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We study the supersymmetric quantum dynamics of the cosmological models obtained by re-
ducing D = 5 supergravity to one timelike dimension. This consistent truncation has fourteen
bosonic degrees of freedom, while the quantization of the homogeneous gravitino field leads to a
216–dimensional fermionic Hilbert space. We construct a consistent quantization of the model in
which the wave function of the Universe is a 216–component spinor depending on fourteen con-
tinuous coordinates, which satisfies eight Dirac-like wave equations (supersymmetry constraints)
and one Klein-Gordon-like equation (Hamiltonian constraint). The fermionic part of the quantum
Hamiltonian is built from operators that generate a 216-dimensional representation of the (infinite-
dimensional) maximally compact sub-algebra K(G++

2 ) of the rank-4 hyperbolic Kac–Moody alge-
bra G++

2 . The (quartic-in-fermions) squared-mass term µ̂2 entering the Klein-Gordon-like equation
has several remarkable properties: (i) it commutes with the generators of K(G++

2 ); and (ii) it

is a quadratic polynomial in the fermion number NF ∼ ΨΨ, and a symplectic fermion bilinear
CF ∼ ΨCΨ. Some aspects of the structure of the solutions of our model are discussed, and no-
tably the Kac-Moody meaning of the operators describing the reflection of the wave function on the
fermion-dependent potential walls (“quantum fermionic Kac-Moody billiard”).

PACS numbers:

I. INTRODUCTION

The discovery of a hidden E7 symmetry of N = 8
supergravity in D = 4 [1] has initiated the search of hid-
den symmetries in supergravity, and superstring theories.
The hidden symmetry algebra was more generally con-
jectured to be E11−D for maximal supergravity reduced
to D dimensions [2], which implied reaching the affine
Kac-Moody algebra E9 in D = 2 [3], and, possibly, the
hyperbolic Kac-Moody algebra E10 when reducing to one
timelike direction [4]. [See Ref. [5] for the definition and
basic structure of infinite-dimensional Kac-Moody alge-
bras.] The possible existence of a hidden, mother E11

structure has been suggested in [6].

A new angle on the possible relevance of E10 came
from studies of the chaotic behavior, à la Belinskii-
Khalatnikov-Lifshitz [7–9], of generic solutions of max-
imal supergravity near a (spacelike) cosmological sin-
gularity [10–12]. These studies highlighted the role of
the gravitino in the implementation of hidden hyperbolic
Kac-Moody structures [13–15]. The gravitino enters the
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game as a representation of the algebra K(E10), defined
as the (formal) maximally compact subalgebra of E10,
namely the subalgebra fixed under the Chevalley invo-
lution. [We use the maximally split real forms of the
considered hyperbolic Kac-Moody algebras, and the cor-
responding real Chevalley involution.] The existence of
finite-dimensional spinorial representations of (infinite-
dimensional) involutory subalgebras of hyperbolic Kac-
Moody algebras discovered through such supergravity-
based works [13–16] was extended in several directions
[17–19], and notably from a mathematical point of view
[20–23].

Most studies, however, only considered the gravitino
dynamics at lowest order, where the gravitino can be
treated as a classical, Grassmanian field, undergoing
a fermionic analog [16] of the bosonic billiard dynam-
ics. The compatibility of Kac-Moody structures with
the fully nonlinear gravitino dynamics (involving up to
quartic-in-fermions terms in the Hamiltonian) has only
been explored so far within the simpler setting of the re-
duction of N = 1, D = 4 supergravity to homogeneous
cosmological models of the Bianchi IX type [18, 24, 25].
In this setting, the relevant hyperbolic Kac-Moody struc-
tures are not E10 and K(E10), but a rank-3 hyperbolic
subalgebra of E10 called AE3, and its maximally com-
pact subalgebra K(AE3). In these studies the gravitino
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is treated as a fully nonlinear quantum field (depending
only on time). The results of Refs. [18, 24, 25] have deep-
ened the significance of hidden Kac-Moody structures by
showing, in particular, that: (i) the quartic-in-fermion
contribution to the quantum Hamiltonian is invariant un-

der the three generators Ĵα1 , Ĵα2
, Ĵα3

of K(AE3) (which
are associated with the three simple roots α1, α2, α3 of
AE3); and (ii) the quantum dynamics of the gravitino
near the singularity can be described as a sequence of
free motions interrupted by reflections on three Toda-like
potential walls corresponding to the three simple roots
of AE3. Each such reflection is described (in the short-
wavelength limit) by the corresponding quantum reflec-
tion operator (with i = 1, 2, 3)“Rαi = ei

π
2 Ĵαi . (1.1)

In addition, the latter reflection operators satisfy a gen-
eralized version of the Coxeter relations satisfied by usual
hyperplane reflection operators.

The aim of the present work is to extend the work
of Refs. [18, 24, 25] to the case of pure supergravity in
D = 5, as a step towards understanding the nonlinear
aspects of fermions in D = 11 supergravity. We recall
that pure D = 5 supergravity (with eight supercharges)
exhibits some similarity with D = 11 supergravity [26].
It is therefore interesting to study the compatibility of
Kac-Moody structures with the fully nonlinear gravitino
dynamics within the simpler setting of D = 5 supergrav-
ity. Previous works have indicated that, in this case,
the relevant hyperbolic Kac-Moody algebra behind the
bosonic dynamics was the rank-4 hyperbolic extension of
G2, which we will denote as G++

2 [27, 28]. [ Contrary to
E10 (but similarly to AE3) the hyperbolic Kac-Moody
G++

2 is non-simply laced.] We therefore expect that the
gravitino will enter as a representation of the subalgebra
K(G++

2 ) ⊂ G++
2 , fixed under the Chevalley involution.

We will indeed find that the D = 5 supergravity fermion
couplings define a consistent finite-dimensional vector-
spinor representation of K(G++

2 ) (of the type defined in
Ref. [19]), and we shall prove that analogs of the results
found for the K(AE3) structure of D = 4 supergravity
cosmological models hold for the simplest homogeneous
cosmological models of D = 5 supergravity (where all
fields are taken to depend only on time). In particu-
lar, the quartic-in-fermion contribution to the quantum
Hamiltonian will be shown to be invariant under the four
generators Ĵα1 , Ĵα2 , Ĵα3 , Ĵα4 , of K(G++

2 ), associated
with the four simple roots α1, α2, α3, α4 of G++

2 .

II. CLASSICAL LAGRANGIAN FORMULATION

We take as starting point the second-order action of
the pure supergravity theory in D = 5, as given in
(the corrected version of) Ref. [29]. In this formulation
the gravitino is described by a (complex) Dirac vector-
spinor ψµ. [This is equivalent to the alternative formu-

lation using a doublet of symplectic Majorana vector-
spinors [30].] We follow the normalization and nota-
tion of Ref. [29], notably for the Levi-Civita connection
ω̊µ α̂β̂ = −ω̊µ β̂α̂. Here, µ is a five-dimensional coordinate

index, while hatted indices are frame indices with respect
to a local Lorentz frame eµα̂, with associated coframe θα̂µ

(eµα̂ θ
β̂
µ = δβ̂α̂). The Levi-Civita connection (with one co-

ordinate index, µ, and two frame indices) is defined as

ω̊µ α̂β̂ ≡ ηα̂γ̂ ω̊
γ̂

µ β̂
= −ω̊µ β̂α̂ , (2.1)

with

ω̊ α̂
µ β̂
≡ +θα̂ν

Ä
∂µ e

ν
β̂

+ Γνµσ e
σ
β̂

ä
, (2.2)

where Γνµσ denote the usual Christoffel symbols of gµν .

The covariant derivatives of the frame components of
a vector, and of a vector-spinor, are respectively given by
(when using frame indices)

∇µ V α̂ =∂µV
α̂ + ω̊ α̂

µ β̂
V β̂ , (2.3)

Dλ [̊ω]ψµ̂ =∂λψµ̂ + ω̊ ν̂
λµ̂ ψν̂ + 1

4 ω̊
ρ̂σ̂

λ γρ̂σ̂ψµ̂ . (2.4)

As we use here a mostly positive signature, we had to
adapt the results of Ref. [29] (which used a mostly neg-
ative signature). For instance, we replaced their gamma

matrices as follows: Γµ̂CN 7→ −i γµ̂, ΓCNµ̂ 7→ +i γµ̂.
Our gamma matrices satisfy γµ̂γν̂ + γν̂γµ̂ = 2ηµ̂ν̂ with
ηµ̂ν̂ = diag(−1,+1,+1,+1,+1).

Our sign convention for the covariant components
of the antisymmetric Levi-Civita tensor is ηαβγδε =√
|g|εαβγδε with ε01234 = +1. The antisymmetrized

product of five gamma matrices is proportional to the
identity matrix and we use (following [29]) a representa-

tion where γµνρστ = −i ηµνρστ , i.e., γ01234 = −i
√
|g|, or

γ0̂1̂2̂3̂4̂ = −i, so that γ0̂1̂2̂3̂4̂ = +i. We define the Dirac
conjugate as

Ψ ≡ Ψ†β , (2.5)

with the β matrix defined such that βγµ̂β
−1 = −γ†µ̂. We

take a representation of the (positive-signature) gamma

matrices where γ0̂ is anti-hermitian, while the γ î’s are
hermitian, and choose

β ≡ +i γ0̂ = −i γ0̂ . (2.6)

Note that β is hermitian and unipotent:

β† = β ; β2 = 1 . (2.7)

The action reads S =
∫
d5xL, with Lagrangian density

L = eL (with e = det eα̂µ =
√
|g|), and a second-order
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Lagrangian L given (in units where 4πG5 = 1) by

L = 1
4R(ω̊)− 1

4FµνF
µν + 1

6
√

3
ηµνλρσAµFνλFρσ

+ 1
2

(
ψµγ

µνρDν(ω̊)ψρ −Dν(ω̊)ψµγ
µνρψρ

)
− i
√

3
4

(
ψµγ

µνρσψν + ψ
ρ
ψσ − ψσψρ

)
Fρσ

+ ψ̄[µγ
µψα]ψ̄

[νγνψ
α] − 1

2 ψ̄[µγ|ν|ψρ]ψ̄
[µγ|ρ|ψν]

− 1
4 ψ̄[µγ

νψρ]ψ̄
[µγνψ

ρ] + 1
4 ψ̄µψνψ̄ργ

µνρσψσ

+ 3
8 (ψ̄µψν − ψ̄νψµ)ψ̄µψν . (2.8)

A consistent truncation of this theory consists in con-
sidering a (Bianchi-I) five-dimensional “minisuperspace”
cosmological model where all the fields (gµν , Aµ, ψµ)
depend only on time, without any spatial dependence.
More precisely, we consider a model where the four-
dimensional space is toroidally compactified (with 0 ≤
xi ≤ 1, i = 1, 2, 3, 4), so that supergravity reduces to a
kind of supersymmetric quantum mechanical model for
the zero modes gµν(t), Aµ(t), and ψµ(t). The metric is
written as

ds2 = −N(t)2dt2 +hij(t)(dx
i+N i(t)dt)(dxj +N j(t)dt) .

(2.9)
The time component A0 of the Aµ field drops out of the
dynamics (the associated Gauss constraint being identi-
cally zero). Similarly, the shift vector N i(t) drops out of
the dynamics (its associated momentum constraint van-
ishing identically). We henceforth set both A0 and N i to
zero. The only constraints that will remain in our cos-
mological dynamics are: (i) the Hamiltonian constraint
(associated with the lapse function N(t)); and (ii) the
supersymmetry constraint (associated with ψ0(t)).

As in our previous work dealing with a supersymmetric
Bianchi-IX model in D = 4 [25], we shall avoid the pres-
ence of constraints linked to local Lorentz rotations by
using a local frame that is algebraically defined in terms
of the metric components gµν . We use (i, j, k = 1, 2, 3, 4)

θ0̂ = N dt , θâ = θâi dx
i ,

e0̂ = 1
N ∂t , eâ = eiâ∂i , (2.10)

where θâj e
i
â = δij . Previous work on the approach to

cosmological singularities [12] has emphasized the use-
fulness of parametrizing the gravitational degrees of free-
dom by means of an Iwasawa decomposition of the spatial
co-frame θâi . This means encoding the ten independent
components of the spatial metric hij by means of four
diagonal logarithmic scale factors exp(−βâ) and six off-
diagonal variable nâi (with â < i), defined so that

θâi = e−β
â

(N )âi , eiâ = eβ
â

(N−1)iâ , (2.11)

where N is an upper triangular, unipotent matrix,
namely

N =
(
N â

i

)
=
(
δâ i + nâ i

)
=

Ö
1 n1

2 n1
3 n1

4

0 1 n2
3 n2

4

0 0 1 n3
4

0 0 0 1

è
.

Note that the inverse matrix (N−1)
i
â is also an unipotent

upper-triangular matrix.
As a consequence the spatial metric hij reads

hij =
∑
â

e−2βâN â
iN â

j , i .e.,

(hij) = N TA2N ; with A ≡ diag{e−β
â

} . (2.12)

It is convenient to use as basic variables in the Lagrangian
formulation the quantities

βâ ; nâi (with â < i); Bâ ; Ψâ ; ‹N , (2.13)

where we defined (to replace Ai, ψi and N)

Bâ ≡ Ai(N−1)iâ ; Ψâ ≡ e−
1
2σβψâ ; ‹N ≡ N e+σβ ,

(2.14)

with σβ ≡
∑4
â=1 β

â.
The Lagrangian density L = eL then decomposes into

L = LR + LF 2 + LRS + LFΨ2 + LΨ4 , (2.15)

where LR = e
4R(ω̊) corresponds to the first (Einstein-

Hilbert) term in Eq. (2.8), LF 2 = − e4FµνF
µν to the sec-

ond (Maxwell) term, LRS to the Rarita-Schwinger term
on the second line, LFΨ2 to the ψ̄ψF coupling on the
third line, and where LΨ4 corresponds to all the remain-
ing terms, which are quartic in ψ. [The Chern-Simons
term A ∧ F ∧ F on the first line vanishes, as well as its
variation.] In our units (where 4πG5 = 1 and

∫
d4x = 1),

we can consider L as the total Lagrangian of a supersym-
metric quantum mechanical model, with corresponding
action S =

∫
dtL.

