the load imbalances as a 2D linear function. Seen from a sector perspective, this is equivalent to
having 3 sectors only. Though this is very well suited to represent shear for example, it is quite limited if one aims at capturing the load imbalances
resulting from complex flows, such as the passage of a gust or a lull, the partial impingement of a wake or the kidney shape of the wake of a
yawed turbine. For all these complex cases, using a transformation such as the one proposed here allows to have a less constrained azimuthal
representation of the oscillating load. This is even more relevant for larger turbines as the size of the structures present in the wind approaches
that of their rotor and larger turbines are specifically the ones that should use IPC due to the increased slenderness and flexibility of their blades.

2.1.2 Neural network: controller
The role of the controller is to bring the εs of every sector s to zero. As the IPC problem has a strong 1P periodicity, we rely on low-level oscillators
that are formally described hereafter to regulate εs. The controller must therefore provide high-level control target, namely the amplitude A and
phase P that will modulate the low-level oscillations. It is a an artificial neural network (NN) that is in charge of mapping the input vector x (mostly
defined as the azimuthally oscillating load) and the output one u = [A,P ]. There are various types of NN; here a standard fully-connected multi-
layer perceptron (MLP) is chosen 34. The control problem in itself consists in finding the weights and biases of the NN that optimally alleviate fatigue
loads. This is done by Reinforcement Learning and is developed in section 2.2.

2.1.3 Oscillators: command translation
What generates the periodic movement of animal motion is central pattern generators 35. They are neural circuits that produce rhythmic motor
patterns. As mentioned before, we rely on mathematical oscillators to produce the pitching patterns, as they mimic the low-level locomotion signals
generated by central pattern generators. For each blade, the individual pitch angle βb is computed as the sum of the collective pitch demand
βCPC and the differential pitch demand ∆βb. The former is determined by the general variable-speed variable-pitch controller, while the latter is
computed as

∆βb = a cos (θb + p) , a cos (ϕb) . (7)
We produce smooth pitching patterns by damping the controller outputs u = [A,P ] into the signals [a, p], where a and p are respectively the
actual amplitude of oscillations and phase shift between the azimuthal position of the blade θb and the phase of the oscillator ϕb. To this end, we
cast a and p as the state variables of second-order systems having respectively A and P as inputs. The dynamics of a and p then obey

1

ω2
n

ä+
2ζ

ωn
ȧ+ a = A and 1

ω2
n

p̈+
2ζ

ωn
ṗ+ p = P . (8)

The natural angular frequency ωn and the damping ratio ζ are determined based on the desired time response of the systems in section 2.2.2.

2.1.4 Discussion
In summary, the control methodology presented here can be synthesized as a NN (controller) defining high-order pitching targets u depending
on the azimuthally-varying environmental conditions sensed through the blade loads (load transformation) and modulating low-level rhythms
accordingly (command translation). Several advantages arise from this IPC formulation. First, the expression of the azimuthally oscillating load offers
a good knowledge of the flow impinging on the rotor. It is not limited to what is instantly sensed by the blades, but presents some memory effect
and each blade contributes to the collective knowledge of the rotor loads imbalance that needs to be reduced. Information sensed by a blade can
be directly leveraged by the controller, which updates its value ofA and P and therefore adapts the pitching trajectory to upcoming loading events.
This transformation maps the rotating blade loads to fixed loads and could also be of use in other contexts. Second, the specific use of oscillators
offers two clear advantages. On the first hand, it ensures very smooth pitching command, as will be shown in the results section. On the other hand,
it translates non rhythmic commands (provided by the policy NN) to rhythmic ones. This allows to maintain a reasonable level of complexity for
the policy by bringing prior knowledge into the learning process, in the fashion of the policies modulating trajectory generators proposed Iscen 36.

2.2 Learning methodology
As mentioned before, the NN controller is trained, i.e. its weights and biases are determined, using Reinforcement Learning, the branch of Machine
Learning that focuses on control applications. The concept of RL consists in an agent interacting with its environment to learn the best way to
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behave as to achieve a goal. It is therefore a bio-inspired way of tackling control problems, as it is not about determining control laws but learning
from interaction in a goal-directed manner 24. It is formalized as finding the most appropriate policy π (a|s), which is a mapping between the state s

of the agent and the action a to take, given a certain objective function J(π) to maximize 24. In this section, we first briefly present the fundamentals
of RL and formalise the IPC problem accordingly. We then present the learning environment and the policy performance evaluation. We eventually
present the testing environment and process.

2.2.1 Reinforcement Learning fundamentals
From the RL perspective, the wind turbine controller is the agent, the environment is the wind turbine itself and the flow surrounding it, and the
policy is expressed by the neural network. The role of the NN is to learn the action al that most reduces the fatigue loads on the blades given the
loads determined by the sensing module. A new action is taken every learning step l based on the state of the system sl.
Two important time intervals are defined in RL: the learning step and the learning episode 24. At each step, the agent receives some representation
of the environment through the state sl, based on what it picks an action al. The agent interacts with the environment given this action, receives
a numerical reward rl+1 = r (sl,al) and ends up in a new state sl+1. A learning episode is a succession of learning steps. When it comes to
continuous control tasks as it is the case here, an episode does not end when a terminal state is reached but after a chosen number of learning steps.
The precise goal of RL is to maximize the objective function J(π) built on the cumulated rewards obtained during an episode. The backpropagation,
in charge of the update of the weights and biases of the NN, is performed at the end of an episode. In this case, the network is trained using an
off-policy model-free Reinforcement Learning algorithm called Soft Actor Critic (SAC) 37. SAC is part of maximum entropy Reinforcement Learning
methods, which consider an entropy-augmented objective function

J(π) = Eπ

[∑
l

r (sl,al)− ξ log (π (al|sl))
]
, (9)

with ξ the non-negative entropy parameter. In such framework, the objective J(π) can be viewed as a way to insure the trade-off between
exploitation of proven actions, through return maximization (first term of Eq. 9), and exploration of new ones, through entropy maximization (second
term of Eq. 9) 37. SAC shows great sample efficiency, meaning that it makes the most of each learning episode so as to reduce the number of
episodes needed to learn a policy. It also shows little sensitivity to hyperparameters, which avoids massive parameters tuning. The aforementioned
characteristics make SAC one of the most efficient algorithms available these days 37. We use here the open-source SAC implementation of Stable
Baselines 38, a fork of Open AI baselines. The policy NN is a fully-connected multilayer perceptron built from TensorFlow 39.

2.2.2 IPC problem definition in the RL formalism
In the present context, the action is defined as al = [A,P ], namely the amplitude and the phase shift of the oscillators. It corresponds to u in
the controller framework from Fig. 2. The output layer of the NN thus comprises two neurons. Regarding the state definition, the key information
to be provided consists in the azimuthally oscillating load εs(l). However, it does not unequivocally define the state and it should therefore be
supplemented with the effective amplitude a and phase p of the pitch oscillations, as well as the rotation speed ω of the turbine and the collective
pitch angle command βCPC . Eventually, the learning state is defined as s = [ε1, ..., εnS , ω, βCPC , a, p]

1 and corresponds to the input layer of the
neural network, i.e. to the vector x when referring to Fig. 1. The NN input layer is thus made of nS+4 neurons. Three hidden layers, comprising 128
neurons each, are present between the input and output layers. All neurons are perceptrons relying on an activation function y = fa(s) applied
to the weighted sum s of their inputs and bias to generate their output y. The activation function is the Rectified Linear Unit or ReLU for short
(y = max(0, s)) for the input and inner layers and hyperbolic tangent (y = tanh(s)) for the output layer to enable negative outputs of the NN.
The reward associated to each action is computed as

r (sl,al) = k1 exp

(
−k2

1

nS

nS∑
s=1

|εs,l|
)
, (10)

where k1 [-] and k2 [Nm]−1 are two coefficients. We here consider the 1-norm of εs,l, yet higher order norms could be envisioned to further
penalize high loads imbalances. During the training process, an action is taken for every rotation of the turbine, i.e. the learning step index l
corresponds to the instant t = l Trot, while a learning episode corresponds to 20 steps or rotations. It is important to highlight that two control
time scales are thus at stake when learning. On the one hand, the variable-speed variable-pitch commands (βCPC and the generator torqueQgen)
and the internal variables a and p of the oscillators are updated every control time step k having a duration ∆t = O(Trot/100). On the other hand,
the target amplitudeA and phase P , which are the inputs to second-order systems describing the evolution of a and p, are updated every learning

1In the previous investigations by the authors 31, the state vector did not include the sector-effective load oscillation ε, but rather a sector-effectiveinfinite upstream velocity. The latter was estimated from the blade loads in the fashion of 40. The direct use of blade loads at a sector level was expected toreduce the uncertainties and delays associated to estimations.
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step l of duration Trot. Indeed, during the training process, these actions should be maintained during a rotation period to enable the observation
of their effect on the loads and compute a meaningful reward.
The natural angular frequency ωn and the damping ratio ζ of the second-order systems ruling the evolution of a and p (Eq. 8) are determined
from the desired time response of these systems. The picked actions A and P are seen, from a control point of view, as step function input. For
stability concerns, we desire to strictly avoid oscillations in the step response and therefore opt for critically-damped systems with ζ = 1. The
value of ωn is chosen so as to obtain a specific settling time ts (time after which the system has reached 99.9% of the step value) O(Trot/4),
i.e. the step value should be reached within a quarter of rotation. We recall that the step response of a critically-damped system is given by
y(t) = Y (1−exp(−ωnt)(1+ωnt)), where y stands for a or p and Y stands forA or P 41. Solving the step response equation with y(ts) = 0.999Y

leads to ωnts = 9.2. The natural angular frequency is thus chosen as ωn = 4×9.2
Trot

= 4×9.2
2π

ωrot, where ωrot is the nominal turbine rotation speed.

