
Zero-Touch Mutual Authentication Scheme for
6TiSCH Industrial IoT Networks

Ali Haj-Hassan∗†, Youcef Imine†, Antoine Gallais†, Bruno Quoitin∗
∗ Computer Science Department, University of Mons, Belgium

† Univ. Polytechnique Hauts-de-France, LAMIH, CNRS, UMR 8201, INSA Hauts-de-France, France
ali.hajhassan@uphf.fr youcef.imine@uphf.fr antoine.gallais@uphf.fr bruno.quoitin@umons.ac.be

Abstract—Industrial IoT (IIoT) networks must provide relia-
bility, determinism and security. In terms of security, ensuring an
efficient authentication is still a challenging task. Most of the au-
thentication approaches adopted in IIoT wireless communication
protocols rely on the existence of a pre-shared key (PSK) between
each joining node and the central authority of the network. How
to share the PSK is however not specified in their standards.

In this paper, we propose a new zero-touch mutual authenti-
cation and key establishment protocol for IIoT. In our protocol,
the network coordinator authenticates a new joining node using
certificates. Then, the joining node authenticates the network
coordinator through a novel consensus achieved among nodes
that are already in the network. Our novel consensus is based
on Shamir secret sharing, and allows each new node to build its
trust based on the knowledge of a group of nodes that are already
in the network. Finally, our protocol allows to securely establish
a common key between new joining nodes and the network
coordinator over a public channel. In addition to the theoretical
aspects, we evaluate the performance of our protocol under
two attack scenarios where 33% of the nodes in the network
are malicious. We show in all cases that we efficiently ensure
authentication with high success probabilities, by establishing a
consensus including a limited number of nodes in the network.

Index Terms—Industrial Networks, 6TiSCH, IoT Security, Key
Establishment, Authentication, Consensus

I. INTRODUCTION

The convergence of low power wireless networks and the
IP-enabled networks changed the perspectives of IoT. Today,
IoT devices can communicate between themselves and can
connect to other IP networks. The integration of this technology
with Industry 4.0 led to the existence of a new field called
Industrial IoT (IIoT). As an example, IIoT would allow the
cooperation between production chains distributed among
different sites. To make this possible, IIoT must satisfy two
main requirements: reliability and security. Indeed, continuous
production relies on uninterrupted communications. However,
enabling IP connectivity increases the attack surface. Malicious
activities could cause damages to the infrastructure, disrupt the
production and even put the life of workers on risk.

WirelessHART and ISA100.11a are two protocols well
adopted in industries, allowing the convergence of low-power
wireless devices and the Internet Protocol. Recently, the IETF
introduced a promising IIoT solution called 6TiSCH [1] to
enable high reliability IPv6 wireless sensor networks. It is
based on the IEEE 802.15.4 Time Slotted Channel Hopping
(TSCH) medium access control which combines time division
multiplexing, to make access deterministic, and frequency
hopping, for increased robustness against interferences.

A joining protocol defines how new nodes join a 6TiSCH
network. In this phase, a new joining node exchanges join
messages with a network coordinator, responsible of managing
the network, and giving access to new nodes. The join requests
are forwarded to the coordinator through nodes that are already
in the network, playing an intermediate role in this phase.

In the absence of security measures during the joining phase,
malicious nodes can join the network and disturb forthcoming
joining events. Moreover, since a new joining node has no
previous knowledge on the network, it has no way to verify the
correctness of information during this join phase. Therefore,
it may be subject of impersonation attack led by malicious
nodes. Indeed, malicious nodes may forward the node’s join
requests to another malicious node pretending to be the network
coordinator, instead of forwarding it to the true one.

In order to overcome these issues, it is essential to secure
the joining phase with a mutual authentication allowing: (1)
both the network coordinator and the new joining node to
verify each other and (2) to establish a common key to secure
forthcoming exchanges between the node and the coordinator.

Many existing works studied the authentications and key
establishment concerns in IoT networks [2, 3]. Most of these
protocols are either based on pre-shared keys, shared physical
measurement (e.g., movement, temperature) or certification-
based authentication. In the case of pre-shared keys based
protocol, manual configuration of each expected joining node
is required. However, this approach is not efficient in dynamic
large scale networks. On the other hand, protocols based on
sharing a physical measurement may not be accurate enough
due to the instability of physical environments in an industrial
context. Finally, certification based solutions are not well suited
for mutual authentication in the IoT since devices would need
to store multiple chains of trust, which is not compatible with
their constrained storage capabilities.