The explicit expressions of the various terms in L, Eq.
(2.15), are as follows. The Einstein term reads (hence-
forth, we cease to systematically put hats on the frame
indices a = â)

LR =
1

4‹N (
Gabβ̇

aβ̇b + 1
2

∑
a<b

e+2(βb−βa)
(
Wâb̂

)2)
,

(2.16)
where the quadratic form Gab defining the kinetic terms
of the logarithmic scale factors βa is defined as

Gabβ̇
aβ̇b ≡

∑
a

(β̇a)2 − (
∑
a

β̇a)2 , (2.17)

and where we defined (for â < b̂)

Wâb̂ ≡W
â
b̂ ≡

∑
â<i≤b̂

ṅâi(N−1)i
b̂
. (2.18)

The Maxwell kinetic term reads

LF 2 =
1

2‹N ∑
a

e2βa E2
a , (2.19)
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where Ea denotes the electric-field variable

Ea ≡
∑
i

(N−1)iâ Fti

= Ḃâ +
â∑
i=2

i−1∑
b̂=1

Bb̂ ṅ
b̂
i (N−1)iâ . (2.20)

The Rarita-Schwinger term reads

LRS = i
2 Gab

Ä
Φ†aΦ̇b − Φ̇†aΦb

ä
+ N

2
‹Qν̂α̂β̂ω̊ν̂α̂β̂ . (2.21)

Here we replaced the rescaled gravitino Ψa by the useful
vector-spinor variable [16]

Φa ≡ γâΨâ ; (no sum on â) , (2.22)

while the second term involves the contraction between
the Fermion bilinear

‹Qν̂α̂β̂ = 1
2

(
Ψµ̂γ

µ̂ν̂α̂Ψβ −Ψµ̂γ
µ̂ν̂β̂Ψα −Ψ

β̂
γα̂ν̂µ̂Ψµ̂ + Ψ

α̂
γβ̂ν̂µ̂Ψµ̂

)
+ 1

2Ψµ̂γ
µ̂ν̂ρ̂α̂β̂Ψρ̂

+ 1
2

(
Ψµ̂

(
γµ̂(ηρ̂α̂ην̂β̂ − ην̂α̂ηρ̂β̂) + γν̂(ηµ̂α̂ηρ̂β̂ − ηρ̂α̂ηµ̂β̂) + γρ̂(ην̂α̂ηµ̂β̂ − ηµ̂α̂ην̂β̂)

)
Ψρ̂

)
, (2.23)

and the Levi-Civita spin-connection, whose only nonva-
nishing (frame) components are

ω̊0̂âb̂ =− 1
2N

Ä
e−(βa−βb)Wâb̂ − e

−(βb−βa)Wb̂â

ä
,

ω̊b̂0̂â = 1
N

Å
β̇a δâb̂ −

1

2
(e−(βa−βb)Wâb̂ + e−(βb−βa)Wb̂â)

ã
=ω̊â0̂b̂ . (2.24)

Here the quantities Wâb̂ (which are essentially the time

derivatives of nâi) were defined in Eq. (2.18) above. Note

that Wâb̂ vanishes if b̂ ≤ â, so that the non vanishing
contributions to ω̊ are all multiplied by a factor of the

type e+(βb−βa) with b > a.
The ψ̄ψF coupling term, LFΨ2 , reads

LFΨ2 = −i
√

3

2

∑
â

eβ
â

X 0̂âEâ , (2.25)

where

X 0̂â ≡ i ηbcd0̂aΨ̄bγcΨd + Ψ̄0̂Ψa − Ψ̄aΨ0̂ . (2.26)

At this stage, we see that the Lagrangian is the sum of
four types of terms: (i) the kinetic terms for the bosonic
variables βâ ; nâi ; Bâ, namely,

Lkin b =
1‹N (

1

4
Gabβ̇

aβ̇b +
1

8

∑
a<b

e+2(βb−βa)
(
Wâb̂

)2
+

1

2

∑
a

e2βa E2
a

å
; (2.27)

(ii) the kinetic terms for the fermionic variables Ψâ,
namely

Lkin f = i
2 Gab

Ä
Φ†aΦ̇b − Φ̇†aΦb

ä
; (2.28)

(iii) the couplings between the bosonic velocity vari-

ables β̇a,Wab, Ea and corresponding fermion bilinears,
Qa
β̇
(Ψ̄,Ψ), QabW (Ψ̄,Ψ), QaE(Ψ̄,Ψ), of the form

Lq̇Ψ2 =
∑
a

β̇aQa
β̇
(Ψ̄,Ψ) +

∑
a<b

eβ
b−βaWabQ

ab
W (Ψ̄,Ψ)

+
∑
a

eβ
a

EaQ
a
E(Ψ̄,Ψ) , (2.29)

with, for instance

Qa
β̇
(Ψ̄,Ψ) = ‹Qâ0̂â

= i
2

∑
m̂ 6=â

(
Ψ†m̂γm̂âΨâ −Ψ†âγâm̂Ψm̂

+ Ψ†0̂γ0̂m̂Ψm̂ + Ψ†m̂γm̂0̂Ψ0̂
)

= i
2

∑
m̂ 6=â

(
Φ†m̂Φâ − Φ†âΦm̂

+ Ψ†0̂γ0̂Φm̂ + Φ†m̂γ0̂Ψ0̂
)
; (2.30)

and, finally, (iv) the terms quartic in the fermions that
entered the original Lagrangian, Eq.(2.8), namely

LΨ4 = ‹NLΨ4 , (2.31)

with

LΨ4 = Ψ̄[µγ
µΨα]Ψ̄

[νγνΨα] − 1
2 Ψ̄[µγ|ν|Ψρ]Ψ̄

[µγ|ρ|Ψν]

− 1
4 Ψ̄[µγ

νΨρ]Ψ̄
[µγνΨρ] + 1

4 Ψ̄µΨνΨ̄ργ
µνρσΨσ

+ 3
8 (Ψ̄µΨν − Ψ̄νΨµ)Ψ̄µΨν . (2.32)
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III. CLASSICAL HAMILTONIAN
FORMULATION

We have seen in the previous section that the La-
grangian had a structure of the type

L = i
2 Gab

Ä
Φ†aΦ̇b − Φ̇†aΦb

ä
+

1

2‹N q̇kgklq̇
l+Qk(Ψ)q̇k+‹NLΨ4 ,

(3.1)
where qk denote the bosonic variables, βâ ; nâi ; Bâ,
where the Qk’s are bilinear in the fermions (and depend
on the bosonic variables, notably through various expo-

nential factors eβ
b−βa , eβ

a

), and where the term quartic
in the fermions, LΨ4 , is given by Eq. (2.32). We recall
that Φa denote the redefined version (2.22) of the grav-
itino variables Ψa.

Passing to the corresponding Hamiltonian formulation,
in terms of the bosonic momenta,

pk =
∂L
∂q̇k

=
1‹N gklq̇

l +Qk(Ψ) , (3.2)

leads to a first-order action of the form

S =

∫
dt
(
pkq̇

k + i
2 Gab

Ä
Φ†aΦ̇b − Φ̇†aΦb

ä
− ‹NHtot

)
,

(3.3)
with

Htot =
1

2
gkl(pk −Qk)(pl −Ql)− LΨ4

= 1
2g
klpkpl − gklpkQl + 1

2g
klQkQl − LΨ4 ,(3.4)

where gkl denotes the inverse of the symmetric quadratic
form gkl defining the bosonic kinetic terms. As the Qk’s
are bilinear in the fermions, the term 1

2g
klQkQl adds to

the original quartic-in-fermions term −LΨ4 .
The structure of the Hamiltonian action (3.3) shows

that ‹N is a Lagrange multiplier, associated with the
Hamiltonian constraint

Htot = 0 . (3.5)

In addition, the explicit computation of Htot shows (as
guaranteed by the local supersymmetry of the original,
unreduced supergravity action) that the time component
Ψ0̂ of the gravitino (and its Dirac conjugate Ψ0̂) appear
only linearly in Htot. They are therefore two fermionic
Lagrange multipliers, associated with two supersymme-
try constraints, say

S = 0 , S = 0 , (3.6)

whose expressions will be given below.
The computation of Htot leads to an expression of the

form

Htot = H(0) +H(2) +H(4) + Ψ
′
0̂S + SΨ′

0̂
, (3.7)

where the superscripts indicate the polynomial order in
the spatial components, Ψâ, or Ψâ, of the gravitino, and

where we introduced the following shifted time compo-
nent of the gravitino:

Ψ′
0̂
≡ Ψ0̂ − γ0̂

∑
a

γâΨâ . (3.8)

The terms in Eq. (3.7) read as follows.
The purely bosonic part of the Hamiltonian reads

H(0) = Gabπaπb+2
∑
a<b

e−2(βb−βa)(Pab)
2+

1

2

∑
a

e−2 βa(P a)2 ,

(3.9)
where πa is the conjugate momentum to βa, P a is the
momentum conjugate to Ba, and where Pab (with a < b)
is the following combination of the conjugate momentum
pia to nai and of P a,

Pab ≡
∑
a<i≤b

piaN b
i −BaP b . (3.10)

The part of the Hamiltonian that is quadratic in fermions
reads

H(2) = +2
∑
a<b

e−(βb−βa)PabJab(Ψ)− 1√
3

∑
a

e−β
a

P aJa(Ψ) ,

(3.11)
where Jab(Ψ) and Ja(Ψ) are fermion bilinears (defined in
Eqs. (3.14) below).

The part of the Hamiltonian that is quartic in fermions
is given by the following sum

H(4) =
1

2

∑
a<b

(Jab(Ψ))
2

+
1

6

∑
a

(Ja(Ψ))
2 − Lcg

Ψ4 , (3.12)

where the superscript cg means that one should replace
everywhere in LΨ4 Ψ0̂ by its “coset gauge value”, Ψcg

0̂
,

obtained by setting Ψ′
0̂

to zero, i.e., in view of Eq. (3.8),
by

Ψcg

0̂
= γ0̂

∑
a

γâΨâ = γ0̂

∑
a

Φâ . (3.13)

It was found in previous works that this coset gauge has
the property of revealing hidden Kac-Moody structures
in the fermionic dynamics.

The fermion bilinears Jab(Ψ) (with a < b) and Ja(Ψ)
entering both H(2) and H(4) have the factorized vector-
spinor structure found in Ref. [16] (and generalized in
Refs. [17, 19]) , namely

Jab(Ψ) = (Gcd − 2α(ab)
c α

(ab)
d )Φ† c

Ç
iγab

2

å
Φd ,

Ja(Ψ) = (Gcd − 2α(a)
c α

(a)
d )Φ† c

Å
3γa

2

ã
Φd , (3.14)

where α
(ab)
c and α

(a)
c denote the (covariant) components

of the linear forms in the β’s that appear as exponents
in several pieces of the Hamiltonian, namely

α(ab)(β) ≡ α(ab)
c βc ≡ βb − βa ,

α(a)(β) ≡ α(a)
c βc ≡ βa . (3.15)
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For instance, α
(a)
c = δac . The (Kac-Moody) meaning of

the linear forms α(ab)(β), α(a)(β) wil be explained in the
next section. Note that in the definitions (3.14), a and b
are numerical labels (which are not summed over), while
c and d are vectorial indices in β space that are summed
over as per the Einstein convention.

Finally, the supersymmetry constraint S has the form

S = S(1) + S(3) , (3.16)

where the linear in fermion part is,

S(1) =
∑
a

πaΦa −
∑
a<b

e−(βb−βa)Pabγ
ab(Φb − Φa)

− i

√
3

2

∑
a

e−β
a

P aγaΦa , (3.17)

while the cubic in fermion part reads

S(3) =− 1
2

∑
p̂,q̂

(Ψp̂γq̂Ψq̂ −Ψq̂γq̂Ψp̂) γ0̂Ψp̂ − 1
2

∑
q̂,p̂>q̂

(Ψp̂γ0̂Ψq̂ −Ψq̂γ0̂Ψp̂) γp̂Ψq̂

− i
2

∑
p̂,q̂,r̂,ŝ

η0̂p̂q̂r̂ŝ(Ψp̂γq̂Ψr̂) Ψŝ + i
2

∑
p̂,q̂,ŝ,r̂>ŝ

η0̂p̂q̂r̂ŝ(Ψp̂Ψq̂) γŝΨr̂

+ i
4

∑
q̂,r̂,ŝ,k̂,p̂>k̂

η0̂p̂q̂r̂ŝ(Ψk̂γq̂r̂Ψŝ + Ψŝγq̂r̂Ψk̂) (γk̂Ψp̂ + γp̂Ψk̂) + i
4

∑
q̂,r̂,ŝ,p̂

η0̂p̂q̂r̂ŝ(Ψp̂γq̂r̂Ψŝ + Ψŝγq̂r̂Ψp̂) γp̂Ψp̂ .

(3.18)

IV. INTERMEZZO ON THE HYPERBOLIC
KAC-MOODY ALGEBRA G++

2 , AND ITS
MAXIMALLY COMPACT SUBALGEBRA K(G++

2 ).