2.2.3 Learning environment
As RL consists in learning by interacting with the environment, it is necessary to provide the environment that will react to the actions tried during
the learning process. Training a model requires numerous learning episodes, so simple models of both the flow and the turbine are needed for the
sake of computational affordability. First, the flow generator is low-fidelity and turbulent effects are not considered. The key wind characteristic
that generates fatigue on the blades is the shear of the atmospheric boundary layer. The latter is modelled with the following exponential law

U(y)

Uhub
=

(
y

Hhub

)α
, (11)

where y is the vertical elevation from the ground, Hhub and Uhub are the hub height and velocity respectively and α is the shear coefficient.
A reference velocity is randomly chosen in the working range of the wind turbine every 500 steps and Uhub periodically oscillates around that
reference velocity. The same process is applied to the shear coefficientα. In order to reproduce the wake impingement effect, Porte-Agel’s model for
the wake deficit 42 is used. The wake deficit is superimposed onto the shear law and its intensity varies with Uhub. The position of the turbine from
which the wake originates is randomly chosen every 500 steps. The environment is made more dynamic by taking into account pseudo-meandering
of the wake deficit through a horizontal sine motion of the wake center (zWCL). The amplitude and frequency of that pseudo-meandering are
based on the statistical values obtained from the stochastic motion of real meandering 43. The synthetic flow generated thus consists in a sheared
flow, with varying shear intensity and mean velocity, supplemented by a periodically meandering wake whose origin can vary. As far as the turbine
is concerned, we make use of a modified Blade Element Momentum theory (BEM) that accounts for the effects of shear and individual pitch
angles 44. This basic model of the physics enables an efficient learning by the system with reasonable computational and data storage costs.

2.2.4 Policy evaluation using damage equivalent loads
Policy evaluation or analysis of the cumulated reward is commonly used to monitor the learning evolution. In addition to it, we also used a more
physical criterion, easing the performance comparison with other control schemes. The resulting load alleviation capacities of the trained network
is quantified in terms of fatigue reduction. A quantitative fatigue indicator is the damage equivalent load (DEL) 45 and is built as follows. The damage
D perceived by a component submitted to a varying moment M(t) over a finite time period T is given by Palmgren-Miner’s rule

D =

n∑
i=0

nc,i

NF,i
, (12)

where n is the number of range stress classes, nc,i is the number of cycles for each range stress class according to the rainflow algorithm andNF,i
is the number of cycles to failure for each range stress class. The damage equivalent load is the sinusoidal load Ma,eq at frequency feq and thus
showing nc,eq = feq T cycles over the period T whose damage D =

nc,eq

NF,eq
would be equivalent to that of the signal of interest. Using the S-N

relation (also known as the Wohler’s curve) for the particular material and assuming that the moment is proportional to the stress, we obtain that
NF,i = kM−ma,i and NF,eq = kM−ma,eq , with k and m being material properties. Eventually, the DEL is expressed as

DELM = Ma,eq =

(
n∑
i=0

nc,iM
m
a,i

nc,eq

)1/m

, (13)
where NF,eq is the number of equivalent cycles. We choose it such that the equivalent loading frequency is the turbine rotation frequency. The
m exponent depends on the material and thus on the studied component.
During the learning process, intermediate validation helps evaluate the neural network and verify whether its performances start degrading at
some point, i.e. if it starts overfitting. The policy is therefore evaluated every 500 learning steps on 10 reference inflow cases using the same
BEM-coupled synthetic flow generator as the one used for training. We eventually keep the intermediate policy that offers the best results in
terms of blade flapwise DEL. This process of permanent evaluation and best policy selection is a regularization method called early stopping 46.
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2.2.5 Real conditions testing
Once the best policy NN is selected thanks to early stopping, the biomimetic IPC framework is deployed within Large Eddy Simulations (LES).
Indeed, properly assessing the controller performances requires a higher fidelity representation of the flow physics and the loads generation. The
LES are performed by means of a Vortex Particle-Mesh method (VPM) 47 in which the blades are modelled by immersed lifting lines 48, coupled to
the multi-body-system solver ROBOTRAN in charge of the dynamics of the turbine 49. Turbulence is injected at the inflow using Mann boxes 50. The
analytical exponential shear law from Eq. 11 is translated into vorticity so as to account for wind shear and comply with the vorticity formulation
of the Navier-Stokes equations.
The RL-IPC control time scales are slightly adapted when the training is over, as all control-related variables (βCPC , Qgen, A, P , a and p) are
updated every control time step k of duration ∆t = O(Trot/100). It is indeed not relevant any more, when deploying the controller, to update the
actions only once per rotation as during the training process, as it would lead to a lack of real time response to the flow sensing. This means that,
every time a blade leaves a sector the updated sector-effective load oscillations are utilized for controller action.

2.3 Reference controllers for comparison
Two reference controllers will be used for comparison: one without IPC and one with a standard IPC scheme. The reference controller without IPC,
which will further be referred to as CPC, for Collective Pitch Controller, is a classical implementation of a variable-speed, variable-pitch controller 51.
It relies on a generator-torque controller, maximizing the power captured below the rated wind speed, and a collective blade pitch controller,
maintaining nominal power production above the rated wind speed.
The chosen reference IPC controller is based on the Coleman transform and will further be referred to as CT-IPC. It applies to three-bladed wind
turbines and consists in projecting the blade loads on the fixed coordinate frame of the rotor disc as follows[

Mtilt,k
Myaw,k

]
=

[
2
3

cos θk
2
3

cos
(
θk − 2π

3

)
2
3

cos
(
θk + 2π

3

)
2
3

sin θk
2
3

sin
(
θk − 2π

3

)
2
3

sin
(
θk + 2π

3

) ]

MFn1,k

MFn2,k

MFn3,k

 . (14)

Given the azimuthal position θ of the first blade, defined from the vertical upward direction, the flapwise bending moments are mapped to a tilting
moment Mtilt and a yawing moment Myaw. As commonly done in the literature 4,52, the 3P component of these moments is eliminated thanks to a
notch filter. The control state, as defined in Fig. 1, writes x =

[
Mftilt,Mfyaw

]. A proportional integral controller is chosen to bring the tilt and yaw
moment to zero (xref = [0, 0]) 4. The control-space command vector consists in the tilt and yaw pitch angles u = [βtilt, βyaw]. The command
vector is projected back on the blades rotating coordinate frame by means of the inverse Coleman transform

∆β1,k

∆β2,k

∆β3,k

 =


cos θk sin θk

cos
(
θk − 2π

3

)
sin
(
θk − 2π

3

)
cos
(
θk + 2π

3

)
sin
(
θk + 2π

3

)

[
βtilt,k
βyaw,k

]
, (15)

thus giving the expression of the differential individual pitch angles ∆β1,2,3 to be added to the collective pitch angle βCPC 4 to obtain the individual
pitch angles β1,2,3.

3 RESULTS
This section first presents the training results in terms of environment sampling and learning convergence. The performances of RL-IPC are then
verified for a single wind turbine in turbulent conditions using LES. Eventually, RL-IPC is tested in more complex cases resulting from a pair of
in-line wind turbines. The simulated turbine is the NREL-5MW reference wind turbine 51. The response of the pitch actuator from demanded to
achieved pitch angular position is decisive in terms of load alleviation. The pitch actuator is therefore modelled as a second-order transfer function
as in Bossanyi 4 with a natural frequency of 2 Hz and a damping factor of 0.8.

3.1 Training
3.1.1 Environment sampling and exploration
The low-fidelity environment used for training relies on varying three parameters that define the waked flow impinging on a downstream wind
turbine: the velocity at hub height, the shear coefficient and the lateral distance between the wake center line, zWCL, and the downstream wind
turbine center, zWT . The bounds of the accepted values are presented in Fig. 3, along with the percentage of occurrence of the values during the
learning process. It shows that the flow generator achieves a wide sweeping of the environment.
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FIGURE 3 Sampling of the low-�delity environment during training: percentage of occurrence of each �ow parameter.

Fig. 4 displays the distribution of the actions taken during the training process, those show a good exploration-exploitation trade-o�. Indeed,
as the shear is the dominant e�ect on the rotor load imbalance, one could expect to have the phase of the pitch oscillations centered on zero,
which means maximum pitch at the uppermost blade position and minimum pitch at the lowest one. It is positive to see that the agent mostly
picks phases around zero but still explores other possibilities. Also, the amplitude of the pitch oscillations are mainly chosen between 0o and 2o,
yet higher amplitudes are explored.
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FIGURE 4 Exploration of the action space: percentage of time an action was taken.

3.1.2 Learning convergence
In order to assess the learning convergence, 20 instances of the learning process are launched using these hyperparameters. For each of them, the
neural network performances are evaluated on 10 reference in�ow cases while the learning process is running, as mentioned in section 2.2. More
precisely, the NN is evaluated every 500 learning steps, through the mean reward (r) received during these 500 steps and the damage equivalent
�apwise bending moment (DELMFn) associated to that time window. The mean reward is an intrinsic learning quantity, while the damage is a
post-processed quantity that is physically relevant. At every evaluation, both quantities are averaged over the 10 in�ows and over the 20 learning
instances. The results are reported in Fig. 5 with and without the use of layer normalization. Layer normalization is a technique inherited from batch
normalization, which is known to avoid over�tting, increase generalization and also reduce the training time 34. Fig. 5 indeed shows that using layer
normalization accelerates the reward convergence but also helps converging to a slightly higher value. This impact is not as obvious in terms of the
post-process DELMFn. From all the intermediate policies that have been evaluated, we eventually keep the layer-normalized one that presents
the lowest DELMFn, in the fashion of early stopping 46, and deploy it in the high-�delity simulations.