In this paper, we propose a novel zero-touch mutual
authentication protocol for IIoT networks. On one hand, our
solution is based on certificates to allow the network coordinator
to authenticate new joining nodes. On the other hand, we
propose a new consensus approach among network members,
based on Shamir secret sharing, allowing new joining nodes
to authenticate and establish keys with the coordinator. Our
dynamic and scalable joining scheme has the following features:
• Mutual authentication without a pre-configured key;
• Low storage overhead since the nodes only have to store

few pieces of information to run the whole protocol;

• Easy integration with communication protocols adopted
in IoT networks, demonstrated by our application to the
joining phase of 6TiSCH.

The remaining of this paper is structured as follows. In
section II, we discuss the related work of authentication schemes
in IoT. In section III we a give background on 6TiSCH protocol
and Shamir secret sharing. We present our solution in section IV.
Then, we describe its attack model and security analysis in
sections V and VI respectively. In section VII we provide a
performance evaluation. Finally, we conclude in section VIII.

II. RELATED WORK

In most IoT wireless networks, authentication schemes are
based on pre configuring a new joining node with a pre-shared
key (PSK), before the first phase of authentication. For instance,
each device has a unique identifier and needs to pre-share a
symmetric key with the network coordinator, which can further
authenticate known devices upon new communication [4].
This requires a prior configuration of all nodes that will join
the network. In 6TiSCH protocol, the authors of the minimal
security draft of the IETF [5] assumes that the exchanges
during the joining phase of a new node is secured using a PSK.
However, they do not describe how this key was shared. The
same assumption is made in [6], as the authors proposed a 3-way
mutual authentication mechanism based on a multi key called
secure vaults. Here, the PSK consists of the secure vault shared
with the IoT devices during the deployment phase. This secure
vault will be used by the coordinator to challenge a device and
authenticate it. Other PSK-based authentication schemes were
proposed in order to authenticate a joining node, for wireless
network protocols like 6LoWPAN and LoRaWAN [7–9]. All
these solutions require pre-configuring the IoT devices before
initiating this phase, which is not efficient for the case of a
large scale dynamic industrial network.

Certificate based authentication have been proposed for
IoT networks as well. In [10], the authors proposed a two
phase mutual authentication solution: (1) the registration phase
where each edge device acquires its security credentials from a
Certificate Authority (CA) and stores its chain of trust. (2) An
authentication phase is then executed where devices establish a
secure communication channel. However, this solution does
not address scenarios with multiple CAs, which would require
constrained devices to store a considerable number of chains
of trust. Moreover, even though some solutions allow to assess
the status of a given certificate (e.g. OCSP), the consistency
of revocation lists may be endangered once large scale and
lossy networks are considered, such as the heterogeneous IoT
networks targeted here.

In [11], the authors proposed SHAKE, an authentication
protocol that relies on data acquired from physical sensors.
It consists in holding two nodes together and shaking them
simultaneously. An accelerometer in both nodes captures this
same movement and transforms the measured value into a
shared secret key. Other physical environmental measurements
have been proposed in the context of IoT to ensure mutual
authentication [12, 13]. Meanwhile, such physical manipulations

can be costly and hard to ensure in large-scale industrial
environments. In addition, due the heterogeneity in industries,
some nodes may be either too constrained to hold such sensor
or impossible to move once installed.

III. BACKGROUND

A. 6TiSCH Joining Phase

In a 6TiSCH network, new nodes need to go through an
initial joining phase to get admitted by the network coordinator
and obtain link-level security credentials.

The Constrained Join Protocol (CoJP) [5] handles the
parameters distribution needed for new nodes to join a 6TiSCH
network. In CoJP, three entities play a main role during the
joining phase. (1) The Join Registrar/Coordinator (JRC) is
the entity responsible for managing the network and giving
access to new nodes. (2) The pledge is the node seeking to
join the network. (3) The Join Proxy (JP) is a node already
in the network that plays an intermediary in the exchanges
between a pledge and the JRC.