The bosonic part of the Hamiltonian,

H(0) = Gabπaπb+2
∑
a<b

e−2(βb−βa)(Pab)
2+

1

2

∑
a

e−2 βa(P a)2 ,

(4.1)
can be viewed (when remembering the constraint
H(0)=0) as describing the dynamics of a massless
particle (submitted to the constraint gklq̇

kq̇l = 0),
with coordinates qk = (βâ ; nâi ; Bâ) [or, equivalently,
(hij ;Ai)] moving in a 14-dimensional curved (Lorentzian-
signature) spacetime, with metric ds2 = gkldq

kdql de-
fined by

ds2 = Gabdβ
adβb + 1

2

∑
a<b

e+2(βb−βa)
(
dnai(N−1)ib

)2
+

1

2

∑
a

e2βa
Ä
dBa +Bb dn

b
i(N−1)ia

ä2
. (4.2)

In terms of the coordinates hij , Ai, this metric reads

ds2 =
1

4

(
hikhjl − hijhkl

)
dhijdhkl+

1

2
hijdAidAj . (4.3)

Though the latter spacetime metric admits as 20-
dimensional symmetry group the semi-direct product of
GL(4) transformations (Λij) with R4 translations (Ai 7→
Ai + ci), its dynamics is chaotic, and describes the BKL-
type chaos of general solutions of the Einstein-Maxwell
theory near a cosmological singularity [31].

The finite-dimensional model defined by Eq. (3.9) is
a truncation of an infinite-dimensional model describ-
ing the dynamics of a massless particle on the coset

space(time) G++
2 /K(G++

2 ), where G++
2 is the hyperbolic

Kac-Moody group defined by the (untwisted) hyperbolic
extension of the exceptional Lie group G2, and where
K(G++

2 ) denotes the maximally compact subgroup of
G++

2 , defined as the fixed point of the Chevalley involu-
tion (see below). The original motivation for considering
such an hyperbolic Kac-Moody coset is the fact that the
four linear forms

α(1)(β) = β1,

α(12)(β) = β2 − β1,

α(23)(β) = β3 − β2,

α(34)(β) = β4 − β3, (4.4)

entering the four dominant potential walls (among the

Toda-like potentials e−2(βb−βa), e−2βa of the bosonic
Hamiltonian Eq. (3.9)) that determine its chaotic behav-
ior, can be identified with the four simple roots of G++

2 .
Indeed, the four linear forms αi(β) = αi aβ

a, i = 1, 2, 3, 4,
with α1 ≡ α(1), α2 ≡ α(12), α3 ≡ α(23), α4 ≡ α(34),
viewed as forms in β space, with metric Gab (so that
we have the scalar product 〈αi, αj〉 ≡ αi aG

abαj b) have
squared lengths equal to

〈α1, α1〉 = 2
3 , 〈αi, αi〉 = 2 for i = 2, 3, 4 . (4.5)

The associated Cartan matrix (which define G++
2 ) :

Aij = 2
〈αi, αj〉
〈αi, αi〉

, (4.6)

is given by

(Aij) =

Ö
2 −3 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

è
. (4.7)
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The corresponding Dynkin diagram is represented in Eq.
(4.8):

<•
α(1)

•
α(12)

•
α(23)

•
α(34)

(4.8)

The Chevalley-Serre-Kac presentation is then defined by
the four sl(2) triplets (ei, hi, fi), i = 1, 2, 3, 4 (associ-
ated with the four simple roots αi), satisfying the stan-
dard defining relations of a Kac-Moody algebra associ-
ated with Aij :

[hi, hj ] = 0; [ei, fj ] = δijhj ; [hi, ej ] = Aijej ; [hi, fj ] = −Aijfj
(4.9)

together with the crucial Serre relations

ad(ei)
1−Aij (ej) = 0 ; ad(fi)

1−Aij (fj) = 0 . (4.10)

Summarizing the present section so far, the linear
forms α(ab)(β), α(a)(β) entering the (Bianchi-I-reduced)
bosonic Hamiltonian (3.9) suffice to characterize the hy-
perbolic Kac-Moody algebra G++

2 . Similarly to the de-
composition of E10 associated with eleven-dimensional
supergravity [11, 12], one can decompose the Lie algebra
of G++

2 with respect to the gl(4) subalgebra defined by

the gravity-related roots α(ab)(β) (together with the Car-
tan element h1) [28]. One adds to this level-0 subalgebra
(Ka

b) the level-1 generators Ea and Fa associated with

the electric-related roots +α(a)(β) and −α(a)(β). The
rest of the algebra is then defined by taking commuta-
tors, starting with the level-2 defined by E[ab] ≡ [Ea, Eb],
the level 3 defined by E[abc] ≡ [Ea, E[bc]], etc. It it then
checked [28] that the bosonic dynamics defined by Eq.
(3.9) is equal to the reduction of the infinite-dimensional
coset dynamics on G++

2 /K(G++
2 ) obtained by setting to

zero the momenta corresponding to all the positive roots
of levels ` ≥ 2 (similarly to the truncation of E10/K(E10)
beyond level 1 [11, 12]).

The general conjecture made in Refs. [11, 12] is that
there is a gravity-coset correspondence under which the
dynamics of any supergravity theory would be equivalent
to a corresponding hyperbolic Kac-Moody coset dynam-
ics, having the same asymptotic cosmological billiard.
The purpose of the present work is to obtain new evidence
for such a correspondence by focussing on the fermionic
sector of 5-D supergravity, and particularly on the terms
quartic in fermions, which have been neglected in most
of the previous investigations of the gravity-coset con-
jecture. In this respect, we need to consider in detail
the coset analog of the R-symmetry, i.e., the symmetry
group under which the coset fermions are conjectured to
rotate. This group is supposed (in each coset model)
to be the maximally compact subgroup of the considered
Kac-Moody group. In the case of 5-D supergravity, this is
K(G++

2 ), whose Lie-algebra is defined as the fixed point
of the Lie algebra of G++

2 under the Chevalley involution.
The Chevalley involution θ is defined by its action on the
Chevalley-Serre-Kac basis:

θ(hi) = −hi, θ(ei) = −fi, θ(fi) = −ei . (4.11)

The θ-fixed subalgebraK(G++
2 ) ofG++

2 is then generated
by the four Lie-algebra elements

xi ≡ ei − fi . (4.12)

Previous work on supergravity in D=11 has shown
that the gravitino field belonged to a finite-dimensional
representation of the (infinite-dimensional) Lie algebra
K(E10) [13–15]. Analog results were found for other
supergravity theories [27]. In our present context, we
therefore expect that the 5-D gravitino Ψa will belong
to a finite-dimensional representation of K(G++

2 ). The
main results of the present work will indeed be to show
not only that this is true, but to further show that the
O(Ψ4) term in the (quantum) Hamiltonian is invariant
under the K(G++

2 ) rotations defining the representation
of the quantized gravitino. In order to investigate techni-
cally this issue we will need to characterize the conditions
defining a representation of K(G++

2 ).
A linear representation of K(G++

2 ) is characterized by
a vector space on which acts four linear operators Ji sat-
isfying the same defining relations as the four abstract
Lie-algebra elements xi = ei − fi defined above. As each
operator Ji (corresponding to xi) is associated to the
specific simple root αi, it will be convenient to label the
linear operators Ji by the same label as the associated
simple root of G++

2 , as listed in Eq. (4.4). Therefore,
we will denote them simply as J1, J12, J23 and J34, re-
spectively associated with α(1)(β), α(12)(β), α(23)(β) and
α(34)(β).

The set of defining (Serre-Berman) relations that the
four operators J1, J12, J23, J34 must satisfy is [20, 32]

ad4(J1)J12 − 10 ad2(J1)J12 + 9 J12 = 0 , (4.13)

ad2(J12)J1 − J1 = 0 , (4.14)

ad2(J12)J23 − J23 = 0 , (4.15)

ad2(J23)J12 − J12 = 0 , (4.16)

ad2(J23)J34 − J34 = 0 , (4.17)

ad2(J34)J23 − J23 = 0 , (4.18)

[J1, J23] = [J1, J34] = [J12, J34] = 0 . (4.19)

Note that in the present work we will be dealing
with hermitianlike rotation operators Ji, instead of the
anti-hermitian ones xi used in mathematical contexts.
In other words, a Ji rotation will be of the type
exp(
√
−1θiJi), instead of exp(θiadxi).

Several different representations of K(G++
2 ) play a

role in our present 5-D supergravity context. First,
there are representations associated with classical (i.e.
grassmanian-valued) fermions, of spin 1

2 and 3
2 . Sec-

ond, there are representations ofK(G++
2 ) associated with

quantum fermions. Let us describe now the representa-
tions of classical spinors, of spin 1

2 and 3
2 .

Note first that the relations involving only the Jab’s
among Eqs. (4.13) express the fact that the Jab’s are
usual SO(4) rotation operators. The four (complex) com-
ponents of a spin 1

2 Dirac field Ψ define a representation
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space for the Jab’s if we define their action in the usual
Spin(4) way, namely

Jsab = i
γab

2
; 1 ≤ a < b ≤ 4 . (4.20)

We defined here not only the three simple-root generators
J12, J23, J34 (associated with the symmetry-wall simple
roots), but also the three others needed to describe the
rotations in all the two-planes ab of R4. [The factor i
is needed because we are working with hermitianlike op-
erators.] It is then easy to check that if we tentatively
define the generators Ja associated with the electric roots
α(a)(β) = βa as

Jsa =
Csγa

2
; 1 ≤ a ≤ 4 , (4.21)

the defining relations Eqs. (4.13) will be satisfied if the
factor Cs is equal to

Cs = ±1 ; or Cs = ±3 (for a spinor representation) .
(4.22)

Indeed, the first defining relation can actually be factor-
ized as(

ad2(J1)− 32
) (

ad2(J1)− 12
)
J12 = 0 . (4.23)

We can then define two types of 4-dimensional spinor
representations of K(G++

2 ) (with Cs = ±1, or Cs = ±3).
Let us now consider the possible vector-spinor repre-

sentations of K(G++
2 ), i.e., matrices Jab, Ja, acting on

the sixteen components of a gravitinolike object Φa =
γaΨa. [Both the vector index a = 1, 2, 3, 4, and the hid-
den Dirac-spinor index, of Φa take four values.] Here we
consider the actions on Φa rather than on Ψa because it
was found in Ref. [16] that this reveals a hidden factor-
ized structure for the vector-spinor representations asso-
ciated with K(E10) and K(AE3). We found that such
a factorized structure also holds for K(G++

2 ), in spite of
the fact that G++

2 is not simply laced (remember that the
simple root α1 has length-squared 2

3 ). More precisely, we
define, for any one of the simple roots (and more gen-
erally for any of the basic gravitational or electric roots
entering the levels 0 and 1), the action of Jα on a vector
spinor ΦaA as

(Jvsα · Φ)
aA ≡ (δab − 2αaαb) (Jsα)

A
B ΦbB , (4.24)

where αa ≡ Gacαc, and where Jsα is the above-defined ac-
tion of Jα in the (4-dimensional) spinor representation.
Here, for clarity, we have explicitly indicated the (usu-
ally implicit) spinor indices A,B. We then found (in
agreement with Ref. [19]) that the vector-spinor matri-
ces (Jvsα )aAbB satisfy the defining relations (4.13) if, and
only if, the factor Cs entering the electric operator (4.21)
is taken to be

Cs = ± 3 (for a vector− spinor representation) . (4.25)

The value Cs = ±1 fails to define a vector-spinor repre-
sentation of K(G++

2 ) when inserted in Eq. (4.24). Note

that this is precisely the value Cs = 3 that appeared in
the supergravity-derived bilinear Ja, Eq. (3.14). We shall
explain below, after quantizing the supergravity dynam-
ics, the meaning of the quantum avatars of the bilinears
in Eq. (3.14) as generators of a 216-dimensional repre-
sentation of K(G++

2 ), in which lives the quantum state
of our cosmological model.

V. QUANTIZATION

The classical Hamiltonian action of our supersymmet-
ric cosmological model has the form (withN a

i ≡ δai +nai)

S =

∫
dt
(
πaβ̇

a + piaṅ
a
i + P aḂa + i

2 Gab
Ä
Φ†aΦ̇b − Φ̇†aΦb

ä
−‹N ÄHcg + Ψ

′
0̂S + SΨ′

0̂

ä)
.

(5.1)

Here we use Einstein’s summation convention. The in-
dices a, i of the (strictly) upper triangular matrix nai,
and therefore those of its canonical conjugate pia are re-
stricted to the range a < i. The contribution Hcg to the
total Hamiltonian has the structure

Hcg = H(0) +H(2) +H(4) , (5.2)

where the explicit values of the terms H(0), H(2), H(4)

were given above. The action (5.1) features three in-

dependent Lagrange multipliers: ‹N , ‹NΨ
′
0̂, and ‹NΨ′

0̂
,

where Ψ′
0̂

is the shifted value of Ψ0̂, defined in Eq.

(3.8). These Lagrange multipliers reflect the presence
of three local-in-time gauge symmetries: (i) invariance
under reparametrization of the time variable; and (ii)
the two local-in-time supersymmetries ε0(t), ε0(t). These
gauge symmetries allow one to choose at will the values

of the Lagrange multipliers ‹N and ‹NΨ′
0̂
. It is convenient

to choose the coset gauge where ‹N = 1 and Ψ′
0̂

= 0.

The action (5.1) defines a constrained dynamics, with
first-class constraints

Hcg ≈ 0 ; SA ≈ 0 ; SA ≈ 0 , (5.3)

where we explicitly indicated the spinor index A, which
takes four values.