FIGURE 3 Sampling of the low-fidelity environment during training: percentage of occurrence of each flow parameter.

Fig. 4 displays the distribution of the actions taken during the training process, those show a good exploration-exploitation trade-off. Indeed, as
the shear is the dominant effect on the rotor load imbalance, one could expect to have the phase of the pitch oscillations centered on zero, which
means maximum pitch at the uppermost blade position and minimum pitch at the lowest one. It is positive to see that the agent mostly picks
phases around zero but still explores other possibilities. Also, the amplitude of the pitch oscillations are mainly chosen between 0o and 2o, yet
higher amplitudes are explored.
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3.1.2 Learning convergence
In order to assess the learning convergence, 20 instances of the learning process are launched using these hyperparameters. For each of them, the
neural network performances are evaluated on 10 reference in�ow cases while the learning process is running, as mentioned in section 2.2. More
precisely, the NN is evaluated every 500 learning steps, through the mean reward (r) received during these 500 steps and the damage equivalent
�apwise bending moment (DELMFn) associated to that time window. The mean reward is an intrinsic learning quantity, while the damage is a
post-processed quantity that is physically relevant. At every evaluation, both quantities are averaged over the 10 in�ows and over the 20 learning
instances. The results are reported in Fig. 5 with and without the use of layer normalization. Layer normalization is a technique inherited from batch
normalization, which is known to avoid over�tting, increase generalization and also reduce the training time 34. Fig. 5 indeed shows that using layer
normalization accelerates the reward convergence but also helps converging to a slightly higher value. This impact is not as obvious in terms of the
post-process DELMFn. From all the intermediate policies that have been evaluated, we eventually keep the layer-normalized one that presents
the lowest DELMFn, in the fashion of early stopping 46, and deploy it in the high-�delity simulations.
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3.1.2 Learning convergence
In order to assess the learning convergence, 20 instances of the learning process are launched using these hyperparameters. For each of them, the
neural network performances are evaluated on 10 reference inflow cases while the learning process is running, as mentioned in section 2.2. More
precisely, the NN is evaluated every 500 learning steps, through the mean reward (r) received during these 500 steps and the damage equivalent
flapwise bending moment (DELMFn) associated to that time window. The mean reward is an intrinsic learning quantity, while the damage is a
post-processed quantity that is physically relevant. At every evaluation, both quantities are averaged over the 10 inflows and over the 20 learning
instances. The results are reported in Fig. 5 with and without the use of layer normalization. Layer normalization is a technique inherited from batch
normalization, which is known to avoid overfitting, increase generalization and also reduce the training time 34. Fig. 5 indeed shows that using layer
normalization accelerates the reward convergence but also helps converging to a slightly higher value. This impact is not as obvious in terms of the
post-process DELMFn. From all the intermediate policies that have been evaluated, we eventually keep the layer-normalized one that presents
the lowest DELMFn, in the fashion of early stopping 46, and deploy it in the high-fidelity simulations.
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FIGURE 5 Mean evolution of the step reward r and of the DELMFn normalized by the CPC DELMFn over the course of learning, with ( )
and without ( ) layer normalization.

3.2 Calibration and validation of the reference IPC controller
For the sake of reproducibility, we here document the calibration of the implemented Coleman transform-based individual pitch controller and
its validation against literature results. The notch �lter for the tilting and yawing moments relies on the same expression as Eq. 3, with � = 0.6.
The controller gains are tuned so as to maintain reasonable pitch demands and to match load reductions reported in the literature, leading to
KP = 6⇥ 10�9 rad/Nm and KI = 1⇥ 10�9 rad/(Nm s). The controller as such yielded a reduction of 19% of �apwise DEL for the NREL 5MW
at 15 m/s under a turbulence intensity level of 19%. Chen 53 reported 16% fatigue load reduction in the same conditions and for the same turbine,
while Bossanyi 52 reported 15% �apwise DEL reduction for a 2 MW wind turbine operated at 12 m/s (above-rated wind speed) under a turbulence
intensity level of 19% too. Our results are, if a bit optimistic, close to the performances reported in the literature, the implemented controller can
thus reasonably be used as reference IPC controller.

3.3 Testing with LES of a single wind turbine
The purpose here is to investigate the ability of RL-IPC to exploit the knowledge acquired in the low-�delity non turbulent environment to realistic
wind conditions. The LES set-up is shown in Fig. 6.

xy

z

FIGURE 6 Numerical set-up: 8D ⇥ 3D ⇥ 4D domain, with the turbine located 2D downstream the inlet at hub height Hhub = 90 m. The mesh
is isotropic with a mesh size h such that D/h = 32, yielding 256 ⇥ 96 ⇥ 128 = 3.1 ⇥ 106 points. Boundary conditions are in�ow-out�ow in the
streamwise direction, no-through �ow in the vertical direction and periodic in the spanwise direction.

FIGURE 5 Mean evolution of the step reward r and of the DELMFn normalized by the CPC DELMFn over the course of learning, with ( )
and without ( ) layer normalization.

3.2 Calibration and validation of the reference IPC controller
For the sake of reproducibility, we here document the calibration of the implemented Coleman transform-based individual pitch controller and
its validation against literature results. The notch filter for the tilting and yawing moments relies on the same expression as Eq. 3, with γ = 0.6.
The controller gains are tuned so as to maintain reasonable pitch demands and to match load reductions reported in the literature, leading to
KP = 6× 10−9 rad/Nm and KI = 1× 10−9 rad/(Nm s). The controller as such yielded a reduction of 19% of flapwise DEL for the NREL 5MW
at 15 m/s under a turbulence intensity level of 19%. Chen 53 reported 16% fatigue load reduction in the same conditions and for the same turbine,
while Bossanyi 52 reported 15% flapwise DEL reduction for a 2 MW wind turbine operated at 12 m/s (above-rated wind speed) under a turbulence
intensity level of 19% too. Our results are, if a bit optimistic, close to the performances reported in the literature, the implemented controller can
thus reasonably be used as reference IPC controller.

3.3 Testing with LES of a single wind turbine
The purpose here is to investigate the ability of RL-IPC to exploit the knowledge acquired in the low-fidelity non turbulent environment to realistic
wind conditions. The LES set-up is shown in Fig. 6. As IPC is typically used in region 3 of control, i.e. at above-rated wind speeds 54, we consider
two mean wind speeds: one in region 3 (Uhub = 15 m/s) and the other one at the end of region 2 (Uhub = 10 m/s). Indeed, the wind speed can
temporarily exceed the rated one due to turbulence and the turbine is therefore operating in region 3. For the sake of investigation, we maintain
IPC active even in region 2, though this is subject to discussion in the literature 55.

xy

z

FIGURE 6 Numerical set-up: 8D × 3D × 4D domain, with the turbine located 2D downstream the inlet at hub height Hhub = 90 m. The mesh
is isotropic with a mesh size h such that D/h = 32, yielding 256 × 96 × 128 = 3.1 × 106 points. Boundary conditions are inflow-outflow in the
streamwise direction, no-through flow in the vertical direction and periodic in the spanwise direction.
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We quantify the performances of RL-IPC under four turbulence intensity levels (TI): 0%, 6%, 10%, 14%. The shear exponent α defined in Eq. 11 is
set to 0.2 as recommended by the IEC standards 56. As it is common for fatigue computations, statistics are computed over 10-minute flow samples
(equivalent to 48D/U for Uhub = 10 m/s and to 72D/U for Uhub = 15 m/s), which corresponds to the period of the Mann boxes used for the
injection of turbulence.

3.3.1 Fatigue
Figure 7 shows the flapwise DEL at the two considered wind speeds for the different TIs. Comparison is made between CPC, CT-IPC and RL-IPC.
The coefficient m used for the computation of DEL in Eq. 13 is set to 10 as blades are supposed to be made of glass fiber 51,4. First, comparing
RL-IPC and CT-IPC shows that they yield similar load reductions at low and moderate TIs. This means that the RL-IPC formulation is robust enough
for the NN to be able to generalize what it has learned on sheared inflows to cases with turbulence on top of it. While the generalization holds
for high TI (i.e. 14%), it is not good enough to compete with CT-IPC. Second, the fatigue loads evolution with respect to the turbulence intensity
and the impact that IPC can have, whether RL or CT, calls for a discussion. The DEL increases almost linearly with the TI and IPC cuts the same
absolute part of the DEL, whatever the TI (about 0.8 MNm for Uhub = 10 m/s and 1 MNm for Uhub = 15 m/s). This is in agreement with the
results presented in Bergami 57, where the load variations are split into deterministic and stochastic contributions. The deterministic part of the
DEL, mainly generated by the atmospheric shear, is the one that is efficiently tackled by feedback controllers like CT-IPC and RL-IPC. When the TI
increases, the stochastic part of the load variations, and hence of the DEL, increases, yet both IPCs have a hard time dealing with these additional
fatigue loads. Several contributions in the literature have addressed the challenge of alleviating non-deterministic loads, like Kallen et al. 21 and
Bottasso et al. 58, by explicitly designing the controller with two layers: one in charge of the periodical loads and the other focusing on the stochastic
ones typically resulting from turbulence. Though the RL-IPC controller does not have such a two-layer architecture, it can detect gusts through
the sensing module and directly react to them by adapting the pitching amplitude and phase of the blades. The decreasing performances at high
turbulence levels show the limits of this ability to adapt quickly to stochastic structures. We identify three possible causes for this: (1) the sensing
module does not react fast enough, (2) the NN was trained without turbulence and can only extend to moderate TI levels, (3) the action space is
too constrained as it is limited to one common amplitude and phase for all three blades.
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As IPC is typically used in region 3 of control, i.e. at above-rated wind speeds 54, we consider two mean wind speeds: one in region 3 (Uhub =

15 m/s) and the other one at the end of region 2 (Uhub = 10 m/s). Indeed, the wind speed can temporarily exceed the rated one due to turbulence
and the turbine is therefore operating in region 3. For the sake of investigation, we maintain IPC active even in region 2, though this is subject to
discussion in the literature 55.We quantify the performances of RL-IPC under four turbulence intensity levels (TI): 0%, 6%, 10%, 14%. The shear
exponent ↵ de�ned in Eq. 11 is set to 0.2 as recommended by the IEC standards 56. As it is common for fatigue computations, statistics are
computed over 10-minute �ow samples (equivalent to 48D/U for Uhub = 10 m/s and to 72D/U for Uhub = 15 m/s), which corresponds to the
period of the Mann boxes used for the injection of turbulence.