During this phase different types of messages are exchanged:
• Enhanced Beacon (EB): message sent on a regular basis by

JPs allowing pledges to discover the network and inviting
them to join;

• Join Request: message sent from the pledge to the JRC,
through the JP. It includes the role it requests to play in
the network, as well as the identifier of the network it
requests to join.

• Join Response: message sent from the JRC to the pledge
through the JP. It contains different parameters needed by
the pledge to become a fully operational network node.

B. Shamir Secret Sharing

Shamir’s secret sharing method [14] consists in dividing
a secret into parts, and share these parts, in a way that a
minimum number of shares is needed to reconstruct the secret.
For that, a finite field Zp is adopted to generate elements used
as coefficients for a polynomial Q(x) of degree m. The secret
here consists of the value Q(0). To redefine this polynomial, a
least m+ 1 points generated from this polynomial are needed.
Given m+ 1 points, {P (xi, yi)}, i ∈ {1, ..,m+ 1}, generated
from a polynomial Q(x), Lagrange method is used for
polynomial interpolation as follows:

f(x) =

m+1∑
i=1

yi

m+1∏
j=1,j 6=i

x− xj
xi − xj

(1)

IV. PROPOSED SOLUTION

In this section we detail our proposed solution for a mutual
authentication between a new joining node and the network
coordinator. Our solution assumes no pre-shared key previously
configured by an operator. End devices must only contain a
pre-installed certificate configured by the manufacturer.

In the following sections, we apply our solution to the
joining phase of 6TiSCH (CoJP). We assume that the JRC is
a fully trusted entity that manages the network security. To
the opposite, JPs may act in a malicious way at this phase,

thus they cannot be fully trusted. We assume however that no
more than one third of the nodes in the network are malicious,
similarly to Byzantine fault tolerance assumption [15].

A. Main Idea

Our approach takes into consideration the imbalance of
resources in the network. The JRC has more capabilities than
the resource-constrained pledges. For this reason, we propose to
use two different mechanisms to achieve mutual authentication.

At the first step, the JRC authenticates the pledge who
asks to join the network. This phase relies on a certification-
based authentication. Having the capability to access Certificate
Authorities through chains of trust, the JRC can verify a
certificate provided by a pledge.

In a second step, the pledge proceeds with the JRC
authentication. It is based on a consensus: multiple JP existing
in the network prove for the pledge the legitimacy of the JRC.
This is done by revealing a secret shared between the JRC and
the network’s nodes using Shamir secret sharing (Sec. III-B).
Hence, multiple JP contacted by the pledge, called edge JPs,
must collaborate together in order to reveal this secret contained
at the JRC. Therefore, a collusion of many JPs in the network
points towards its secret.

Once both sides are mutually authenticated, a key is
established between them for the subsequent exchanges.

B. Setup Phase

While bootstrapping the network, the JRC executes the
following steps to prepare the parameters used by our protocol:
• Let G be a cyclic group of order p where p is a safe

prime and g its generator.
• Let SkJRC and PkJRC a pair of private and public key

respectively, used by the JRC and the nodes to sign and
verify exchanged messages.

• Define two mapping functions f1 : G → Zp and f2 :
Zp → G such that ∀e ∈ G, we have f2(f1(e)) = e.

• Let w be a random element in Zp, compute the group
key S = gw.

• Let Q(x) = a0 + a1x+ a2x
2 + ...+ amx

m of degree m.
The coefficients ai, where i ∈ [1,m], are random elements
in Zp and a0 = f1(S).

• The JRC creates a hashtable HT to register authentication
session identifiers along with session keys for each new
node willing to join the network.

In an industrial context, we certainly have nodes that are
already in the network. Therefore, every node i existing in
the network is configured by the coordinator with a tuple
(σi, Pi, PkJRC) where
• Pi = (xi, yi), where yi = Q(xi), is a distinct random

point generated from the secret polynomial Q(x);
• σi is a signature of Pi as:

σi = Sign(H(xi||′,′ ||yi), SkJRC)

where Sign is a signature scheme and H is a hash function.
Along these minor modifications on 6TiSCH main protocol,

we propose also to modify the Enhanced Beacon EB of

6TiSCH in order to contain the degree m of Q(x) as well as a
service Srv advertising the service of the network. Based on
Srv, a node takes or not the EB into consideration.