The classical (i.e., Grassmanian) consistency of super-
gravity implies that the constraints (5.3) close under the
Poisson(-Dirac) brackets defined by the kinetic terms

{βa, πb}P = δab ; {nai, p
j
b}P = δab δ

j
i ;

{Ba, P b}P = δab ; {ΦaA,Φ†bB}P =
1

i
GabδAB .(5.4)

A crucial classical identity (which we checked to hold) is
the fact that the Poisson brackets of the supersymmetry
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constraints close as follows:

{SA,SB}P = 0 ;

{S†A,S
†
B}P = 0 ;

{SA,S†B}P = L(Φ)†
C

ABSC − L(Φ)
C
ABS

†
C +

1

i
δABH

cg ,

(5.5)

where L(Φ)
C
AB is linear in Φ (and does not contain Φ†,

nor any of the bosonic dynamical variables).
We quantize the constrained dynamics defined by the

action (5.1) à la Dirac, i.e. by: (i) replacing Poisson-
Dirac brackets by appropriate (anti-)commutators; (ii)
verifying that this allows one to construct operators pro-
viding a deformed version of the classical algebra of
constraints; and (iii) imposing the quantum constraints

Ĉ = (“H, ŜA, Ŝ†A) as conditions restricting physical states

|Ψ〉: Ĉ|Ψ〉 = 0.
For the bosonic degrees of freedom we adopt a

Schrödinger picture. The wave function of the Universe
is seen as a function of the fourteen configuration-space
variables βa, nai and Ba. The corresponding basic con-
jugate quantum momenta operators are represented as

π̂a =
~
i
∂βa ,

p̂ia =
~
i
∂na

i
,“P a =

~
i
∂Ba . (5.6)

In the following, we shall often set ~ = 1. The
momentum-like combination Pab, Eq. (3.10), associated
with the symmetry walls α(ab) are then defined as“Pab ≡ ∑

a<i≤b

p̂iaN b
i −Ba“P b

=
∑
a<i≤b

N b
ip̂
i
a − “P bBa . (5.7)

As indicated, there are no ordering ambiguities in defin-

ing “Pab because they are defined only for a < b. These
operators satisfy an algebra which coincides (modulo a
factor i~) with the classical one. For instance, we have

{P12, P23}P = P13 ; and [“P12, “P23] = i~“P13 . (5.8)

Similarly

{P12, P
1}P = −P 2 ; and [“P12, “P 1] = −i~“P 2

{P12, P
2}P = 0 ; and [“P12, “P 2] = 0 . (5.9)

The fermionic operators have to obey anticommuta-
tions relations dictated by their kinetic term. These an-
ticommutation relations take an especially simple form
when using the objects Φa and Φ†

a
(rather than Ψa and

Ψ
a
), namely

{Φ̂aA, Φ̂bB} = 0 , {Φ̂†aA, Φ̂†bB} = 0 ,

{Φ̂aA, Φ̂†bB} = ~Gab δAB , (5.10)

where, now, the curly brackets (without a P subscript)
denote an anticommutator.

When decomposing the hermitian-conjugated quan-

tum fermionic operators Φ̂Aa, Φ̂†aA into their (formally)

hermitian parts, φ̂Aa1 ≡ 1
2 (Φ̂Aa + Φ̂†aA), φ̂Aa2 ≡ 1

2i (Φ̂
Aa−

Φ̂†aA), the thirty-two fermionic operators, φ̂Aai , i = 1, 2,
are found to satisfy a Clifford algebra in a real thirty-
two-dimensional space endowed with the quadratic form
1
2~ δijG

ab δAB , which has signature 24+, 8−. Thus the

gravitino operators can be represented by 216 × 216 =
65536× 65536 Dirac matrices1 and the wave function of
the Universe can be viewed as a 65536-dimensional spinor
of Spin(24,8), depending on the fourteen configuration-
space variables βa, nai and Ba: Ψ = Ψσ(βa, ϕb), with
σ = 1, . . . , 65536.

VI. QUANTUM CONSTRAINTS AND THEIR
CONSISTENCY

A crucial issue in the quantization of our system is to
promote the classical constraints (5.3) into corresponding

quantum operators, say ŜA, ŜA, and “H, so as to impose
them, à la Dirac, on the state |Ψ〉:

ŜA |Ψ〉 = 0, ŜA |Ψ〉 = 0, “H |Ψ〉 = 0 . (6.1)

However, such a quantization scheme will be consistent
only if we can define an ordering such that the quan-

tum constraints operators ŜA, ŜA, and “H do close on
themselves by satisfying a quantum version of the classi-
cal identities (5.5). Let us indicate how we succeeded in
defining such an ordering and then in proving its quan-
tum consistency.

The structure of the classical supersymmetry con-
straint is, sketchily,

S ∼ πΦ +
∑
α

e−α(β)PαΦ + Φ†ΦΦ . (6.2)

There are no ordering ambiguities in the dependence of
S on bosonic variables because: (i) the bosonic variables
commute with the fermionic ones; (ii) the wall forms α(β)
commute with the momentalike variables Pα; and (iii) we
have seen that the Pα’s have no internal ordering ambi-
guities. Finally, the only ordering ambiguity in the def-

inition of Ŝ is contained in the last, cubic-in-fermions
term Φ†ΦΦ. The ordering of the latter term is, how-
ever, uniquely fixed by the natural requirement of re-
specting the symmetry between the Φ’s and the Φ†’s that
is present in the basic quantization conditions (5.10).

1 In view of the signature 24+, 8−, these matrices can be chosen
to be real.
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Starting from the classical (Grassmannian) expression
of the cubic contribution,

S(3)
A = +σ

C̄[AB]
A ΨC̄ΨAΨB , (6.3)

we define its quantum version by

Ŝ(3)
A ≡ −σC̄[AB]

A
“ΨA“ΨC̄“ΨB . (6.4)

Here, the calligraphic indices A,B, C̄ denote combined
vector-spinor indices aA, bB, cC (with an additional bar
on the indices pertaining to a Ψ), and we use the Ein-
stein summation convention on these indices. The coef-
ficients σ

C̄[AB]
A are numerical factors (involving products

of gamma matrices) that are defined so as to be antisym-

metric in AB. When reexpressing Ŝ(3)
A in terms of the

ΦA ≡ ΦaA’s and Φ†A ≡ Φ†aA’s we have

Ŝ(3)
A = cAABCΦ̂

AΦ̂†BΦ̂C , (6.5)

with corresponding numerical coefficients cAABC = −cACBA.
We henceforth use such an ordering2.

We have checked that this ordering enforces a symme-

try under which Φa and Φ̃a ≡ Φ†a are swapped: Φ↔ Φ†.
This is most easily seen by using a representation where
γ0, γ1, γ2, γ3 are real while γ4 = −iγ0γ1γ2γ3 is purely
imaginary. In such a representation the numerical coef-
ficients cAABC entering Eq. (6.5) are found to be purely
imaginary. This ensures thatÄ

cAABCΦ̂
AΦ̂†BΦ̂C

ä†
= (cAABC)

∗Φ̂†CΦ̂BΦ̂†A (6.6)

= −cAABCΦ̂†CΦ̂BΦ̂†A = +cAABCΦ̂
†AΦ̂BΦ̂†C ,

where we used (cAABC)
∗ = −cAABC together with the an-

tisymmetry cAABC = −cACBA and a relabelling of indices,
C ↔ A (which are summed over).

Defining SA in the way just explained, we have shown
that the following quantum versions of the classical iden-
tities (5.5) hold. First,

{ŜA, ŜB} = 0 ,

{Ŝ†A, Ŝ
†
B} = 0 , (6.7)

and, second,

{ŜA, Ŝ†B} =
i~
2

[L(Φ̂)†CAB , ŜC ]− i~
2

[L(Φ̂)
C

AB , Ŝ
†
C ]

+~δAB“H0 , (6.8)

where L(Φ̂)
C

AB = LCABAΦ̂A is the same linear form in

Φ̂ that entered the classical identity (5.5). [The LCABA

2 Actually, any other ordering will lead to the same final physical
results because we have shown that any ordering of the cubic
terms can be absorbed in a linear shift of the π’s of the type
πa 7→ π′a = πa + iδπa, where δπa are some real numbers.

being purely numerical coefficients made of gamma ma-
trices.] Note the presence of quantum anticommutators
({, }) on the left-hand side, and the presence of quantum
commutators ([, ]) on the right-hand side. The quantum

operator “H0 appearing on the last right-hand side is a

(formally) hermitian operator ( “H0 = “H†0), which is a
quantum version of the classical Hamiltonian Hcg. It
has the structure“H0 = “H(0) + “H(2) + “H(4)

0 , (6.9)

where the bosonic part reads:“H(0) = Gabπ̂aπ̂b+2
∑
a<b

e−2(βb−βa)(“Pab)2+
1

2

∑
a

e−2 βa(“P a)2 ,

(6.10)
the part quadratic in fermions reads:“H(2) = +2

∑
a<b

e−(βb−βa)“PabĴab(Ψ)− 1√
3

∑
a

e−β
a“P aĴa(Ψ) ,

(6.11)

where the quantum bilinears Ĵα are the quantum avatars
of Eqs (3.14), namely

Ĵab(Ψ) = (Gcd − 2α(ab)
c α

(ab)
d )Φ̂† c

Ç
iγab

2

å
Φ̂d ,

Ĵa(Ψ) = (Gcd − 2α(a)
c α

(a)
d )Φ̂† c

Å
3γa

2

ã
Φ̂d , (6.12)

and where the quartic-in-fermions part “H(4)
0 is a

uniquely-defined (hermitian) ordered version of the clas-
sical expression (3.12). There are no ordering ambiguities

in the definition (6.12) of the Ĵα’s (because the matrices
iγab

2 and 3γa

2 are traceless). Actually, one can also check
that the only ordering ambiguity in a hermitian-ordered
version of Eq. (3.12) lies in a double Wick contraction,
corresponding to an additive c-number ambiguity. Any-
way, what is important at this stage is that the existence

of the last identity, Eq. (6.8), uniquely defines “H0 and,

in particular, “H(4)
0 . If we define an empty state |0〉− as

being annihilated by all the Φ̂’s,

ΦaA|0〉− = 0, (6.13)

we found that “H(4)
0 |0〉− = c0 ~2 |0〉− , (6.14)

where

c0 = −743

24
, (6.15)

which characterizes the c-number ordering ambiguity in
the quantization path leading from the classical H(4) to“H0.

The identity Eq. (6.8) has the advantage of featuring
only manifestly hermitian building blocks. However, it
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is, by itself, not of the form needed for proving the con-
sistency of our Dirac quantization scheme. Indeed, the
quantum constraints, Eqs.(6.1), which are of the form

ĈiΨ = 0, will close on themselves only if all the (anti-
)commutators between the quantum constraint operators

Ĉi close on this same set of constraints in the following
way

[Ĉi, Ĉj ]± =
∑
k

L̂kij Ĉk , (6.16)

with the constraint operators Ĉk appearing on the right of

the coefficient operators L̂kij . This is not the case for the
identity (6.8), which contains commutators on the right-
hand side. However, we have shown that the difference

between the anticommutator of L(Φ̂)†CAB with ŜC , and

the one of L(Φ̂)
C

AB with Ŝ†C , is such that it leads to an
identity of the required form, modulo a redefinition of the

quantum Hamiltonian “H entering the last term. More
precisely, we found that Eq. (6.8) implies the identity

{ŜA, Ŝ†B} = i~L(Φ̂)†CABŜC − i~L(Φ̂)
C

ABŜ
†
C

+~ δAB“H1 , (6.17)

where the new Hamiltonian “H1 reads“H1 = “H0 − 2 i$aπ̂a . (6.18)

Here the real vector $a (living in β space, or Cartan
space) has the following components (a = 1, 2, 3, 4)

$a =
1

4
{1, 2, 3, 4} , (6.19)

or, in covariant form (i.e., in root space)

$a ≡ Gab$a = −1

4
{9, 8, 7, 6} . (6.20)

The Hamiltonian “H0 which appeared in the identity Eq.
(6.8) was (formally) hermitian, while the shifted Hamil-

tonian “H1 entering the new identity Eq. (6.17) is for-
mally non-hermitian. A similar situation arose in our
previous work [25]. Like in the latter case, a simple re-
definition of the wavefunction of the universe allows us
to work again with a formally hermitian Hamiltonian.
Indeed, if we writes the quantum-state wave function
〈βa, ϕb;σ|Ψ〉 = Ψσ(βa, ϕb) as

Ψσ(βa, ϕb) = e−$aβ
a

Ψ′σ(βa, ϕb) , (6.21)

the terms involving the differential operator π̂a = ~
i ∂βa

in “H1 = Gabπ̂aπ̂b − 2 i$aπ̂a + . . .

= −~2Gab∂βa∂βb − 2~$a∂βa + . . .

= −~2Gab (∂βa +$a)
(
∂βb +$b

)
+ ~2$2 + . . .

(6.22)

where we defined

$2 ≡ Gab$a$b = −70

16
, (6.23)

take the following form when reexpressed through their
action on Ψ′σ(βa, ϕb):“H1Ψσ(βa, ϕb) = e−$aβ

a“H ′1Ψ′σ(βa, ϕb) , (6.24)

where “H ′1 = −~2Gab∂βa∂βb + ~2$2 + . . .

= Gabπ̂′aπ̂
′
b + ~2$2 + . . . (6.25)

In the last expression the notation π̂′a denotes the differ-
ential operator ~

i ∂βa when acting on the primed wave-
function.