3.3.1 Fatigue
Figure 7 shows the �apwise DEL at the two considered wind speeds for the di�erent TIs. Comparison is made between CPC, CT-IPC and RL-IPC.
The coe�cient m used for the computation of DEL in Eq. 13 is set to 10 as blades are supposed to be made of glass �ber 51,4.
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FIGURE 7 Flapwise DEL normalized by the CPC DELMFn at TI = 0% (CPC ( ), CT-IPC ( ), RL-IPC ( )).

First, the fatigue loads evolution with respect to the turbulence intensity and the impact that IPC, whether RL or CT, can have calls for a
discussion. The DEL increases almost linearly with the TI and IPC cuts the same absolute part of the DEL, whatever the TI (about 0.8 MNm for
Uhub = 10 m/s and 1 MNm for Uhub = 15 m/s). This is in agreement with the results presented in Bergami 57, where the load variations are split
into deterministic and stochastic contributions. The deterministic part of the DEL, mainly generated by the atmospheric shear, is the one that is
e�ciently tackled by feedback controllers like CT-IPC and RL-IPC. When the TI increases, the stochastic part of the load variations, and hence of
the DEL, increases, yet feedback IPCs have a hard time dealing with these additional fatigue loads. Second, comparing RL-IPC and CT-IPC shows
that they yield similar load reductions at low and moderate TIs. This means that the RL-IPC formulation is robust enough for the NN to be able to
generalize what it has learned on sheared in�ows to cases with turbulence on top of it. While the generalization holds for high TI (i.e. 14%), it is
not good enough to compete with CT-IPC.

3.3.2 Power production
The impact of IPC on power production is presented in Fig. 8. At under-rated wind speed (here Uhub = 10 m/s, Fig. 8(a)), using IPC is slightly
penalizing in terms of power production, with a few percent loss. At above-rated wind speed (here Uhub = 15 m/s, Fig. 8(b)), IPC has no signi�cant
e�ect on the power production. Indeed, IPC changes the operating conditions of the airfoils to reduce the �apwise loads oscillations. This implies a
much reduced loading in the top part of the rotor and a highly increased one on in its bottom part. This does not necessarily translate in proportional
reduction for edgewise moments. Hence, the reduction of edgewise bending moment at the top is not totally compensated by its increase at the
bottom. In the above-rated region, the controller compensates this small loss of aerodynamic performance by slightly reducing the collective pitch
component (see Fig. 9(b)). This can unfortunately not be done at under-rated wind speeds as, when the turbine is operated at CPC, the collective
pitch is already at its minimal value of zero. This explains the small power losses in the under-rated region, which were also observed in 54, both
numerically and experimentally. Also, at under-rated wind speeds, the power production of the turbine somewhat increases with the TI, getting
closer to the nominal power production. The detrimental e�ect of IPC on power production is therefore lower when TI increases as shown in
Fig. 8(a). RL-IPC degrades the power production by about 1% more than CT-IPC does.

FIGURE 7 Flapwise DEL normalized by the CPC DELMFn at TI = 0%: CPC ( ), CT-IPC ( ), RL-IPC ( ).

3.3.2 Power production
The impact of IPC on power production is presented in Fig. 8. At under-rated wind speed (here Uhub = 10 m/s, Fig. 8(a)), using IPC is slightly
penalizing in terms of power production, with a few percent loss. At above-rated wind speed (here Uhub = 15 m/s, Fig. 8(b)), IPC has no significant
effect on the power production. Indeed, IPC changes the operating conditions of the airfoils to reduce the flapwise loads oscillations. This implies a
much reduced loading in the top part of the rotor and a highly increased one on in its bottom part. This does not necessarily translate in proportional
reduction for edgewise moments. Hence, the reduction of edgewise bending moment at the top is not totally compensated by its increase at the
bottom. In the above-rated region, the controller compensates this small loss of aerodynamic performance by slightly reducing the collective pitch
component (see Fig. 9(b)). This can unfortunately not be done at under-rated wind speeds as, when the turbine is operated at CPC, the collective
pitch is already at its minimal value of zero. This explains the small power losses in the under-rated region, which were also observed in 54, both
numerically and experimentally. Also, at under-rated wind speeds, the power production of the turbine somewhat increases with the TI, getting
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closer to the nominal power production. The detrimental effect of IPC on power production is therefore lower when TI increases as shown in
Fig. 8(a). RL-IPC degrades the power production by about 1% more than CT-IPC does.12 COQUELET et al
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FIGURE 8 Power production normalized by the wind turbine rated power (CT-IPC ( ), RL-IPC ( )).

3.3.3 Blade loads and pitch signals
Further analysis on the loads is performed for the case at Uhub = 15 m/s and TI = 10%. First, the temporal evolution of the �apwise bending
moment on the �rst blade (MFn1) as well as its pitch angle position (�1), rate (d�1/dt) and acceleration (d2�1/dt2) are shown in Fig. 9 for
the three controllers. While RL-IPC and CT-IPC produce pitch oscillations with similar phases and amplitudes, they result in quite di�erent rates
and accelerations. This shows that, as expected, the RL-IPC framework intrinsically leads to reduced pitching rates and accelerations. This is not
negligible as it is known among IPC researchers that a too demanding pitch activity may lead to an acceleration in wear and tear of the pitch
actuators.
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(b) First blade pitch angle (solid line) and collective pitch component(dashed line).
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(c) First blade pitch angle rate.
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(d) First blade pitch angle acceleration.

FIGURE 9 Temporal evolutions of loads and pitch angle value, rate and acceleration for the case Uhub = 15 m/s and TI = 10%: CPC ( ),
CT-IPC ( ), RL-IPC ( ). Time is made dimensionless with respect to the turbine rotation period Trot.

FIGURE 8 Power production normalized by the wind turbine rated power: CT-IPC ( ), RL-IPC ( ).

3.3.3 Blade loads and pitch signals
Further analysis on the loads is performed for the case at Uhub = 15 m/s and TI = 10%. First, the temporal evolution of the flapwise bending
moment on the first blade (MFn1) as well as its pitch angle position (β1), rate (dβ1/dt) and acceleration (d2β1/dt2) are shown in Fig. 9 for the three
controllers. While RL-IPC and CT-IPC produce pitch oscillations with similar phases and amplitudes, they result in quite different rates and accel-
erations. This shows that, as expected, the RL-IPC framework intrinsically leads to reduced pitching rates and accelerations. This is not negligible
as it is known among IPC researchers that a too demanding pitch activity may lead to an acceleration in wear and tear of the pitch actuators.
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FIGURE 8 Power production normalized by the wind turbine rated power (CT-IPC ( ), RL-IPC ( )).

3.3.3 Blade loads and pitch signals
Further analysis on the loads is performed for the case at Uhub = 15 m/s and TI = 10%. First, the temporal evolution of the �apwise bending
moment on the �rst blade (MFn1) as well as its pitch angle position (�1), rate (d�1/dt) and acceleration (d2�1/dt2) are shown in Fig. 9 for
the three controllers. While RL-IPC and CT-IPC produce pitch oscillations with similar phases and amplitudes, they result in quite di�erent rates
and accelerations. This shows that, as expected, the RL-IPC framework intrinsically leads to reduced pitching rates and accelerations. This is not
negligible as it is known among IPC researchers that a too demanding pitch activity may lead to an acceleration in wear and tear of the pitch
actuators.
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(b) First blade pitch angle (solid line) and collective pitch component(dashed line).
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(c) First blade pitch angle rate.
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(d) First blade pitch angle acceleration.

FIGURE 9 Temporal evolutions of loads and pitch angle value, rate and acceleration for the case Uhub = 15 m/s and TI = 10%: CPC ( ),
CT-IPC ( ), RL-IPC ( ). Time is made dimensionless with respect to the turbine rotation period Trot.
FIGURE 9 Temporal evolutions of loads and pitch angle value, rate and acceleration for the case Uhub = 15 m/s and TI = 10%: CPC ( ),
CT-IPC ( ), RL-IPC ( ). Time is made dimensionless with respect to the turbine rotation period Trot.
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Signals are also studied from the frequency domain perspective in Fig. 10. It is interesting to notice that the frequency content of the loads reflects
the pitch angles frequency content. IPC mainly acts on the 1P frequency and the loads spectrum is close to unchanged from the CPC case after 1.5P.
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Signals are also studied from the frequency domain perspective in Fig. 10. It is interesting to notice that the frequency content of the loads

re�ects the pitch angles frequency content. IPC mainly acts on the 1P frequency, and the loads spectrum is close to unchanged from the CPC case
after 1.5P.
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(b) Flapwise bending moment.

FIGURE 10 Frequency analysis of pitch and loads for the case Uhub = 15 m/s and TI = 10%: CPC ( ), CT-IPC ( ), RL-IPC ( ).
Signals are averaged over the three blades and made dimensionless with the amplitude of the FFT for the CPC case at the rotation frequency frot.