C. Pledge Authentication

The JRC needs to authenticate the pledges looking to join the
network. We propose to use a certificate-based authentication as
the JRC has the necessary computational and storage resources.
Since we consider an industrial context, we can assume that
the JRC has prior knowledge of the type of nodes that may
join its network. Therefore, the JRC only stores certificate
chains of trust related to those types of nodes. Moreover, we
can assume that in each pledge a certificate is installed by the
manufacturer after production, as part of the non volatile data,
and no other configuration is needed.

Our proposed certificate-based authentication of the pledge
is established as follows:
• Edge JPs send EBs to the pledge on a regular basis.
• The pledge collects EBs advertising Srv. It does so

for some time T , trying to get in touch with more JPs
advertising Srv.

• The pledge sends its certificate, as a join request, to all
contacted edge JPs.

• The edge JPs forward the request to the JRC.
• The JRC verifies the certificate and authenticates or not

the pledge.
• In case it is authentic, the JRC saves in HT , a hash

of the public key of the pledge H(PKPledge), as an
authentication session identifier.

• The JRC allows edge JPs to continue the communication
with this pledge by sending back a response containing
the pledge’s public key PKPledge.

Note that, proceeding in the execution of the protocol using
PKPledge to encrypt the further exchanges: (1) proves that the
pledge owns its corresponding secret key, and (2) allows at the
same time to secure the communication with the Edge JPs.

D. JRC Authentication

In this section we present the whole JRC authentication.
Given a set SEJP

= {EJP1
, EJP2

, ..., EJPN
} of N edge JPs

to contact, the JRC goes through the following steps:
• The pledge requests from each edge JP EJPi

a packet
PJPi = {Pi,1, Pi,2, ..., Pi,m} of m points where Pi,k =
(xk, yk), k ∈ [1,m].

• Each EJPi
receiving the pledge request, asks for m− 1

distinct points Pi,k from random nodes in the network.
• Each node j receiving EJPi

’s request, sends its own point
Pj = (xj , yj) and the signature σj provided by the JRC.

• For each received (Pj , σj), the edge JP verifies the
signature σj using the JRC’s public key PkJRC .

• The edge JP EJPi
forms a packet of points PJPi

which
contains the collected points (verified in the previous step),
as well as EJPi

’s own point.
• The edge JP sends PJPi

to the pledge encrypted with
PKPledge.

• The pledge decrypts the packets with its private key
SKPledge and form a set P = {PJP1 , PJP2 , ..., PJPN

}
coming from N received edge JPs.

• The pledge constructs a set CX = {C1, C2, ..., CX} of
all possible combinations in P , where X = C2

n(P) is the
number of combinations without repetition of two sets of
points PJPi

∈ P .
• ∀ C = {PJPi , PJPj} where PJPi , PJPj ∈ P , define:

SCi = PJPi ∪ PJPj = {Pi,1, ..., Pi,m, Pj,1, ..., Pj,m}
• Let FSPi ⊂ SCi be a subset of m + 1 distinct points

randomly chosen from each SCi, defined as:
FSPi = {P1 = (x1, y1), ..., Pm+1 = (xm+1, ym+1)}

• FSPi is used to reconstruct the secret Qi(0) using
Lagrange polynomial interpolation as follows:

Qi(0) =

m+1∑
k=1

yk

m+1∏
z=1,z 6=k

−xz
xk − xz

(2)

We note that the polynomial interpolation (2) is based on
the points collected from nodes already active on the network.
We recall that these points were initially provided by the JRC
and generated from the polynomial Q(x) defined in the setup
phase. Therefore, an interpolation polynomial on these points
should provide the same value Q(0) defined by the JRC.

Considering all the combinations done on the points collected
by the pledge and provided by the JRC, we will end up with
X = C2

n(P) repetitive values Qi(0) = Q(0) computed during
the previous step.

Being able to repeatedly retrieve the same value Q(0) allows
to achieve a consensus through multiple JPs in the network,
directing the pledge towards the JRC’s identity.

Nevertheless, malicious edge JPs may be among the edge JPs
collecting points. Obviously malicious edge JPs aim to deviate
the interpolation’s results, leading to some values Qi(0) 6= Q(0)
among the X interpolations performed by the pledge. Whereas,
as long as the rate of malicious nodes in the network is up
to 33%, the consensus can be achieved by considering the
value the most frequent among the X interpolations. Hence,
the success of the consensus is based on the majority of honest
nodes contacted during the joining phase.