Finally, “H ′1 can be written as“H ′1 = “H ′(0) + “H(2) + “H ′(4)
1 . (6.26)

Here“H ′(0) = Gabπ̂′aπ̂
′
b+2

∑
a<b

e−2(βb−βa)(“Pab)2+
1

2

∑
a

e−2 βa(“P a)2 ,

(6.27)“H(2) is given by the same expression (6.11) as above, and
the last contribution is given by“H ′(4)

1 = “H(4)
0 + ~2$2 = “H(4)

0 − 70

16
~2 . (6.28)

In view of our previous result (6.14), we conclude that

the vacuum value of the new Hamiltonian “H(4)
1 is equal

to “H ′(4)
1 |0〉− = c1~2 |0〉− , (6.29)

where

c1 = c0 +$2 = −743

24
− 70

16
= −106

3
. (6.30)

VII. KAC-MOODY STRUCTURE (G++
2 , K(G++

2 ))
OF THE QUANTUM SUPERGRAVITY

DYNAMICS

A. Summary of the quantum supergravity
dynamics

Summarizing the results obtained so far, the quantum
supergravity dynamics of our five-dimensional cosmolog-
ical model is described by a 216-dimensional spinorial
wave function Ψ = Ψσ(βa, nai, Ba) (where the spinorial
index σ takes 216 = 65536 values) that must satisfy the
8× 216 constraints

ŜA |Ψ〉 = 0, ŜA† |Ψ〉 = 0 . (7.1)
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Here, each of the ŜA’s and ŜA†’s is represented by a
216×216 matrix of first-order differential operators in the
fourteen bosonic variables βa, nai, Ba. More precisely the

structure of ŜA is

ŜA =
∑
a

π̂aΦ̂aA −
∑
a<b

e−(βb−βa)“Pab(γab)AB(Φ̂bB − Φ̂aB)

− i

√
3

2

∑
a

e−β
a“P a(γa)ABΦ̂aB + ŜA(3) , (7.2)

where π̂a, “Pab, “P a are the first-order derivative opera-

tors defined in Eqs. (5.6), while the sixteen Φ̂aA are
216 × 216 “gamma matrices” satisfying the Clifford al-

gebra (5.10). The last term ŜA(3) in Eq. (7.2) (which is

analogous to a matrix-valued mass term M̂ in a Dirac

equation γµ“PµΨ + M̂Ψ = 0) is cubic in the Φ̂aA’s and
independent of bosonic degrees of freedom. It is defined

by the ordering displayed in Eq. (6.5), with Ŝ†A(3) being

correspondingly ordered. Note also that the momenta en-

tering Ŝ†A contain π̂†a, which is defined as usual as being
π̂†a ≡ π̂a.

Similarly to the fact that the first-order Dirac equation

γµ“PµΨ +mΨ = 0 entails the second-order Klein-Gordon

equation ηµν“Pµ“PνΨ + m2Ψ = 0, the first-order (super-
symmetry) constraints (7.2) imply a quantum (Hamil-
tonian) constraint that is second-order in the bosonic

quantum momenta π̂a, “Pab, “P a. The ordering of this
quantum Hamiltonian constraint is fully determined by
the above-defined ordering of the supersymmetry con-
straints. When acting on the rescaled wave function

Ψ′σ(βa, ϕb) = e+$aβ
a

Ψσ(βa, ϕb) , (7.3)

the quantum Hamiltonian constraint reads“H ′1Ψ′(βa, ϕb) = 0 , (7.4)

where “H ′1 is a Klein-Gordon-like operator of the form“H ′1 = Gabπ̂′aπ̂
′
b + 2

∑
a<b

e−2(βb−βa)(“Pab)2

+
1

2

∑
a

e−2 βa(“P a)2 + “H(2) + µ̂2 . (7.5)

Here π̂′a ≡ ~
i ∂βa when acting on Ψ′σ(βa, ϕb), the bilinear

coupling to the fermions “H(2) is given by“H(2) = +2
∑
a<b

e−(βb−βa)“PabĴab(Ψ)− 1√
3

∑
a

e−β
a“P aĴa(Ψ) ,

(7.6)
while the “squared mass term” µ̂2 is quartic in the
fermions Φ and Φ†, and independent of the bosonic de-
grees of freedom βa, nai, Ba. When one is far from all
the walls (and on their positive sides), i.e. when all the
linear forms βa, and βb − βa (with a < b) are much
larger than 1, one can neglect all the exponential terms,

so that the Hamiltonian constraint reduces to a simple
Klein-Gordon-like equation in the 4-dimensional β space:(

Gabπ̂′aπ̂
′
b + µ̂2

)
Ψ′(βa) = 0 . (7.7)

However, the squared-mass term µ̂2 ≡ “H ′(4)
1 in the latter

far-wall Klein-Gordon equation is not a c number, but an
operator in the quantum fermionic space, i.e. a 216× 216

matrix acting on the spinor index σ of the wave function
Ψ′σ.

B. Kac-Moody structures in the quantum
constraints

.
Having summarized the quantum dynamics of our five-

dimensional supergravity cosmological model, we can
now highlight the hyperbolic Kac-Moody structures it
contains.

First, both the supersymmetry constraints, and the
Hamiltonian one, involve exponential terms of the form

e−αI(β) (in Ŝ and Ŝ†) or e−2αI(β) (in “H ′1). Here, the
αI(β)’s are certain linear forms in the logarithmic scale
factors βa parametrizing the diagonal degrees of freedom
of the spatial metric hij . There are ten such linear forms.
Six of them, namely

α(ab)(β) ≡ βb − βa (with a < b) , (7.8)

are called “symmetry walls forms”, and are linked to
the off-diagonal degrees of freedom of the spatial met-
ric hij(t), while the remaining four “electric wall forms”,
namely

α(a)(β) ≡ βa , (7.9)

are linked to the time-dependent electric potential Ai(t).
When endowing the 4-dimensional β space with the
Lorentzian-signature metric Gab defining the kinetic
terms of the βa(t)’s, Eq. (2.17), the wall forms α(ab)(β)
and α(a)(β) can be identified with real roots of the
hyperbolic Kac-Moody algebra G++

2 . In addition, the

four linear forms α(12)(β), α(23)(β), α(34)(β), α(1)(β) that
can be identified with the four simple roots of G++

2 are
the ones that enter the four dominant potential walls
when considering the BKL-type chaos of general solu-
tions of the (Einstein-Maxwell-like) bosonic dynamics of
5D supergravity near a cosmological singularity. [In-
deed, in the Weyl chamber defined by the positivity
of α(12)(β), α(23)(β), α(34)(β), α(1)(β), i.e. in the do-
main 0 < β1 < β2 < β3 < β4, the other exponen-
tial potentials are subdominant; e.g. as α(13)(β) =
α(12)(β) + α(23)(β), we have the subdominance property

e−α
(13)(β) = e−α

(12)(β)e−α
(23)(β).]

Besides the appearance of some of the roots of G++
2 ,

including the crucial simple roots (which suffice to gener-
ate the full root lattice of G++

2 ), the other Kac-Moody-
related features exhibited by our quantum dynamics con-
cern the fermionic sector. There are two such features.
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On the one hand, the bilinear coupling to the fermions“H(2), Eq. (7.6), associates to each one of the wall
roots αI(β) = (α(ab)(β), α(a)(β)), a coupling term of the
generic form

e−αI(β)“PαI ĴαI , (7.10)

where “PαI is a quantum momentum associated with the
bosonic variable αI(β) (and contributing to the bosonic

part of the Hamiltonian a term ∝ e−2αI(β)(“PαI )2 ), while

ĴαI is a fermion bilinear. The important point here is
that, when normalizing3 the various fermion bilinears

ĴαI as in Eq. (6.12), they do satisfy the Serre-Berman
relations Eq. (4.13) as operators acting on the 216-
dimensional Clifford representation space of the quantum
fermions Φ, Φ†. This follows from the fact that the Fock
quantization (for fermions, as is relevant here) has func-
torial properties in that it maps classical generators Jα
acting on some vectors v, members of some n-dimensional

vector space V, onto quantum operators Ĵα acting on the
Fock space built by piling up the successive antisymmet-
ric powers of V (up to the maximum power V∧n allowed
by antisymmetry). [In our case, n = 16 and the space
V is that of classical vector-spinors vaA.] More precisely,
given a linear endomorphism Jα of V (explicitly given,
in some basis ei of V, by a matrix (Jα)ij acting on the

vector index of v = viei, i.e. (Jα · v)i = (Jα)ijv
j), the

Fock space is C⊕ V ⊕ V∧2 ⊕ · · · V∧n, and the quantized

Ĵα = Φ†i (Jα)ijΦ
j , with {Φ†i ,Φj} = δji , decomposes as a

direct sum of operators acting on each (fermionic) level,
from NF = 0, up to NF = n. More precisely: at level

NF = 0 (Fock vacuum, |0〉−), Ĵα acts like 0; at level

NF = 1, Ĵα acts on V like Jα; at level NF = 2, Ĵα acts
on V∧2 like

Ĵα|NF=2 = (Jα ⊗ 1)⊕ (1⊗ Jα) . (7.11)

Explicitly, the meaning of the latter equation is that

Ĵα|NF=2 acts on a (factorized4) element u ∧ v ∈ V∧2

as (Jα · u) ∧ v + u ∧ (Jα · v). At the fermionic level NF ,

Ĵα decomposes as a sum of NF terms of the same type
as indicated in Eq. (7.11), e.g.

Ĵα|NF=3 = (Jα⊗1⊗1)⊕(1⊗Jα⊗1)⊕(1⊗1⊗Jα). (7.12)

This nice functorial nature of the map transforming a
classical operator Jα into a corresponding quantized one

Ĵα allows one to transport many properties satisfied by

Jα into corresponding properties of Ĵα.

3 As discussed in Appendix B of [16] the appropriate Kac-Moody-
related normalization of the momentum PαI depends on the
squared-length α2

I = GabαIaα
I
b of the considered root. The nor-

malization induced by the supergravity dynamics happens to be
appropriate for a Kac-Moody interpretation.

4 A generic element of V∧2 is a linear combination of such factor-
ized elements.

For instance, classical commutators [Jα1 , Jα2 ] are
mapped onto their corresponding quantum ones, namely

[Ĵα1
, Ĵα2

] = Ÿ�[Jα1
, Jα2

] . (7.13)

This functorial property ensures, in particular, that, if
we have, say, [Jα1

, Jα2
] = cJα3

, the corresponding quan-

tum commutators satisfy [Ĵα1
, Ĵα2

] = cĴα3
. This guaran-

tees, in particular, that the Serre-Berman relations, Eq.
(4.13), are preserved by the quantization. An important

consequence is that the root operators ĴαI entering the

quantized Hamiltonian “H(2) generate a 216-dimensional
representation of K(G++

2 ), the maximally compact sub-
algebra ofG++

2 fixed by the Chevalley involution. We will
indicate below another important consequence of these
functorial properties concerning the reflection operators
of quantum fermions in the short-wavelength limit of the
cosmological dynamics.

In addition, we have also explicitly proven that the
term quartic in fermions in the quantum Hamiltonian
constraint, namely µ̂2 in Eq. (7.5), commutes with all

the root operators ĴαI :

[ĴαI , µ̂
2] = 0 ; for I = (ab), (a) . (7.14)

Quite remarkably, the latter commutation property is
rooted in a hidden simple structure of the quartic-in-
fermion term. Indeed, we found that µ̂2 can be expressed

in terms of two simple fermion-bilinears “NF and “CF ,

which separately commute with the root operators ĴαI .
Namely,

µ̂2 =
14

3
− 1

2
(“NF − 8)2 − 1

4
(“C†F “CF + “CF “C†F )

= −106

3
+ 9“NF − 1

2
“N2
F −

1

2
“C†F “CF , (7.15)

with “NF ≡ GabΦ̂a†Φ̂b ≡ GabΦ̂aA†δABΦ̂bB , (7.16)

and “CF ≡ GabΦ̂aACABΦ̂bB . (7.17)

Eq. (7.16) defines the quantum fermion number, with
eigenvalues NF = 0, 1, · · · , 16. In Eq. (7.17) the 4×4 ma-
trix CAB is the “charge conjugation” matrix of the (spa-
tial) γi matrices, defined so that it is hermitian, C† = C,
and satisfies CγiC

−1 = −γTi . [CAB is an antisymmetric
matrix in all representations of the γ matrices.] We then
have“C†F ≡ GabΦ̂bB†CABΦ̂aA† = −GabΦ̂aA†CABΦ̂bB† .

(7.18)

As already said, both “NF and “CF (and therefore also “C†F )

commute with all the Ĵab’s and Ĵa’s. Note that while “NF
is a sesquilinear form “NF ∼ Φ†Φ that is hermitian, “CF is
a symplectic bilinear form in the Φ’s (which would vanish
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if the Φ’s would commute rather than anticommute). It
is also to be noted that“NF − 8 =

1

2
Gab

Ä
Φ̂a†Φ̂b − Φ̂aΦ̂b†

ä
, (7.19)

is odd under the up-down fermion symmetry where one
swaps Φ ↔ Φ†. The first line in Eq. (7.15) then shows
that µ̂2 is also invariant under the swapping Φ ↔ Φ†.
[The up-down fermion symmetry was used above as part
of our definition of the ordering of the supersymmetry
constraints.]