3.4 Testing with LES of a pair of in-line wind turbines
Let us now assess RL-IPC in waked conditions. To this end, we consider a pair of in-line wind turbines for which the wind conditions are chosen as
follows. First, the shear coe�cient is high enough to generate large 1P oscillations on the turbine blades and the turbine operates at above-rated
wind speed. Second, we wish to have a signi�cant impact of the upstream turbine wake on the downstream turbine. This implies (1) a strong wake
de�cit and hence the high thrust coe�cient encountered at the lower wind speeds of region 3, and (2) limited wake recovery met in moderate TI,
leading to small wake meandering and remixing. We therefore set Uhub = 12 m/s, TI = 6% and ↵ = 0.2, these conditions are close to the IEC
standards for o�shore wind turbines 56.
We study two con�gurations of a pair of turbines spaced by 6D in the streamwise direction and aligned in the transverse direction. In the �rst
con�guration, the two turbines are aligned with the wind direction. In the second one, the upstream turbine is statically yawed, with a yaw angle of
20o, in order to steer its wake from the downstream turbine for power maximization. Fig. 11 shows the temporally-averaged streamwise velocity
�eld of the two con�gurations; those give rise to four turbine-speci�c situations: (1) the reference case of a �rst-row aligned turbine, (2) a �rst-row
yawed wind turbine, (3) a totally waked wind turbine subjected to the meandering phenomenon and (4) a wind turbine facing a partially-impinging
and meandering wake. Henceforth, these four situations will respectively be referred to as freestream aligned, freestream yawed, fully waked and
partially waked, as in Fig. 11.

Here again, statistics are computed over 10-minute �ow samples corresponding to the Mann �ow-through time. The same pitching strategy is
always applied to the two in-line turbines, whether it is CPC, CT-IPC or RL-IPC.

3.4.1 Power production
The power production of the CPC-controlled turbines exhibits an expected behaviour (see Fig. 12). Both upstream turbines produce the nominal
power as the velocity component normal to the rotor is superior to the nominal wind speed whether the turbine is yawed or not. In both con�g-
urations, the downstream turbine produces less power, as it undergoes the wake de�cit of its upstream counter part. However, the power is less
reduced when the upstream turbine is yawed, as only part of the wake impinges on the rotor. In terms of power losses due to IPC, the same remarks
as in the previous section can be made: no impact for the upstream turbines as they operate at above-rated wind speed and slight reduction for
the downstream ones as they operate at under-rated wind speeds due to the wake impingement.

FIGURE 10 Frequency analysis of pitch and loads for the case Uhub = 15 m/s and TI = 10%: CPC ( ), CT-IPC ( ), RL-IPC ( ).
Signals are averaged over the three blades and made dimensionless with the amplitude of the FFT for the CPC case at the rotation frequency frot.

3.4 Testing with LES of a pair of in-line wind turbines
Let us now assess RL-IPC in waked conditions. To this end, we consider a pair of in-line wind turbines for which the wind conditions are chosen as
follows. First, the shear coefficient is high enough to generate large 1P oscillations on the turbine blades and the turbine operates at above-rated
wind speed. Second, we wish to have a significant impact of the upstream turbine wake on the downstream turbine.14 COQUELET et al
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(a) First con�guration: both turbines are aligned with the �ow.
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(b) Second con�guration: the upstream turbine is misaligned as to steer its wake from the downstream one.

FIGURE 11 Time-averaged streamwise velocity �eld for the two con�gurations of a pair of in-line turbines. The domain is 14D ⇥ 3D ⇥ 4D, with
the turbines located 2D and 8D away from the inlet respectively. The resolution is such that D/h = 32, leading to a total of 5.5⇥ 106 particles.
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FIGURE 12 Power production normalized by the wind turbine rated power, for the cases Uhub = 12 m/s and TI = 6% for the four turbines:
CPC ( ), CT-IPC ( ), RL-IPC ( ).

3.4.2 Blade loads
The �apwise DELs are reported in Fig.13. The freestream aligned turbine follows the same trend as the results presented for the isolated turbines.
The freestream yawed turbine yields two comments. On the one hand, even when CPC only is applied, the chosen yaw misalignment reduces
the DEL. This result is also obtained in 54: it depends on the combination of the direction of yaw rotation and the direction of blade rotation and
�nds an explanation in velocity triangles. Indeed, the vertical gradient of velocity due to shear is partially compensated by the upstream velocity
component parallel to the yawed rotor, resulting is smaller oscillations of the angle of attack, and thus of the loads, over one rotation. Yawing the
turbine in the other direction would have led to a DEL increase. On the other hand, RL-IPC demonstrates its ability to alleviate fatigue loads on

FIGURE 11 Time-averaged streamwise velocity field for the two configurations of a pair of in-line turbines. The domain is 14D × 3D × 4D, with
the turbines located 2D and 8D away from the inlet respectively. The resolution is such that D/h = 32, leading to a total of 5.5× 106 particles.
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This implies (1) a strong wake deficit and hence the high thrust coefficient encountered at the lower wind speeds of region 3, and (2) limited wake
recovery met in moderate TI, leading to small wake meandering and remixing. We therefore set Uhub = 12 m/s, TI = 6% and α = 0.2, these
conditions are close to the IEC standards for offshore wind turbines 56.
We study two configurations of a pair of turbines spaced by 6D in the streamwise direction and aligned in the transverse direction. In the first
configuration, the two turbines are aligned with the wind direction. In the second one, the upstream turbine is statically yawed, with a yaw angle of
20o, in order to steer its wake from the downstream turbine for power maximization. Fig. 11 shows the temporally-averaged streamwise velocity
field of the two configurations; those give rise to four turbine-specific situations: (1) the reference case of a first-row aligned turbine, (2) a first-row
yawed wind turbine, (3) a totally waked wind turbine subjected to the meandering phenomenon and (4) a wind turbine facing a partially-impinging
and meandering wake. Henceforth, these four situations will respectively be referred to as freestream aligned, freestream yawed, fully waked and
partially waked, as in Fig. 11. Here again, statistics are computed over 10-minute flow samples corresponding to the Mann flow-through time. The
same pitching strategy is always applied to the two in-line turbines, whether it is CPC, CT-IPC or RL-IPC.

3.4.1 Power production
The power production of the CPC-controlled turbines exhibits an expected behaviour (see Fig. 12). Both upstream turbines produce the nominal
power as the velocity component normal to the rotor is superior to the nominal wind speed whether the turbine is yawed or not. In both config-
urations, the downstream turbine produces less power, as it undergoes the wake deficit of its upstream counter part. However, the power is less
reduced when the upstream turbine is yawed, as only part of the wake impinges on the rotor. In terms of power losses due to IPC, the same remarks
as in the previous section can be made: no impact for the upstream turbines as they operate at above-rated wind speed and slight reduction for
the downstream ones as they operate at under-rated wind speeds due to the wake impingement.
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FIGURE 12 Power production normalized by the wind turbine rated power, for the cases Uhub = 12 m/s and TI = 6% for the four turbines:
CPC ( ), CT-IPC ( ), RL-IPC ( ).

3.4.2 Blade loads
The flapwise DELs are reported in Fig.13. The freestream aligned turbine follows the same trend as the results presented for the isolated turbines.
The freestream yawed turbine yields two comments. On the one hand, even when CPC only is applied, the chosen yaw misalignment reduces
the DEL. This result is also obtained in 54: it depends on the combination of the direction of yaw rotation and the direction of blade rotation and
finds an explanation in velocity triangles. Indeed, the vertical gradient of velocity due to shear is partially compensated by the upstream velocity
component parallel to the yawed rotor, resulting is smaller oscillations of the angle of attack, and thus of the loads, over one rotation. Yawing the
turbine in the other direction would have led to a DEL increase. On the other hand, RL-IPC demonstrates its ability to alleviate fatigue loads on
yawed turbines, even though not including yaw considerations in its formulation nor having learnt on similar cases. It then shows that the RL-IPC
formulation can natively deal with yaw, reducing loads as CT-IPC would do 54. Regarding the two waked turbines, two comments arise as well.
First, the DEL are increased compared to the freestream turbines due to the meandering wake and even further in the partially waked case as the
left-right rotor load imbalance is higher. Second, in both the fully and the partially waked cases, the two IPCs do reduce the fatigue loads but to a
lesser extent than for the freestream machines. This is most likely due to the complexity of the flows impinging on the rotor.
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FIGURE 13DELMFn, made dimensionless by theDELMFn of the freestream aligned turbine controlled with CPC, for the cases Uhub = 12 m/s
and TI = 6% for the four turbines: CPC ( ), CT-IPC ( ), RL-IPC ( ).

3.4.3 Rotor loads
Rotor loads, namely tilt and yaw moments Mtilt and Myaw as defined by the Coleman transform in Eq. 14, can also be analysed. Indeed, CT-IPC
is designed to bring their filtered values to zero, which results in reduced blade loads oscillations. The purpose here is to show the effective action
of CT-IPC on these rotor loads, but also to see how RL-IPC acts on them, as they are never explicitly handled in this novel IPC formulation. The
probability density functions (PDF) of these loads are depicted in the Fig. 14 and all present a Gaussian shape. This comes from the simulation set-
up: we impose a mean velocity and Mann boxes generate perturbations around it to account for turbulence. The resulting loads therefore oscillate
around the load corresponding to the mean upstream velocity Uhub.16 COQUELET et al
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(b) Yawing moment.