E. Key Establishment

The JRC authentication phase allowed the pledge to discover
Q(0). Therefore, the pledge proceeds to verify and establish a
common key with the JRC through the following procedure
based on the Diffie-Hellman exchange:
• The pledge retrieves the group key as:

S′ = f2(Q(0)) = f2(f1(S)) = S

• The pledge generates the following parameters: a random
element r in Zp, a challenge consisting of a random series
of bits C ∈ {0, 1}* and a random element El ∈ G;

• The pledge sets the session key CS = H(El) and
computes CT = enc(C,CS), where enc() is a symmetric
encryption algorithm;

• The pledge calculates Sig = Sign(H(gr||Sr ·
El||CT), SKPledge) where Sign is a secure signature

scheme, H is a hash function and SKPledge is the private
key of the pledge;

• The pledge sends (gr, Sr · El, CT, Sig, PKPledge) to
JRC;

• The JRC receiving PKPledge, retrieves the authentication
session by looking up for H(PKPledge) in HT . Then, it
verifies the signature Sig using PKPledge;

• We recall that the group key has been generated as S = gw

where w ∈ Z∗p was a random value chosen by the JRC
during the setup phase. Thus, the JRC calculates:

El′ = (Sr · El)/(gr)w = El

• The JRC recovers C = dec(CT,H(El′)), where dec() is
a symmetric decryption algorithm;

• The JRC sends recovered C to the pledge as a response
to the challenge and saves H(El′) as a session key for
the pledge’s session identifier in HT ;

• The pledge considers the key establishment has succeeded
if it receives the response C before a time T .

V. ATTACK MODELS

In this section, we predict the attacks that may happen
during the authentication phase. The main vulnerability that
we may have is the existence of malicious nodes in the
network, controlled by remote nodes, or programmed to perform
malicious behaviours. Once acting as edge JPs, these malicious
nodes may have two purposes, either fail the authentication
or lead the pledge to authenticate a wrong JRC. For that, a
malicious node can conduct these types of attacks:
• Individual attack: A pledge requests an edge JP to collect

points from other JPs in the network in order to reconstruct
the polynomial and reveal the secret. A malicious edge JP
creates its own polynomial and generates the requested
number of points from it, instead of contacting other JPs,
trying to fail the interpolation done by the pledge.

• Collaborative attack: All malicious edge JPs in the
network have a sort of agreement between themselves.
They have the same polynomial from which they generate
points to be sent to the pledge. Hence, they all work
together looking for leading the interpolation done by the
pledge to one wrong JRC.

• Impersonation attack: An edge JP tries to impersonate
the pledge or the JRC while playing the role of intermediate
between them.

Note that other types of attacks threatening a multi-hop
wireless network, such as jamming attack or nodes selfishness,
etc., are not considered in the scope of this paper.

VI. SECURITY ANALYSIS

In this section, we analyse the capability of our solution to
face the possible attacks. We recall that in order to authenticate,
the pledge requests packets of points from multiple edge JPs,
and combines these packets two by two to achieve a consensus.
The existence of malicious nodes between contacted edge JPs
leads to fail the calculation for some of these combinations.

In the worst case scenario, where the third of these edge
JPs are malicious nodes, we have for any number of edge

JPs N>3, three categories of combinations of packets: (1)
a combination of packets collected by two honest edge JPs;
(2) a combination of a packet collected by an honest edge JP
and another packet collected by a malicious one, and (3) a
combination of packets collected by two malicious edge JPs.

For the first category, the calculation always leads to the
correct secret. For the second one, each calculation leads to a
wrong secret that is not repeated in the other calculations. For
the third category, the calculation results depends on the type
of attack conducted. In case of an individual attack, a different
wrong secret is calculated for each different combination.
Whereas, in case of a collaborative attack, the same wrong
secret is calculated for all the combinations of nodes belonging
to this category.

In terms of percentage of repetition of each secret resulting
from the combinations, we notice that in the first category of
combinations we have C2

2·N
3

/C2
N . Moreover, the percentage of

each secret found in the second category is 1/C2
N .

On the other hand, as secrets founds in the third category may
be repeated or not depending on the attack scenario, we have,
in an individual attack, the percentage of each secret resulting
from the combination is 1/C2

N . Whereas, this percentage is
equal to C2

N
3

/C2
N in the case of a collaborative attack.