From the mathematical point of view, as already men-
tioned above, any four operators J1, J12, J23, J34 (acting
as endomorphisms of some vector space) satisfying the
Serre-Berman relations, Eq. (4.13), define a represen-
tation of the (formally) maximally compact subalgebra
K(G++

2 ) of G++
2 . We can therefore summarize the re-

sults of the present section by saying that the fermions
of our quantized supersymmetric cosmological model live
in a 216-dimensional representation of K(G++

2 ), and that
all the building blocks entering the dynamics of the

fermions, i.e. the various terms defining “H(2) ∼ Φ†Φ

and “H(4) ∼ Φ†ΦΦ†Φ have a direct meaning in terms of

the simple-root generators Ĵ1, Ĵ12, Ĵ23, Ĵ34 of K(G++
2 ).

VIII. SOLUTIONS OF THE QUANTUM
CONSTRAINTS

In this final section, we briefly discuss some aspects
of the solutions of our quantized cosmological model, i.e.
the solutions of the supersymmetry constraints (7.1). We
recall that the latter supersymmetry constraints entail
the Hamiltonian constraint, say Eq. (7.4).

Let us first focus on the structure of the solutions far
from all the walls, i.e. in a domain of the βa’s where we

can neglect all the exponential terms e−(βb−βa) and e−β
a

in the ŜA’s, and their squares in “H. In this limit the
supersymmetry constraints reduce toÅ

Φ̂aA
~
i
∂βa + ŜA(3)

ã
|Ψ(β)〉 = 0 , (8.1)Å

Φ̂aA†
~
i
∂βa + ŜA†(3)

ã
|Ψ(β)〉 = 0 , (8.2)

while the Hamiltonian constraint readsï
Gab

Å
~
i
∂βa − i$a

ãÅ
~
i
∂βb − i$b

ã
+ µ̂2

ò
|Ψ(β)〉 = 0 ,

(8.3)

where $a ≡ Gab$
a = − 1

4{9, 8, 7, 6}. In these equations
we have formally considered that the operator π̂a was
hermitian, and we have used the original, non-rescaled
wavefunction Ψ(β) (rather than the rescaled wavefunc-
tion Ψ′(β), Eq. (7.3), used in Eq. (7.4)).

A. Spectrum of µ̂2

To solve the Hamiltonian constraint we can look for so-
lution states |Ψ〉 that are eigenstates of the µ̂2 operator.
It is therefore interesting to first discuss the eigenvalues
and eigenstates (in fermionic space) of µ̂2. The explicit

expression (7.15) of µ̂2 show that µ̂2 commutes with “NF .
The latter operator defines the fermion number with re-
spect to the Fock vacuum of the Φ’s, i.e. the empty state
|0〉− such that

Φ̂aA|0〉− = 0 . (8.4)

Starting from this empty state, the NF = 1 states
are obtained by acting on |0〉− with any of the six-

teen anticommuting fermionic creation operator Φ̂aA†,
etc. The number of states at level NF is then equal to(

16
NF

)
=
(

16
16−NF

)
, i.e. 16 for NF = 1 (and NF = 15), 120

for NF = 2, 14, etc., with a maximum value
(

16
8

)
= 12870

for NF = 8. The filled state, say |0〉+, at level NF = 16
is unique and such that

Φ̂aA†|0〉+ = 0 . (8.5)

The explicit expression (7.15) of µ̂2 allows one to prove

that µ̂2 also commutes with the operators “CF and “C†F :

[µ̂2, “CF ] = 0 ; [µ̂2, “C†F ] = 0 . (8.6)

This is seen by using the easily checked commutation
relations [“NF , ”CF ] = −2”CF , (8.7)[“NF , ”CF †] = +2”CF † , (8.8)[”CF † ,”CF ] = +4 “NF − 32 . (8.9)

Noting that “C†F increases the value of NF by 2, while“CF decreases NF by 2, and that they both commute

with µ̂2, we can use “C†F and “CF as ladder operators to
map some sub-eigenspaces of µ̂2 at fermion level NF onto
corresponding eigenspaces of µ̂2 at fermion levels nF ±
2, with the same value of µ2. This yields the following
spectrum of µ̂2 when NF varies between 0 and 8 (with
symmetric results when N ′F = 16−NF ):
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NF = 0, 16 µ2 = −106

3

∣∣
1

NF = 1, 15 µ2 = −161

6

∣∣
16

NF = 2, 14 µ2 = −106

3

∣∣
1

, − 58

3

∣∣
119

NF = 3, 13 µ2 = −161

6

∣∣
16

, − 77

6

∣∣
544

NF = 4, 12 µ2 = −106

3

∣∣
1

, − 58

3

∣∣
119

, − 22

3

∣∣
1700

NF = 5, 11 µ2 = −161

6

∣∣
16

, − 77

6

∣∣
544

, − 17

6

∣∣
3808

NF = 6, 10 µ2 = −106

3

∣∣
1

, − 58

3

∣∣
119

, − 22

3

∣∣
1700

, +
2

3

∣∣
6188

NF = 7, 9 µ2 = −161

6

∣∣
16

, − 77

6

∣∣
544

, − 17

6

∣∣
3808

, +
19

6

∣∣
7072

NF = 8 µ2 = −106

3

∣∣
1

, − 58

3

∣∣
119

, − 22

3

∣∣
1700

, +
2

3

∣∣
6188

, +
14

3

∣∣
4862

Here the numbers indicated after the eigenvalues of µ̂2

denote the dimensions of the corresponding eigenspaces.
For instance, the one-dimensional eigenspace µ2 = − 106

3
at level NF = 2 is obtained by acting on the unique

NF = 0 state by ”CF †. In other words, if we define the
function

f(n) ≡ −106

3
+ 9n− 1

2
n2 , (8.10)

the possible eigenvalues of µ̂2 at a given level NF are of
the form f(n), with degeneracy

(
16
n

)
−
(

16
n−2

)
, where the

integer n runs over the values NF , NF − 2, NF − 4, · · · .

B. Far-wall solutions of the quantum constraints at
low (and high) fermion levels

The above-determined spectrum of µ̂2 yields a neces-
sary constraint on possible solution wavefunctions, but
is far from sufficient to determine whether such solutions
exist at some given fermion level NF . [The reasoning
given below Eq. (11.21) of Ref. [25] shows that one can
look for solutions having a given NF level.] We must
tackle the supersymmetry constraints, Eqs. (8.2), (8.2).
We succeeded in doing so for the levels NF = 0, 1, 2, 3 and
their up-down symmetric partners NF = 16, 15, 14, 13.

The main result at the levels NF = 0, 1, 2, 3 (and NF =
16, 15, 13) is that there exist solutions of the type

|Ψ(β)〉 = exp(iπaβ
a)|Ψ(0)〉 , (8.11)

only for certain specific, discrete values of the momenta
πa.

At the level NF = 0, |Ψ(0)〉 must be proportional
to |0〉−, while πa must take the specific value πNF=0

a =

i
4{19, 16, 13, 10}. Note that the corresponding value π′a
parametrizing the rescaled wavefunction |Ψ′(β)〉, namely

π′a = πa − i$a , (8.12)

is also purely imaginary and is fixed to the specific value

π′
NF=0
a = i{7, 6, 5, 4} . (8.13)

It is easily checked that Gabπ′
NF=0
a π′

NF=0
b is equal to

−µ2
NF=0 = + 106

3 , as it should be.
At the level NF = 1, we found that there does not

exist any solution of the supersymmetry constraints.
At the level NF = 2, there exist only five possible, dis-

crete values of the momenta πa, all of them being purely
imaginary. The corresponding linear space of solutions

is 6-dimensional, because one value of πa (namely π
(1)
a =

i
4{11, 8, 9, 6}) admits a 2-dimensional space of solutions
for the spinor factor |Ψ(0)〉. The other possible values

of πa at NF = 2 are: π
(2)
a = i

4{19, 16, 13, 10} = πNF=0
a

(with spinor part ĈF †|0〉), π(3)
a = i

4{7, 12, 9, 6}, π(4)
a =

i
4{11, 8, 5, 10} and π

(5)
a = i

4{23, 12, 9, 6}. The values of

µ2 corresponding to the five possible momenta at level
NF = 2 are (µ2)(1) = (µ2)(3) = (µ2)(4) = (µ2)(5) = − 58

3

and (µ2)(2) = − 106
3 .

At the level NF = 3, there exists only one possible,
discrete value of πa, namely πNF=3

a = i
4{5, 8, 3, 6} (with

µ2
NF=3 = − 77

6 ), with a corresponding 4-dimensional
eigenspace for the spinor part |Ψ(0)〉.

There exist corresponding mirror solutions at NF =
16, 14, 13 with correspondingly equal values of πa. More
generally the up-down symmetry in fermion space guar-
antees that one can map any solution at any level NF into
a corresponding solution at level 16 − NF . Indeed, un-
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der the transformation where5 Φ 7→ Φ̃ ≡ Φ† (and there-

fore Φ† 7→ Φ̃† ≡ Φ) our ordering, Eq. (6.5), shows that

S 7→ S̃, where S̃ ∼ πΦ̃ + cΦ̃Φ̃†Φ̃ is simply equal to S†.
Then, using Eq. (6.6) (and (π̂)† ≡ π̂), one finds that

S† 7→ S̃†, where S̃† is simply equal to S. Thereby any
solution |Ψ(β)〉 at some level NF = n constructed by
acting on the empty state |0〉− with n creation operators
Φ†A = Φ†aA, say

|Ψ(β)〉 = XA1A2···An(β)Φ†A1Φ†A1 · · ·Φ†An |0〉− , (8.14)

with coefficients XA1A2···An(β) = X[A1A2···An](β), can be
automatically mapped into a corresponding mirror solu-
tion at level NF = 16−n obtained by acting on the filled

state |0〉+ (which is annihilated by the Φ̃A’s) with the

operators Φ̃†A ≡ ΦA, namely

|‹Ψ(β)〉 = XA1A2···An(β)ΦA1ΦA2 · · ·ΦAn |0〉+ . (8.15)

Note that this mirror solution at level 16 − n in-
volves the same coefficients XA1A2···An(β). In particular,
when considering plane-wave solutions, XA1A2···An(β) =
eiπaβ

a

XA1A2···An(0), this up-down symmetry maps a mo-
mentum πa at level n into the same momentum πa at level
16− n.

In addition to this up-down symmetry of the space
of solutions of the constraints, there is an additional Z2

symmetry mapping any solution at level NF into a cor-
responding solution at the same level. This second sym-
metry is rooted in the reality structure of the supersym-
metry constraints, namely in the fact that the numerical
coefficients cAABC entering Eq. (6.5) are purely imagi-
nary (in a suitable quasi-Majorana representation). In-
deed, when decomposing the supersymmetry constraints
S|Ψ(β)〉 = 0, S†|Ψ(β)〉 = 0, with a state of the form Eq.
(8.14), on the Fock states Φ†A1Φ†A1 · · ·Φ†Ak |0〉− at levels
k = n− 1 and k = n+ 1, one gets a system of first-order
differential equations for the coefficients XA1A2···An(β)
of the symbolic form (using ~ = 1)

1

i
∂βX(β) +Gδ cX(β) = 0 . (8.16)

Here, the numerical coefficients ∼ Gδ c coming from the
cubic-in-fermions contributions involve the coefficients
c = cAABC entering Eq. (6.5), multiplied by the real co-
efficients Gab δAB coming from the use of the anticom-
mutation relations Eqs. (5.10). The explicit form of
the supersymmetry constraints, Eq. (8.16), are given
in Appendix B. Using the pure-imaginary nature of the
cAABC ’s, we see that (after multiplying them by i) the
supersymmetry constraint equations yield a system of
real partial differential equations for the wavefunction
XA1A2···An(β). Therefore, to any given (generally) com-
plex solution XA1A2···An(β) at level n, one can associate

5 Here, we omit for simplicity the hats on the various quantum
operators.

a solution having the complex-conjugated wavefunction
X∗A1A2···An(β). For instance, under this map a plane-
wave solution of momentum πa at level n is transformed
into a corresponding solution at the same level with mo-
mentum −π∗a. For generic solutions at the intermediate
levels 4 ≤ n ≤ 12 such an involutory map acts non triv-
ially on the space of solutions. On the other hand, it
acts trivially on the solutions discussed above at levels
n = 0, 2, 3 and n = 13, 14, 16, which are purely real (up
to an arbitrary overall complex factor).

C. Short-wavelength continuous far-wall solutions
of the quantum constraints for 4 ≤ NF ≤ 12

It was found in the study of the quantum cosmological
dynamics of D = 4, N = 1 supergravity [18, 25], that
continuous solutions of the supersymmetry constraints
(with real π′a’s taking all possible values on its allowed
mass-shell Gabπ′aπ

′
b = −µ2) exist only in the middle of

fermionic space, namely NF = 2, 3, 4. These solutions
were also shown to be continuously connected to their
short-wavelength analogs, obtained by taking the limit
π′a � 1. In the latter limit, one can neglect the cubic

term ŜA(3) in the supersymmetry constraint, and the cor-

responding finite value of the quartic term µ2 = O(~2).
We shall here assume that such a general feature holds
also in our present D = 5, N = 2 supergravity case.

Under this (plausible) assumption, we can complete
our explicit study of the discrete solutions existing at
low (and high) values of NF by delineating the general
structure of the continuous-π′ solutions existing for the
remaining values, namely 4 ≤ NF ≤ 12. [There might
also exist additional discrete solutions; e.g., related by

the ladder operators “CF , “C†F , to the discrete solutions
discussed above.]