FIGURE 14 Probability density function (PDF) of rotor loads for the four turbines at Uhub = 12 m/s and TI = 6%: CPC ( ), CT-IPC ( ),
RL-IPC ( ), dashed lines denote the mean value.
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FIGURE 15 DEL, made dimensionless by the DEL of the freestream aligned turbine controlled with CPC, for the cases Uhub = 12 m/s and TI = 6%

for the four turbines: CPC ( ), CT-IPC ( ), RL-IPC ( ).

3.4.4 Azimuthal loads
Attention has been paid to the rotor loads, as they are the e�ective control variables of CT-IPC. Their RL-IPC counterpart is the sector-e�ective
�apwise load oscillation de�ned in section 2.1.1. Its time-averaged value is presented in Fig. 16 for the four turbines and the three controllers.
We �rst notice the sine-like shape for the freestream aligned turbine with CPC (Fig. 16(a)) and the asymmetrical �attening impact of both IPCs
on that curve. It was mentioned earlier that yawing the machine with a positively de�ned yaw angle helps reduce fatigue loads. Indeed, it can be
seen in Fig. 16(b) that not only does the yaw deform the sine-like shape, but it also reduces the amplitude of oscillation. The negative mean yawing
moment of the fully waked turbine observed in the CPC case �nds an explanation in Fig. 16(c), with a little lateral shift of the sine-like pro�le
yielding a left-right imbalance (minimum around 3⇡/4 and maximum around 3⇡/2, against ⇡ and 2⇡ for the freestream aligned turbine). Finally,
Fig. 16(d) highlights the huge load imbalance appearing in the partially waked case when no IPC is active. The right side of the rotor (✓ 2 [0, 5⇡/4]) is
completely under-loaded due to the wake impingement, while the left side of the rotor (✓ 2 [5⇡/4, 2⇡]) is over-loaded by the almost-free impinging
�ow. Indeed, the velocity in the wake region makes the turbine operate in region 2, where reducing the velocity reduces the thrust 51.
In all cases, the positive impact of both RL-IPC and CT-IPC is quite clear in terms of oscillations reduction. However, it is noticeable that some

FIGURE 14 Probability density function (PDF) of rotor loads for the four turbines at Uhub = 12 m/s and TI = 6%: CPC ( ), CT-IPC ( ),
RL-IPC ( ), dashed lines denote the mean value.

Let us first focus on the CPC cases to better understand the physics at stake. When it comes to the freestream turbines (aligned and yawed),
the turbulent gusts or lulls impinging on the rotor temporarily create left-right and up-down imbalances. The latter are superimposed to the
shear-generated up-down imbalance, leading to a positive mean tilting moment. For the aligned turbine, the mean left-right imbalance and thus
the mean yawing moment are close to zero, while it is slightly negative for the yawed turbine due to its misalignment. Regarding the waked
turbines, PDFs behave like wider Gaussians. This is consistent with the high turbulence level of the wake and the wake meandering, both resulting
in a higher loads variability. For the tilting moment in particular, note that the shear-generated positive mean value is still visible, while for the
yawing moment, a negative mean value is observed.
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Let us now consider the impact of both IPCs on the rotor loads. Two major trends stand out: both CT-IPC and RL-IPC tend (1) to bring the
mean value of the rotor moments closer to zero and (2) to reduce the variance of these Gaussian-like PDFs. Only two exceptions to this trend
are notable. First, the mean yawing moment of the freestream aligned turbine moves slightly away from zero when IPCs are used. Second, the
variance reduction is more noticeable on freestream turbines than on waked ones. It is indeed more challenging for the IPC controllers to cancel
the rotor loads at every instant due to the complexity and unsteadiness of the impinging wakes.
To provide a quantitative fatigue indicator, DELs are also computed for rotor loads. As the rotor loads end up impacting the rotor shaft, which is
made of steel 59, the value ofm in Eq. 13 is set to 4 60. The DEL associated to each case is provided on Fig. 15. It shows that CT-IPC tends to slightly
reduce the rotor loads fatigue, while RL-IPC is more neutral and does not have a real impact on it.
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FIGURE 14 Probability density function (PDF) of rotor loads for the four turbines at Uhub = 12 m/s and TI = 6%: CPC ( ), CT-IPC ( ),
RL-IPC ( ), dashed lines denote the mean value.
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FIGURE 15 DEL, made dimensionless by the DEL of the freestream aligned turbine controlled with CPC, for the cases Uhub = 12 m/s and TI = 6%

for the four turbines: CPC ( ), CT-IPC ( ), RL-IPC ( ).

3.4.4 Azimuthal loads
Attention has been paid to the rotor loads, as they are the e�ective control variables of CT-IPC. Their RL-IPC counterpart is the sector-e�ective
�apwise load oscillation de�ned in section 2.1.1. Its time-averaged value is presented in Fig. 16 for the four turbines and the three controllers.
We �rst notice the sine-like shape for the freestream aligned turbine with CPC (Fig. 16(a)) and the asymmetrical �attening impact of both IPCs
on that curve. It was mentioned earlier that yawing the machine with a positively de�ned yaw angle helps reduce fatigue loads. Indeed, it can be
seen in Fig. 16(b) that not only does the yaw deform the sine-like shape, but it also reduces the amplitude of oscillation. The negative mean yawing
moment of the fully waked turbine observed in the CPC case �nds an explanation in Fig. 16(c), with a little lateral shift of the sine-like pro�le
yielding a left-right imbalance (minimum around 3⇡/4 and maximum around 3⇡/2, against ⇡ and 2⇡ for the freestream aligned turbine). Finally,
Fig. 16(d) highlights the huge load imbalance appearing in the partially waked case when no IPC is active. The right side of the rotor (✓ 2 [0, 5⇡/4]) is
completely under-loaded due to the wake impingement, while the left side of the rotor (✓ 2 [5⇡/4, 2⇡]) is over-loaded by the almost-free impinging
�ow. Indeed, the velocity in the wake region makes the turbine operate in region 2, where reducing the velocity reduces the thrust 51.
In all cases, the positive impact of both RL-IPC and CT-IPC is quite clear in terms of oscillations reduction. However, it is noticeable that some

FIGURE 15 DEL, made dimensionless by the DEL of the freestream aligned turbine controlled with CPC, for the casesUhub = 12 m/s and TI = 6%

for the four turbines: CPC ( ), CT-IPC ( ), RL-IPC ( ).

3.4.4 Azimuthal loads
Attention has been paid to the rotor loads, as they are the effective control variables of CT-IPC. Their RL-IPC counterpart is the sector-effective
flapwise load oscillation defined in section 2.1.1. Its time-averaged value is presented in Fig. 16 for the four turbines and the three controllers.
We first notice the sine-like shape for the freestream aligned turbine with CPC (Fig. 16(a)) and the asymmetrical flattening impact of both IPCs
on that curve. It was mentioned earlier that yawing the machine with a positively defined yaw angle helps reduce fatigue loads. Indeed, it can be
seen in Fig. 16(b) that not only does the yaw deform the sine-like shape, but it also reduces the amplitude of oscillation. The negative mean yawing
moment of the fully waked turbine observed in the CPC case finds an explanation in Fig. 16(c), with a little lateral shift of the sine-like profile
yielding a left-right imbalance (minimum around 3π/4 and maximum around 3π/2, against π and 2π for the freestream aligned turbine). Finally,
Fig. 16(d) highlights the huge load imbalance appearing in the partially waked case when no IPC is active. The right side of the rotor (θ ∈ [0, 5π/4]) is
completely under-loaded due to the wake impingement, while the left side of the rotor (θ ∈ [5π/4, 2π]) is over-loaded by the almost-free impinging
flow. Indeed, the velocity in the wake region makes the turbine operate in region 2, where reducing the velocity reduces the thrust 51.
In all cases, the positive impact of both RL-IPC and CT-IPC is quite clear in terms of oscillations reduction. However, it is noticeable that some
limits are present. Even in the simple case of the freestream aligned turbine, none of the IPCs manage to totally flatten the time-averaged sector-
effective flapwise load oscillation. This is coherent with Fig. 7, where even when in a non turbulent flow, IPCs do not manage to take the DEL to
zero, because a residual load oscillation exists.

3.5 Computational costs and perspectives on more realistic wind data for training
This last section discusses the computational costs associated to the method. All computations are performed on SkyLake 2.3 GHz CPUs.
We recall that the whole learning process consists in three main parts: first training the NN in the low-fidelity environment, second verifying
the learning convergence, also in the low-fidelity environment, and third testing the RL-IPC controller in large eddy simulations. The first part
comprises the training of 20 NN-policies over 104 learning steps, i.e. 104 turbine rotations. This represents about 15h of wind for each NN and
requires a computational time of 20h on a single CPU. The overall training process thus requires 400 CPUh for the simulation of 15 days of wind.
Second, the validation process assesses the learning converge of these 20 NN. The latter are sampled 20 times over the course of their training



COQUELET et al 17

COQUELET et al 17
limits are present. Even in the simple case of the freestream aligned turbine, none of the IPCs manage to totally �atten the time-averaged sector-
e�ective �apwise load oscillation. This is coherent with Fig. 7, where even when in a non turbulent �ow, IPCs do not manage to take the DEL to
zero, because a residual load oscillation exists.

0 ⇡/2 ⇡ 3⇡/2 2⇡

✓s [rad]

�1

0

1

2

✏ s
[M

N
m

]

(a) Freestream aligned

0 ⇡/2 ⇡ 3⇡/2 2⇡

✓s [rad]

�1

0

1

2

✏ s
[M

N
m

]

(b) Freestream yawed

0 ⇡/2 ⇡ 3⇡/2 2⇡

✓s [rad]

�1

0

1

2

✏ s
[M

N
m

]

(c) Fully waked

0 ⇡/2 ⇡ 3⇡/2 2⇡

✓s [rad]

�1

0

1

2

✏ s
[M

N
m

]
(d) Partially waked

FIGURE 16 Time-averaged sector-e�ective �apwise load oscillation for the cases Uhub = 12 m/s and TI = 6% for the four turbines:
CPC ( ), CT-IPC ( ), RL-IPC ( ).