In all cases, we clearly see that the percentage of the repetition
of the secret found through combinations of the first category
always represent the majority. Therefore, even under individual
and collaborative attacks scenarios, our protocol always achieves
the consensus for any number of edge JPs N > 3 as long as
the rate of malicious edge JPs does not exceed N/3.

For the impersonation attack during the key establishment
phase, a malicious edge JP cannot impersonate the pledge since
the parameters sent by the pledge during this phase are signed
with its private key. Likewise, a malicious edge JP cannot
impersonate the JRC since it needs to be able to recover the
value w (known only by the JRC), given S = gw. This is
necessary to get the session key and to send back the challenge
waited by the pledge. However, succeeding to lead this attack
is equivalent to solving discrete logarithm problem known to
be hard in multiplicative cyclic groups.

VII. PERFORMANCE EVALUATION

In order to evaluate the performance of our protocol, we
developed an ad-hoc simulator in Java. In our simulator, we
consider one JRC, multiples JPs and plegdes. Each one of
these entities is implemented as a thread executing its tasks
defined in our protocol and communicating with other entities
through TCP sockets. We also use a lightweight configuration
adapted for constrained objects in JPBC security library to
implement cryptographic operations. JPs can be either honest or
malicious. If a JP is malicious, it can be configured to perform
an individual or a collaborative attack (Section V). The edge
JPs executing the consensus are randomly chosen among the
JPs launched in our simulation. The simulation parameters
(Table I) are varied in order to evaluate their impact on the
success rate of the authentication. The results are presented in
the following sections.

Total number of nodes 100
Degree m of Q(x) [2-10], default value=2

Rate of malicious nodes {10,20,33}%, default value=33%
Simulation rounds 1000

TABLE I: Simulation parameters.

A. Security Robustness

Figure 1 represents the variation of authentication success
rate according to the number of edge JPs, for different rates
of malicious nodes conducting an individual attack. As we
can see, in the worst case (33% of malicious nodes in the
network), we reach a rate of 0.8 of successful authentications
starting from a number of edge JPs equal to 5. This value
starts to converge to 1 starting from a number of edge JPs
equal to 8 and lesser if we consider a rate of 10% or 20%
of malicious nodes. Note that for a rate of malicious nodes
in the network higher than 33%, to attain the same success
rate, higher number of edge JPs must be contacted. Since this
solution is proposed for an industrial context, we consider that
the availability of edge JPs is not a constraint. Moreover, for
an individual attack, the cases where the authentication does
not succeed represent the cases where the consensus has not
been achieved, not that an attack has succeeded.

Fig. 1: Variation of authentication success rates in individual attacks.

Fig. 2: Variation of authentication success rate in collaborative attacks.
Figure 2 represents the same variation as Figure 1 in a

scenario where malicious nodes (33% of the network) conduct
a collaborative attack. Although we notice the convergence of
authentication success rates, we also observe an instability in
the rates achieved in the case where we have an even and an
odd number of edge JPs. Indeed, if we separately consider the
success rates curve of even numbers of edge JPs (green curve)
and odd numbers (red curve), we notice that the rate in both
curves is increasing. However, the convergence of the red curve

is much quicker than the green one. To explain this behavior, we
calculated (in Table II) the rate of how many times, in average,
the number of malicious edge JPs has exceeded the half of
the contacted edge JPs during the simulation. We note that in
the collaborative attack, when the number of malicious edge
JPs exceeds the half of contacted edge JPs, the authentication
fails since we achieve a consensus leading to malicious nodes’
secret. Now if we check the rates in table II, we can clearly
notice that we exceed more often the half when an even number
of edge JPs is contacted compared to when an odd number of
edge JPs is contacted. This means that, the collaborative attack
succeeds more for even numbers than odd numbers. Therefore,
the convergence of authentication success rate becomes slower
for even numbers as noticed in Figure 2.

edge JPs 2 3 4 5 6 7 8 9 10
Avg. Exceed Time 0.55 0.26 0.37 0.2 0.32 0.15 0.23 0.13 0.2

TABLE II: Percentage of times malicious exceeding half edge JPs.