When considering, short-wavelength states, |Ψ(β)〉 =
exp(iπaβ

a)|Ψ(0)〉, with πa � 1, or equivalently, for the
rescaled wavefunction |Ψ′(β)〉 = exp(iπ′aβ

a)|Ψ(0)〉 with
π′a = πa − i$a, the supersymmetry constraints yield

Φ̂aAπ′a|Ψ(0)〉 = 0 , (8.17)

Φ̂aA†π′a|Ψ(0)〉 = 0 , (8.18)

which imply the (Hamiltonian-constraint) consequence

Gabπ′aπ
′
b = 0 . (8.19)

Let us associate to any real (co)vector va in (the dual of
the) β space the fermionic operators (putting the spinor
index A down for convenience)

Φ̂vA ≡ vaΦ̂aA ; Φ̂v†A ≡ vaΦ̂a†A . (8.20)

Given two covectors u and v, the so-defined fermionic
operators satisfy the (Clifford) relations

{Φ̂uA, Φ̂
v†
B } = u · v δAB , {Φ̂uA, Φ̂vB} = 0 , {Φ̂u†A , Φ̂

v†
B } = 0,

(8.21)
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where u · v ≡ Gabuavb.
Given some π′a on the (Hamiltonian-constraint) light

cone π′2 = Gabπ′aπ
′
b = 0, we can complete π′a into a

null frame π′a, na, t1a, t2a in the (dual) 4-dimensional
Lorentzian β space. Here, π′a, na are both null, 0 =
π′2 = n2 (with the relative normalization π′ · n = 1),
while the two complementary vectors t1a, t2a are transverse
to the null direction π′a, i.e. satisfy 0 = π′ · t1 = π′ · t2.
One can also require that t1 and t2 are orthogonal to n,
and between themselves, and (being necessarily space-
like) are normalized to unity. From the basic relations
(8.21), and the fact that the supersymmetry constraints

read Φ̂π
′

A |Ψ(0)〉 = 0, Φ̂π
′†
A |Ψ(0)〉 = 0, one easily sees that

the lowest value of NF where there can exist a short-
wavelength solution is NF = 4, and that, for this value,
there is, for any given (null) π′ a one-dimensional space
of solutions of the type6

C exp(iπ′aβ
a)Φ̂π

′†
1 Φ̂π

′†
2 Φ̂π

′†
3 Φ̂π

′†
4 |0〉− . (8.22)

Then, at the NF = 5 level, there will be (for any given
null π′) a eight-dimensional space of solutions generated
by acting on the state in Eq. (8.22) with any of the

eight independent raising operators Φ̂t
1†
A , and Φ̂t

2†
B , in-

volving the two transverse vectors t1 and t2 constructed
above. At the NF = 6 level, there will be a 8×7

2 = 28-
dimensional space of solutions obtained by acting on the
state in Eq. (8.22) with a product of two raising opera-

tors of the form Φ̂t
1†
A , or Φ̂t

2†
B . One can continue gener-

ating such solutions up to the maximum value NF = 12,
corresponding to acting on the state in Eq. (8.22) with

the eight different operators Φ̂t
1†
A , or Φ̂t

2†
B .

D. Reflection of short-wavelength solutions on
potential walls

Let us finally briefly discuss another consequence of
our assumption that there exist solutions of the quantum
supersymmetry constraints that are continuously con-
nected to the approximate solutions which one obtains
by working in the Wentzel-Kramers-Brillouin (WKB),
short-wavelength approximation. This approximation
being the quasi-classical approximation (~ → 0), we
further expect that such solutions will also correspond
to the approximation where the spin degrees of free-
dom are described by anticommuting Grassmann vari-
ables ({Φ†,Φ} = 0) rather than (as we did above) by
quantum operators satisfying a Clifford-algebra relation
{Φ†,Φ} = O(~).

In the Grassmann-fermion approximation, it was gen-
erally shown (even in the non-simply-laced case of rel-
evance here) in Ref. [16] that the law of evolution of

6 See Eq. (19) of Ref. [36] for the analogs of these short-wavelength
solutions in D = 11 supergravity.

a fermion field Φi (where we use here, for generality, a
generic index i to label the representation space in which
lives the considered fermion field) under Hamiltonians
containing, in addition to the usual Toda-like bosonic
dynamics,

H(0) =
1

2
Gabπaπb +

∑
I

e−2αI(β)P 2
αI , (8.23)

fermion couplings of the related Toda-type, namely

H(2) ≈
∑
I

e−αI(β)PαI ĴαI , (8.24)

where

ĴαI = Φ†i (JαI )
i
jΦ

j , (8.25)

could be approximately integrated, and led to a
“Fermionic Billiard” picture. More precisely, the latter
Fermionic-Billiard picture is based on the fact that the
approximate integration of the law of evolution of the
fermion field near each separate wall7, namely

∂tΦ
i ≈ i e−αI(β)PαI (JαI )

i
jΦ

j , (8.26)

leads to a transformation linking the incident value of
the Grassmann-valued Φi to its reflected value given by
a classical, fermionic reflection operator of the form

Rclassical
αI = ei

π
2 εαI JαI , (8.27)

where εαI = ± denotes the sign of the momentum PαI .
In Eq. (8.27), JαI denotes the matrix (JαI )

i
j acting on

the representation space defined by a classical homoge-
neous gravitino, and the resulting classical reflection op-
erator Rclassical

αI , obtained by exponentiating (JαI )
i
j , is

also a matrix (or endomorphism) in the representation
space of the classical (i.e. Grassmannian) fermion field
Φi.

When working, as we do here, with quantized fermions,
i.e. when replacing the Grassmann fermion field Φi by

a linear operator Φ̂i acting in a fermionic Fock space,
we can use the functorial character of the Fock-type
quantization (illustrated in our case by the definition,

Eq. (6.12), of the quantized ĴαI , and the fact that
they have the same algebraic properties as their classical
analogs, (JαI )

i
j) to map the classical reflection matrix

Rclassical
αI onto a corresponding reflection operator acting

in the representation space of the quantized fermion.
In other words, under our assumption that the quasi-

classical limit of our quantum supersymmetric cosmo-
logical model does continuously connect quantum states

7 The billiard approximation consists in treating both the bosonic
and the fermionic dynamics as a free far-wall evolution inter-
rupted by time-localized interactions with well-separated poten-
tial walls.
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to quasi-classical states, we conclude that, in the short-
wavelength limit, the spinor factor, |Ψ(0)〉 (stripped of
the plane-wave factor exp(iπ′aβ

a)), of the quantum plane-
wave solution states discussed in the previous subsection,

|Ψ′(β)〉 = exp(iπ′aβ
a)|Ψ(0)〉 (8.28)

(see, e.g., Eq. (8.22) in the NF = 4 subspace), considered
as states in the 216-dimensional representation space of
the quantized gravitino, will be transformed, upon reflec-
tion on each (symmetry or electric) potential wall, by the
quantum reflection operator

Rquantum
αI = ei

π
2 εαI ĴαI . (8.29)

The latter operator is a linear endomorphism of the 216-
dimensional quantum spinor space. We note in passing
that the validity of the assumptions made here (and the
validity of the final result Eq. (8.29)) has been explicitly
checked in Ref. [18] in the case of the (Bianchi IX) D = 4,
N = 1, supergravity model.

Using again the simple functorial nature of Fock quan-
tization, we can finally write down some of the rela-
tions satisfied both by the classical, and the quantum,
reflection operators RαI . Let us recall that, motivated
by the structure of the fermionic billiards arising in the
near-singularity behavior of supergravity, Ref. [16] intro-
duced, when working within specific finite-dimensional
representations of the maximally compact subalgebras
of physically relevant hyperbolic Kac-Moody algebras
(namely K[E10] ⊂ E10, and K[AE3] ⊂ AE3) the no-
tion of spin-extended Weyl groups, generated by fermion
reflection operators associated with the simple roots αi
of the considered Kac-Moody algebra, say G. See Ref.
[20] for a mathematical definition of spin-extended Weyl
groups (for general simply-laced Kac-Moody algebras) as
a part of the definition of spin-covers of maximal compact
Kac-Moody subgroups.

As here we are in a setting where we constructed finite-
dimensional representations (for a non-simply-laced case)
of K(G++

2 ), we can define spin-extensions of the Weyl
group8 of G++

2 as the group of linear operators generated
by (to be explicit)

Rαi = ei
π
2 Jαi , (8.30)

where i labels the simple roots (in our case i =
(1), (12), (23), (34)), and where the linear operator Jαi
is taken in one of the finite-dimensional representations
defined above. Specifically, we can take Jαi in the 16-
dimensional vector-spinor representation Eq. (3.14) (cor-
responding to the classical reflection operators (8.27)), or
in the 216-dimensional quantum vector-spinor represen-
tation defined in Eq. (6.12).

8 See Ref. [33] for a study of the (ordinary) Weyl group of G++
2 .

The last point we wish to make here is that, in both
these representations, the four reflection operators, ri =
Rαi , listed in Eq. (8.30), associated with the four simple
roots of G++

2 , satisfy the following generalized Coxeter
relations

r8
i = 1; (8.31)

together with the “braid relations” (see Refs.[20, 34])

rirjri · · · = rjrirj · · · withmij factors on each side .
(8.32)

Here, i, and j, with i 6= j, are labels for the nodes of
the Dynkin diagram of the considered Kac-Moody group.
The positive integers mij entering the braid relations
(8.32) are defined from the corresponding values of the
nondiagonal elements of the Cartan matrix aij (which
are negative integers, while aii = 2). Namely (see [34])

mij = {2, 3, 4, 6, 0} if aijaji = {0, 1, 2, 3,≥ 4} (respectively) .
(8.33)

Note that in our case the values i = (1), j = (12) have
aijaji = 3, corresponding to mij = 6. In that case the
braid relation, Eq. (8.32), explicitly reads

r(1)r(12)r(1)r(12)r(1)r(12) = r(12)r(1)r(12)r(1)r(12)r(1) .
(8.34)

The validity of Eq. (8.31) for the 16-dimensional vector-
spinor classical representation is easily checked to follow
from the half-integral nature of the eigenvalues of the

basic gamma matrices iγab

2 and γa

2 entering their defini-
tions. Indeed, let us look again at the definition of the
classical action of Jα in the 16-dimensional vector-spinor
representation

(Jα.Φ)
aA ≡ (δab − 2αaαb) (Jsα)

A
B ΦbB , (8.35)

where Jsab = iγ
ab

2 while Jsa = 3γa

2 .

The eigenvectors vaA of Jα can be looked for in factor-
ized form, namely vaA = vaξA where va is an eigenvector
of the matrix δab − 2αaαb (say (δab − 2αaαb)v

b = λvv
a)

while ξA is an eigenvector of the spin part Jsα (say

(Jsα)
A
B ξ

B = λsξ
B). The eigenvalue of Jα correspond-

ing to vaA = vaξA is equal to the product λvs = λvλs.
The four eigenvectors of δab − 2αaαb are: (i) any vec-
tor parallel to αa, with eigenvalue 1 − 2〈αα〉; and (ii)
three vectors orthogonal to αa, with eigenvalue 1. Us-
ing the fact that the squares of the matrices iγab and
γa are equal to the unit matrix, one finds that the four

eigenvalues of Jsab = iγ
ab

2 are {+ 1
2 ,+

1
2 ,−

1
2 ,−

1
2}, while

the four eigenvalues of Jsa = 3γa

2 are {+ 3
2 ,+

3
2 ,−

3
2 ,−

3
2}.

Using the fact that the squared roots 〈αα〉 = Gabαaαb
are equal to 2 for the long symmetry roots α(ab), but
equal to 2

3 for the short electric roots, one finds that the

corresponding vector eigenvalues λ
(ab)
v ’s are {−3, 1, 1, 1},

while the λ
(a)
v ’s are {− 1

3 , 1, 1, 1}. As a consequence the
sixteen product eigenvalues λvs = λvλs have the val-
ues {± 3

2 ,±
1
2 ,±

1
2 ,±

1
2 , } for the symmetry walls, and the
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values {± 1
2 ,±

3
2 ,±

3
2 ,±

3
2 , } for the electric walls. [Note

the cancellation of the 1
3 coming from the anomalous

〈αα〉 = 2
3 by the extra factor Cs = 3 in the definition

of Jsa .]

When passing from the 16-dimensional classical-
gravitino representation to the 216-dimensional quantum-
gravitino representation, the explicit forms of the action

of Ĵα at various fermion levels (see Eqs. (7.11), (7.12))
show that the eigenvalues at level NF = n are given by
sums λNF=n = λ1 + λ2 + · · · + λn, corresponding to a
factorized eigenvector v1 ∧ v2 ∧ · · · ∧ vn, where each vp is
itself of the factorized form vaAp = vapξ

A
p (under the con-

dition that these wedge products do not vanish). [The

full spectrum of the Ĵα’s, with their multiplicities, will
be found in Appendix A.] This result immediately shows

that all the eigenvalues of Ĵα will be half-integral (or inte-

gral). This guarantees that the 8th power of “Rα = ei
π
2 Ĵα

is equal to 1.

We have verified the validity of the braid relations
(8.32) for the classical, 16-dimensional, vector-spinor rep-
resentation of the Jα’s by a direct computation. For in-
stance,

R1R12R1R12R1R12 = R12R1R12R1R12R1 , (8.36)

while

R12R23R12 = R23R12R23 . (8.37)

These results can then be lifted to the full 216-
dimensional quantum-gravitino representation by using
the functorial nature of the Fock-representation expres-
sions Eqs. (7.11), (7.12). Indeed, they imply that the ex-

ponentiated operators, “Xα = exĴα , act, when considered
at any given level9, NF , as a product of corresponding
classical exponentiated factors. E.g., at level 2, we have

exĴα(u ∧ v) = (exJαu) ∧ (exJαv). (8.38)

Such a general product action applies in particular to the

reflection operators “Rα = ei
π
2 Ĵα , and thereby also to the

relevant braid operators which are made of products of“Rα’s. As a consequence, the equality of two braid classi-
cal combinations, e.g. Eq. (8.36), entails the equality of
the corresponding quantum combination at all levels, so
that, e.g.,“R1

“R12
“R1
“R12

“R1
“R12 = “R12

“R1
“R12

“R1
“R12

“R1 , (8.39)

holds in the 216-dimensional quantum-gravitino represen-
tation.