3.5 Computational costs and perspectives on more realistic wind data for training
This last section discusses the computational costs associated to the method. All computations are performed on SkyLake 2.3 GHz CPUs. We
recall that the whole learning process consists in three main parts: �rst training the NN in the low-�delity environment, second verifying the
learning convergence, also in the low-�delity environment, and third testing the RL-IPC controller in large eddy simulations. The �rst part comprises
the training of 20 NN-policies over 104 learning steps, i.e. 104 turbine rotations. This represents about 15h of wind for each NN and requires a
computational time of 20h on a single CPU. The overall training process thus requires 400 CPUh for the simulation of 15 days of wind. Second,
the validation process assesses the learning converge of these 20 NN. The latter are sampled 20 times over the course of their training (i.e. every
500 learning steps) and for each of these samples, each NN is tested on 10 reference in�ow cases lasting 10 min. For every of the 20 trained
policies, 20⇥10⇥10 min = 30h of wind are thus simulated, with a computational time of 20h on a single CPU. The total validation process therefore
requires 400 CPUh for the simulation of 30 days of wind. Third, the LES testing of the best NN-policy gathers 10 cases (8 for the single turbine
part and 2 for the two-turbine part), each simulating 10 min of wind and run in parallel on 32 CPUs for 3 h. Hence, the total cost of the LES testing
is 1000 CPUh for the simulation of 1h40 of wind.
This re�ection on computational costs legitimates the choice of training the NN in a low-�delity environment before being able to bring the
knowledge to turbulent �ows. Even though it would be interesting to train the NN in realistic turbulent �ow �elds, it is quite clear that the cost of
the LES used in this work is prohibitive. However, multiple compromises can be envisioned for the training in a higher-�delity environment such
as (1) generating synthetic turbulence data bases, typically using the Mann algorithm 50 or atmospheric boundary layer precursor simulations 60,
to train the NN in turbulent wind at a�ordable cost; (2) using dynamic wake models like the one proposed in Lejeune 61 to produce much more
realistic meandering waked �ow conditions, (3) using LES at coarser spatio-temporal resolutions, which implies using disk approaches to model the
rotor and thus handling IPC within an actuator disk framework, as proposed in Moens 62, or (4) use the low-�delity environment to �rst train the

FIGURE 16 Time-averaged sector-effective flapwise load oscillation for the cases Uhub = 12 m/s and TI = 6% for the four turbines:
CPC ( ), CT-IPC ( ), RL-IPC ( ).

(i.e. every 500 learning steps) and for each of these samples, each NN is tested on 10 reference inflow cases lasting 10 min. For every of the 20
trained policies, 20×10×10 min = 30h of wind are thus simulated, with a computational time of 20h on a single CPU. The total validation process
therefore requires 400 CPUh for the simulation of 30 days of wind. Third, the LES testing of the best NN-policy gathers 10 cases (8 for the single
turbine part and 2 for the two-turbine part), each simulating 10 min of wind and run in parallel on 32 CPUs for 3 h. Hence, the total cost of the
LES testing is 1000 CPUh for the simulation of 1h40 of wind.
This reflection on computational costs legitimates the choice of training the NN in a low-fidelity environment before being able to bring the
knowledge to turbulent flows. Even though it would be interesting to train the NN in realistic turbulent flow fields, it is quite clear that the cost of
the LES used in this work is prohibitive. However, multiple compromises can be envisioned for the training in a higher-fidelity environment such
as (1) generating synthetic turbulence data bases, typically using the Mann algorithm 50 or atmospheric boundary layer precursor simulations 61,
to train the NN in turbulent wind at affordable cost; (2) using dynamic wake models like the one proposed in Lejeune 62 to produce much more
realistic meandering waked flow conditions, (3) using LES at coarser spatio-temporal resolutions, which implies using disk approaches to model the
rotor and thus handling IPC within an actuator disk framework, as proposed in Moens 63, or (4) use the low-fidelity environment to first train the
NN and then refine the training in a LES framework. The best option should be chosen based on some cost-benefit analysis, which leaves a variety
of perspectives open for the present methodology.

4 CONCLUSIONS
We present a novel individual pitch control architecture that is inspired by animal locomotion as it separates low-level control tasks from high-level
ones. The pitch angles are generated by oscillators (low-level) that are modulated by a neural network (high-level). The former is trained in a bio-
inspired trial-and-error manner with Reinforcement Learning based on the upstream flow conditions. The latter are sensed through a novel load
transformation strategy which preserves more information about the unsteady loads and puts it in a usable form for more advanced pitch control
schemes. The learning environment comprises a synthetic model of sheared and waked inflows and the blade element momentum theory for the
loads computation. The best neural network obtained throughout the learning is then deployed within large eddy simulations of the NREL 5MW
to assess its performances and compare them with the state-of-the-art Coleman transform-based IPC. Multiple cases are envisioned: freestream
turbines, either aligned or yaw, with TIs going up to 14% but also fully waked and partially waked turbine.
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The major result of this work is that the RL-IPC is capable of achieving significant load alleviation whatever the wind conditions. It competes with
the CT-IPC performances and does so generating smooth pitching oscillations. A remarkable outcome concerns the formulation of the problem,
which is robust enough for the NN to generalize the knowledge it has acquired on very simple synthetic flows. Indeed, while turbulence was never
part of the training, load alleviation is effective up to TIs above 10% but also in the case of total and partial wake impingement. The formulation
does also natively apply to misaligned turbines and no specific training needs to be done for that configuration.
Another fundamental outcome of this work is that the proposed method opens a lot of promising perspectives for improvement. So far, attention
has been paid to the development of the framework and the load transformation, which provides more complete information than the Coleman
transform. The efforts should now focus on two main directions: enlarging the action space and making the training environment more realistic.
Discussing the action space first, we recall that it is currently of dimension two and that extending it seems necessary to fully exploit the rich
information available on the loads. In that perspective, the proposed framework is very advantageous, because it makes it pretty straightforward
to add states and learn their optimal values. One could think of adding harmonics of the 1P frequency or including shape functions to slightly
deform the sine-like shape of the oscillators outputs. This might raise concern in terms of pitch activity, but again, thanks to the flexibility of the
framework, penalization on the pitch activity could directly be included in the training process through the expression of the reward. With an
improved load sensing and an enlarged action space, the missing element is a realistic training environment. Multiple possibilities towards that
purpose were proposed before, such as using wake models 62, synthetic 50 or precursor-generated 61 turbulence or disk-based LES 63.
To conclude on a more general level, this work has demonstrated that a wind turbine pursuing a certain objective can learn how to behave in the
simple flow it is subjected to and exploit that knowledge when evolving in more complex flows. Including an extended action and a more realistic
training environment to the framework could lead RL-IPC to outperform conventional IPC, both in terms of loads and pitch activity, especially in
the case of flows like the meandering wakes encountered in wind farms.

ACKNOWLEDGMENTS
This project has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program
(grant agreement No. 725627) and from the Université de Mons under the 50/50 PhD funding program. This research benefited from computational
resources made available on the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles, infrastructure funded by the Walloon Region under
the grant agreement No. 1117545. Computational resources were also provided by the Consortium des Équipements de Calcul Intensif, funded
by the Fonds de la Recherche Scientifique de Belgique under Grant No. 2.5020.11 and by the Walloon Region.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available through the UCLouvain Dataverse
https://dataverse.uclouvain.be/dataverse/wakeopcoll.

References
1. Systems VW. Vestas V236-15.0MW. https://www.vestas.com/en/products/offshore/V236-15MW; 2021.
2. McKenna R, Ostman v.d. Leye P, Fichtner W. Key challenges and prospects for large wind turbines. Renewable and Sustainable Energy Reviews

2016; 53: 1212-1221.
3. Lu Q, Bowyer R, Jones BL. Analysis and design of Coleman transform-based individual pitch controllers for wind-turbine load reduction. Wind

Energy 2015; 18(8): 1451–1468.
4. Bossanyi E. Individual blade pitch control for load reduction. Wind Energy: An International Journal for Progress and Applications in Wind Power

Conversion Technology 2003; 6(2): 119–128.
5. Lio WH, Jones BL, Lu Q, Rossiter JA. Fundamental performance similarities between individual pitch control strategies for wind turbines.

International Journal of Control 2017; 90(1): 37–52.



COQUELET et al 19
6. Coleman R, Feingold A. Theory of self-excited mechanical oscillations of helicopter rotors with hinged blades. Tech. Rep. 1351, National

Advisory Committe for Aeronautics (NACA); 1957.
7. Caselitz P, Kleinkauf W, Krüger T, Petschenka J, Reichardt M, Störzel K. Reduction of fatigue loads on wind energy converters by advanced

control methods. EWEC-CONFERENCE 1997: 555–558.
8. Van Engelen T, Van Der Hooft E. Individual pitch control inventory. Technical Report ECN-C-03-138 2005.
9. Zhang D, Cross P, Ma X, Li W. Improved control of individual blade pitch for wind turbines. Sensors and Actuators A: Physical 2013; 198: 8–14.

10. Duesterhoeft W, Schulz MW, Clarke E. Determination of instantaneous currents and voltages by means of alpha, beta, and zero components.
Transactions of the American Institute of Electrical Engineers 1951; 70(2): 1248–1255.

11. Leithead W, Neilson V, Dominguez S. Alleviation of unbalanced rotor loads by single blade controllers. European Wind Energy Conference and
Exhibition 2009 2009.