9 Ĵα commutes with N̂F and therefore any function of Ĵα acts
within any fixed-NF space.

IX. CONCLUSIONS

Let us summarize our main results on the supersym-
metric quantum dynamics of the cosmological models ob-
tained by reducing D = 5 supergravity to one timelike
dimension, i.e. by considering the consistent truncation
where the spatial metric, hij , the vector potential, Ai,
and the spatial components of the gravitino, ψiA, depend
only on time.

(1) We constructed a consistent quantization of this
model, with the fourteen bosonic coordinates quantized
à la Schrödinger (p = ~

i
∂
∂q ), while the suitably rede-

fined spatial gravitino field ΦaA = (deth)
1
4 γaθai ψ

iA sat-

isfies simple anticommutation relations {Φ̂aA, Φ̂†bB} =
~Gab δAB . Here, Gab is the inverse of the metric Gab
in the Cartan space of G++

2 : Gabβ̇
aβ̇b ≡

∑
a(β̇a)2 −

(
∑
a β̇

a)2, where the βa’s are the logarithmic scale fac-
tors of the spatial metric hij , see Eq. (2.12). In
other words, the wave function of the Universe is a 216–
component spinor of Spin(24,8) which depends on the
fourteen bosonic configuration variables hij , Ai (with
i = 1, 2, 3, 4). The latter variables are usefully replaced
by the four logarithmic scale factors, βa, the six off-
diagonal Iwasawa variables N a

i (with a < i), and the
four electric variables Ba ≡ Ai(N−1)ia.

(2) Quantum states |Ψ〉 are described by wavefunc-
tions Ψσ(βa,N a

i, Ba) (where the spin index σ takes 216

values) that must satisfy the eight (Dirac-like) supersym-

metry constraints ŜA |Ψ〉 = 0, Ŝ†A |Ψ〉 = 0, as well as the

Hamiltonian constraint “H |Ψ〉 = 0. We have checked the
consistency of the algebra of constraints (see Eqs. (6.7),
(6.8), (6.17)) when using an ordering ensuring an up-
down symmetry in fermion space (i.e. symmetry under
swapping Φ↔ Φ†).

(3) The hyperbolic Kac-Moody algebra G++
2 shows up

in the bosonic sector in the fact that the bosonic part of
the Hamiltonian describes a null geodesic over the sym-
metric space G++

2 /K(G++
2 ) when setting to zero some

higher-level Kac-Moody terms formally corresponding to
some spatial gradient terms on the supergravity side [28].
The root structure of G++

2 is reflected in the bosonic
Hamiltonian through the presence of a Toda-like struc-
ture:

H(0) = Gabπaπb+2
∑
a<b

e−2(βb−βa)(Pab)
2+

1

2

∑
a

e−2 βa(P a)2 ,

(9.1)
where πa is the conjugate momentum to βa, P a is the
momentum conjugate to Ba, and where Pab is a momen-
tumlike variable associated with N a

i. Here α(ab)(β) =
βb − βa, and α(a)(β) are linear forms in the β’s which
correspond to (real) roots of G++

2 . In particular, they

feature the four simple roots α1 = α(1), α2 = α(12),
α3 = α(23), α4 = α(34) defining the Cartan matrix,
Eq. (4.7), of G++

2 .
(4) The K(G++

2 ) structure associated with the
fermions shows up in the fermionic sector in several ways.
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The part “H(2) of the quantum Hamiltonian that is bilin-
ear in the fermions reads“H(2) = +2

∑
a<b

e−(βb−βa)“PabĴab(Ψ)− 1√
3

∑
a

e−β
a“P aĴa(Ψ) .

(9.2)
This fermion-quadratic contribution associates to each
one of the wall roots, αI(β) = (α(ab)(β), α(a)(β)), en-
tering the bosonic Hamiltonian, a corresponding fermion

bilinear ĴαI . The latter quantum fermion bilinears gener-
ate a 216-dimensional representation of K(G++

2 ). Indeed,

the four operators Ĵαi , i = 1, 2, 3, 4, corresponding to the
four simple roots of G++

2 , satisfy the Serre-Berman rela-
tions, Eqs. (4.13).

(5) In the short-wavelength limit, the propagating-
wave solutions of the constraints that exist in the middle
of the fermionic Fock space (4 ≤ NF ≤ 12) transform,
upon reflection on each of the (symmetry or electric) po-
tential wall delimiting the boundary of the billiard cham-
ber (identified with the Weyl chamber ofG++

2 ), under the
corresponding four quantum reflection operators“Rαi = ei

π
2 Ĵαi . (9.3)

These quantum reflection operators satisfy the general-
ized Coxeter relations given in Eqs. (8.31), (8.32). These
relations define a spinorial extension of the Weyl group
of G++

2 .
(6) The quartic-in-fermion contribution to the quan-

tum Hamiltonian µ̂2 ≡ “H ′(4)
1 (as defined in Section 6.1)

satisfy two remarkableK(G++
2 )-related properties: First,

it is invariant under the generators Ĵαi , i = 1, 2, 3, 4
of K(G++

2 ). Second, it happens to be expressible (see
Eq. (7.15)) in terms of two K(G++

2 )-invariant fermion

bilinears, the (sesquilinear) fermion number, “NF ≡
GabΦ̂

a†Φ̂b, and the bilinear “CF ≡ GabΦ̂
aACABΦ̂bB ,

which involves the “charge conjugation” matrix CAB of
the (spatial) γi matrices (CγiC

−1 = −γTi ).

The invariance of “NF and “CF under the Ĵαi ’s stems
from the invariance of the two corresponding bilinear

forms H(Φ1,Φ2) = GabΦ
aA†
1 δABΦbB2 and J(Φ1,Φ2) =

GabΦ
aA
1 CABΦbB2 under the action of the generators of

K(G++
2 ) in the 16-dimensional space defined by the (clas-

sical) vector-spinor representation. [Here, we consider
this representation from a mathematical point of view,
i.e. within the vector space of complex-valued vector-
spinors ΦaA. The quantum representation being corre-
spondingly built by Fock quantization, as discussed in
Section VII.] The sesquilinear form H is hermitian, with
signature (12+, 4−), while the bilinear form J is symplec-
tic. The fact that the representatives of the generators
of the (infinite-dimensional) algebra K(G++

2 ) within this
16-dimensional representation leave invariant these two
forms indicate that the image of K(G++

2 ) within this
representation is the intersection of the Lie algebra of
the pseudo-unitary group U(12, 4) and of the symplectic
group Sp(16,C). By definition, this intersection is the Lie

algebra sp(6, 2) of the quaternionic pseudo-unitary group
Sp(6, 2). The image Lie algebra sp(6, 2) of Lie[K(G++

2 )]
has real dimension 136 (as can be directly checked by
looking at the general solution of the invariance condi-
tions, u†H +Hu = 0, uTJ + Ju = 0, of H and J under
an infinitesimal GL(16,C) transformation δΦ = u · Φ).

Our results open new perspectives that we hope to ex-
plore in future work. The most promising one is that
our finding that the quartic-in-fermions term commutes
with the generators of the involutory subalgebra K(G++

2 )
(which generalizes the similar property found for N = 1,
D = 4 supergravity [25]), raises the hope that such
a property will also hold for the maximal supergravity
N = 8 in D = 4, or N = 1 in D = 11, i.e. that the
quartic-in-fermions term in the Hamiltonian is invariant
under K(E10). Let us note in this respect that, as shown
by Eq. (3.12), the quartic-in-fermions term in the Hamil-
tonian is the sum of the original fermion-quartic part of
the Lagrangian and of a sum of the squares of the JαI
bilinears corresponding to the roots explicitly appear-
ing in the Lagrangian (the latter terms being generated
by the Legendre transform associated to the velocity de-
pendence of the couplings of N a

i and Ai to fermions).
Though our analysis has truncated away the couplings
to spatial derivatives, it has retained all the velocity-
dependent couplings. [And, a similar analysis can be
implemented for D = 11 supergravity.] This suggests
that the value of µ2 obtained in such one-time-dimension
reductions is relevant to the exact supergravity dynamics.
Therefore, finding a value of µ2 that is invariant under the
relevant involutory algebra is a strong signal of a hidden
Kac-Moody-related symmetry. [In previous Kac-Moody-
coset analyses, it was argued that µ2 is naturally given
by a quadratic Casimir, 1

2

∑
α J

2
α, involving a formal sum

over the infinite number of positive roots [25, 35].] It will
be therefore important to see whether an extension of our
analysis to the D = 11-supergravity fermion sector leads
to a µ2 that is invariant under K(E10).

If this is the case, besides being a clear confirmation of
a hidden K(E10) symmetry, it will also probably imply

that µ̂2 ≡ “H ′(4)
1 is a c-number, rather than a fermionic

operator, because we have checked that there are no
non-trivial K(E10)-invariant (symplectic) bilinears of the
type, CF = GabΦ

aCΦb = GabΦ
aACABΦbB , that allowed

expressions of the type Eq. (7.15) to exist. [In D = 4,
µ̂2 was quadratic in CF with C = γ5 = γ0 γ1 γ2 γ3, while
in D = 5, CF involved the spatial charge conjugation
matrix. We recall that, like in D = 4, the gravitino is a
Majorana spinor in D = 11.]
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Appendix A: Spectrum of the quantized J operators

Ĵ[ab] spectrum

NF = 0, 16 λ = 0
∣∣
1

,

NF = 1, 15 : λ = ±3

2

∣∣
2

, ± 1

2

∣∣
6

NF = 2, 14 : λ = ±3
∣∣
1

, ± 2
∣∣
12

, ± 1
∣∣
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, 0
∣∣
40
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2
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,± 5

2
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, ± 3

2
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,± 1
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NF = 4, 12 : λ = ±4
∣∣
15

, ± 3
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∣∣
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, ± 1
∣∣
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, 0
∣∣
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NF = 5, 11 : λ = ±9
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2

∣∣
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2

∣∣
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NF = 6, 10 : λ = ±5
∣∣
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∣∣
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NF = 7, 9 : λ = ±11
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2

∣∣
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2

∣∣
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, ± 5

2

∣∣
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, ± 3

2
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, ± 1

2
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NF = 8 : λ = ±6
∣∣
1

,± 5
∣∣
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, ± 4
∣∣
249

, ± 3
∣∣
764

,± 2
∣∣
1599

,± 1
∣∣
2400

, 0
∣∣
2772

(A1)

Ĵa spectrum
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NF = 5, 11 : λ = ±15
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NF = 8 : λ = ±10
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1
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(A2)

Appendix B: Explicit form of the supersymmetry
constraints

In this Appendix we use a slightly different notation
from the one used in the text. Vector indices are de-

noted a, b, · · · (as in the text), while spinor indices are
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denoted α, β, · · · . The composite indices combining these
two types of indices (denoted A = aA in the text) are de-
noted here as A = aα. When a spinor, or a composite
index, belongs to some Φ† we dot it to indicate its origin,

e.g. (Φ̂aα)† = Φ̂†aα̇ = (Φ̂A)† = Φ̂†Ȧ. The right-handside
Gab δαβ (with ~ = 1) of the third (non trivial) anticom-

mutation relations Eq. (5.10) is denoted ∆AḂ , i.e.

{Φ̂A, Φ̂†Ḃ} = ∆AḂ . (B1)

Though, with our normalization ∆AḂ = Gab δαβ is real
and symmetric, it is useful (for keeping track of hermitian
conjugations in contracted indices) to denote its complex

conjugate as (∆AḂ)? = ∆BȦ. We also denote the (purely
imaginary) numerical coefficients cαABC = −cαCBA entering
Eq. (6.5) as σα

Ḃ[AC]
= −σα

Ḃ[CA]
, so that Sα reads

Sα = −i ∂βaΦ̂aα + σα
Ṗ [BC]

Φ̂BΦ̂†Ṗ Φ̂C . (B2)

The following contraction of the σ coefficients plays a
distinguished role:

σα
Ṗ [BC]

∆BṖ = −i νc δαγ . (B3)

Here C = cγ and the four components of the vector ν are
νa = − 1

4{19, 16, 13, 10}.

With this notation, the explicit form of the supersym-
metry constraint Sα|X〉 = 0, when acting on a plane-
wave state of fermion level k written as

|X〉 = ei πaβ
a

XȦ1···ȦkΦ̂†Ȧ1 · · · Φ̂†Ȧk |0〉− , (B4)

reads

k
(

(πa − i νa)∆aαṖXṖ˙Ȧ1···Ȧk−1
− (k − 1)σα

[Ȧ1|[BC]
∆CṖ∆BQ̇XṖ Q̇|Ȧ2···Ȧk−1]

)
= 0 . (B5)

The corresponding explicit form of the constraint S†α̇|X〉 = 0 reads(
(πa1 + i νa1)δα̇α̇1

XȦ2··· Ȧk+1
+ k σ∗α̇

BȦ1Ȧ2
∆BṖ XṖ Ȧ3···Ȧk+1

)
[Ȧ1Ȧ2···Ȧk+1]

= 0 , (B6)

where the last subscript indicates antisymmetrization with respect to the composite indices Ȧ1Ȧ2 · · · Ȧk+1 (with

Ȧ1 = a1α̇1).
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