12. Han Y, Leithead W. Comparison of Individual Pitch Control and Individual Blade Control for Wind Turbine Load Reduction. In: ; 2015.
13. González C, Leithead W, Han Y, Day J. Field tests of Individual Blade Control and its impact on the wind turbine components lifetime. In: ; 2016.
14. Selvam K, Kanev S, Wingerden vJW, Engelen vT, Verhaegen M. Feedback–feedforward individual pitch control for wind turbine load reduction.

International Journal of Robust and Nonlinear Control 2009; 19(1): 72-91.
15. Geyler M, Caselitz P. Robust Multivariable Pitch Control Design for Load Reduction on Large Wind Turbines. Fraunhofer IWES 2008; 130.
16. Stol KA, Zhao W, Wright AD. Individual blade pitch control for the controls advanced research turbine (CART). 2006.
17. Mirzaei M, Soltani M, Poulsen NK, Niemann HH. An MPC approach to individual pitch control of wind turbines using uncertain LIDAR

measurements. 2013: 490-495.
18. Doyle JC. Guaranteed margins for LQG regulators. IEEE Transactions on automatic Control 1978; 23(4): 756–757.
19. Dunne F, Pao LY, Wright AD, Jonkman B, Kelley N. Adding feedforward blade pitch control to standard feedback controllers for load mitigation

in wind turbines. Mechatronics 2011; 21(4): 682–690.
20. Wang Y, Gao F, Doyle FJ. Survey on iterative learning control, repetitive control, and run-to-run control. Journal of Process Control 2009; 19(10):

1589–1600.
21. Kallen T, Zierath J, Dickler S, Konrad T, Jassmann U, Abel D. Repetitive Individual Pitch Control for Load Alleviation at Variable Rotor Speed.

Journal of Physics: Conference Series 2020; 1618: 022055.
22. Friis J, Nielsen E, Bonding J, Adegas FD, Stoustrup J, Odgaard PF. Repetitive model predictive approach to individual pitch control of wind

turbines. In: IEEE; 2011.
23. Brunton SL, Noack BR, Koumoutsakos P. Machine learning for fluid mechanics. Annual Review of Fluid Mechanics 2020; 52: 477–508.
24. Sutton RS, Barto AG. Reinforcement learning: An introduction. MIT press . 2018.
25. Tomin N, Kurbatsky V, Guliyev H. Intelligent Control of a Wind Turbine based on Reinforcement Learning. 2019 16th Conference on Electrical

Machines, Drives and Power Systems (ELMA) 2019: 1-6.
26. Sierra-García JE, Santos M. Exploring Reward Strategies for Wind Turbine Pitch Control by Reinforcement Learning. Applied Sciences 2020;

10(21): 7462.
27. Saenz-Aguirre A, Zulueta E, Fernandez-Gamiz U, Lozano J, Lopez-Guede JM. Artificial neural network based reinforcement learning for wind

turbine yaw control. Energies 2019; 12(3): 436.
28. Stanfel P, Johnson K, Bay CJ, King J. A Distributed Reinforcement Learning Yaw Control Approach for Wind Farm Energy Capture Maximization.

In: IEEE. ; 2020: 4065–4070.



20 COQUELET et al
29. Collet D, Di Domenico D, Sabiron G, Alamir M. A data-driven approach for fatigue-based individual blade pitch controller selection from wind

conditions. In: IEEE. ; 2019: 3500–3505.
30. Mulders S, Pamososuryo A, Wingerden vJW. Efficient tuning of Individual Pitch Control: A Bayesian Optimization Machine Learning approach.

Journal of Physics: Conference Series 2020; 1618: 022039.
31. Coquelet M, Bricteux L, Lejeune M, Chatelain P. Biomimetic individual pitch control for load alleviation. Journal of Physics: Conference Series

2020; 1618: 022052.
32. Ijspeert AJ. Central pattern generators for locomotion control in animals and robots: a review. Neural networks 2008; 21(4): 642–653.
33. Mitra SK, Kuo Y. Digital signal processing: a computer-based approach. McGraw-Hill New York. 3 ed. 2005.
34. Ba JL, Kiros JR, Hinton GE. Layer normalization. arXiv preprint arXiv:1607.06450 2016.
35. Dzeladini F, Ait-Bouziad N, Ijspeert A. CPG-based control of humanoid robot locomotion. Humanoid Robotics: A Reference 2019: 1–35.
36. Iscen A, Caluwaerts K, Tan J, et al. Policies modulating trajectory generators. In: PMLR. ; 2018: 916–926.
37. Haarnoja T, Zhou A, Abbeel P, Levine S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor.

In: . 80. ; 2018: 1856-1865.
38. Hill A, Raffin A, Ernestus M, et al. Stable Baselines. https://github.com/hill-a/stable-baselines; 2018.
39. Abadi M, Agarwal A, Barham P, et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Software available from

tensorflow.org.
40. Bottasso C, Cacciola S, Schreiber J. Local wind speed estimation, with application to wake impingement detection. Renewable Energy 2018;

116: 155–168.
41. Bolton W. Control systems. Newnes . 2002.
42. Bastankhah M, Porté-Agel F. A new analytical model for wind-turbine wakes. Renewable Energy 2014; 70: 116–123.
43. Coudou N, Moens M, Marichal Y, Van Beeck J, Bricteux L, Chatelain P. Development of wake meandering detection algorithms and their

application to large eddy simulations of an isolated wind turbine and a wind farm. In: . 1037. IOP Publishing. ; 2018: 072024.
44. Madsen H, Riziotis V, Zahle F, et al. Blade element momentum modeling of inflow with shear in comparison with advanced model results. Wind

Energy 2012; 15(1): 63–81.
45. Blasques J, Natarajan A. Mean load effects on the fatigue life of offshore wind turbine monopile foundations. In: International Center for

Numerical Methods in Engineering; 2013: 818-829.
46. Bishop C. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer. 1 ed. 2007.
47. Chatelain P, Duponcheel M, Caprace DG, Marichal Y, Winckelmans G. Vortex particle-mesh simulations of vertical axis wind turbine flows:

from the airfoil performance to the very far wake. Wind Energy Science 2017; 2(1): 317–328.
48. Caprace DG, Chatelain P, Winckelmans G. Lifting line with various mollifications: theory and application to an elliptical wing. AIAA Journal

2019; 57(1): 17–28.
49. Docquier N, Poncelet A, Fisette P. ROBOTRAN: A powerful symbolic gnerator of multibody models. Mechanical Sciences 2013; 4: 199-219.
50. Mann J. Wind field simulation. Probabilistic engineering mechanics 1998; 13(4): 269–282.
51. Jonkman J, Butterfield S, Musial W, Scott G. Definition of a 5-MW reference wind turbine for offshore system development. tech. rep., National

Renewable Energy Lab.(NREL); 2009.
52. Bossanyi E. Further load reductions with individual pitch control. Wind Energy: An International Journal for Progress and Applications in Wind

Power Conversion Technology 2005; 8(4): 481–485.

https://github.com/hill-a/stable-baselines


COQUELET et al 21
53. Chen ZJ, Stol KA. An assessment of the effectiveness of individual pitch control on upscaled wind turbines. Journal of Physics: Conference Series

2014; 524: 012045.
54. Wang C, Campagnolo F, Bottasso C. Does the use of load-reducing IPC on a wake-steering turbine affect wake behavior?. Journal of Physics:

Conference Series 2020; 1618(2).
55. Chen ZJ, Stol K, Mace B. System identification and controller design for individual pitch and trailing edge flap control on upscaled wind turbines.

Wind Energy 2015; 19: n/a-n/a.
56. Burton T, Sharpe D, Jenkins N, Bossanyi E. Wind Energy Handbook . 2002.
57. Bergami L, Gaunaa M. Analysis of aeroelastic loads and their contributions to fatigue damage. Journal of Physics Conference Series 2014; 555:

012007.
58. Bottasso CL, Croce A, Riboldi C, Nam Y. Multi-layer control architecture for the reduction of deterministic and non-deterministic loads on

wind turbines. Renewable Energy 2013; 51: 159–169.
59. Wind Energy Industry Manufacturing Supplier Handbook. Global Wind Network . 2011.
60. Guideline for the Certification of Wind Turbines. Germanischer Lloyd . 2010.
61. Stevens RJ, Graham J, Meneveau C. A concurrent precursor inflow method for large eddy simulations and applications to finite length wind

farms. Renewable energy 2014; 68: 46–50.
62. Lejeune M, Moens M, Coquelet M, Coudou N, Chatelain P. Data assimilation for the prediction of wake trajectories within wind farms. Journal

of Physics: Conference Series 2020; 1618(6): 062055.
63. Moens M, Coquelet M, Trigaux F, Chatelain P. Handling Individual Pitch Control within an Actuator Disk framework: verification against the

Actuator Line method and application to wake interaction problems. Journal of Physics: Conference Series 2022.


	A reinforcement-learning approach for individual pitch control
	Abstract
	Introduction 
	Methodology 
	Controller structure 
	Sensing module: load transformation 
	Neural network: controller
	Oscillators: command translation
	Discussion

	Learning methodology 
	Reinforcement Learning fundamentals
	IPC problem definition in the RL formalism 
	Learning environment
	Policy evaluation using damage equivalent loads
	Real conditions testing

	Reference controllers for comparison 

	Results 
	Training
	Environment sampling and exploration
	Learning convergence

	Calibration and validation of the reference IPC controller
	Testing with LES of a single wind turbine
	Fatigue
	Power production
	Blade loads and pitch signals

	Testing with LES of a pair of in-line wind turbines
	Power production
	Blade loads
	Rotor loads
	Azimuthal loads

	Computational costs and perspectives on more realistic wind data for training

	Conclusions 
	Acknowledgments
	Data availability statement
	References