B. Communication and Energy Efficiency

In this section, we evaluate the trade-off between the
robustness of our protocol and the energy efficiency. Given a
polynomial of degree m and a number N of edge JPs to be
contacted to collect m−1 points each, the number of messages
Nmsg exchanged during one JRC authentication is:

Nmsg = (m− 1)×N × 2 +N × 2 = 2×m×N (3)

As we can see, the energy consumed in terms of communication
depends on the degree m and the number of edge JPs to contact.

In Table III, we represent the impact of the degree m on
authentication success rates and the number of messages
exchanged. As we can notice, increasing the value of m
increases the number of messages exchanged but does not
have an impact on success rates. Thus, bigger values of m do
not make our protocol more robust. Thus, we can reduce the
communication overhead by adopting the smallest value of m.

Degree m 2 3 4 5 6 7 8 9 10

Success Rate 0.80 0.79 0.80 0.79 0.77 0.77 0.77 0.78 0.77

Messages 20 30 40 50 60 70 80 90 100

TABLE III: Degree m modification with five edge JPs.

VIII. CONCLUSION

In this paper, we propose a zero-touch mutual authentication
for 6TiSCH industrial IoT networks. Our scheme is multi
fold: first the network coordinator authenticates new joining
nodes using certificates. Second, a novel consensus among the
network’s nodes, and based on Shamir shared secret, attests
the coordinator’s identity. Finally, a session key is established
between these two entities. Unlike most of existing solutions,
our scheme does not require any prior configuration of new
nodes. Theoretical analysis and simulations are conducted to
evaluate the robustness of our protocol in attack scenarios
assuming the existence of up to 33% of malicious nodes in
the network. The results of the simulation are consistent with
the theoretical analysis, and have shown the efficiency of our
protocol and its resilience against attacks. In the future, we

intend to investigate the performance of our protocol in the case
where the joining phase is performed in a network zone having
a small nodes concentration. We also intend to simulate a real
IIoT scenario, where we consider different network topologies,
to get a better evaluation in terms of energy consumption.

REFERENCES

[1] X. Vilajosana et al., “IETF 6TiSCH: A tutorial,” IEEE
Communications Surveys & Tutorials, vol. 22:1, 2019.

[2] M. El-Hajj et al., “A survey of Internet of Things (IoT)
authentication schemes,” Sensors, vol. 19, no. 5, 2019.

[3] Y. Yang et al., “A survey on security and privacy issues
in Internet-of-Things,” IEEE Internet of Things Journal,
vol. 4, no. 5, pp. 1250–1258, 2017.

[4] M. A. Jan et al., “A robust authentication scheme for
observing resources in the Internet of Things environment,”
in 2014 IEEE 13th International Conference on Trust,
Security and Privacy in Computing and Communications.
IEEE, 2014, pp. 205–211.

[5] M. Vučinić, J. Simon, K. Pister, and M. Richardson,
“Constrained Join Protocol (CoJP) for 6TiSCH,” RFC
9031, May 2021.

[6] T. Shah et al., “Authentication of IoT device and IoT server
using secure vaults,” in IEEE International Conference
On Trust, Security And Privacy In Computing And
Communications (TrustCom), 2018.

[7] R. Sanchez-Iborra et al., “Enhancing LoRaWAN security
through a lightweight and authenticated key management
approach,” Sensors, vol. 18, no. 6, p. 1833, 2018.

[8] H. R. Hussen et al., “SAKES: Secure authentication
and key establishment scheme for M2M communication
in the IP-based wireless sensor network (6LoWPAN),”
in International Conference on Ubiquitous and Future
Networks (ICUFN). IEEE, 2013, pp. 246–251.

[9] A. Esfahani et al., “A lightweight authentication mecha-
nism for M2M communications in industrial IoT environ-
ment,” IEEE Internet of Things Journal, no. 1, 2017.

[10] P. Porambage et al., “Two-phase authentication protocol
for wireless sensor networks in distributed IoT applica-
tions,” in IEEE Wireless Comm. and Netw. Conf., 2014.

[11] E. Bejder et al., “SHAKE: SHared Acceleration Key
Establishment for Resource-Constrained IoT Devices,”
in 2020 IEEE 6th World Forum on Internet of Things
(WF-IoT). IEEE, 2020, pp. 1–6.

[12] Z. Li et al., “Secret key establishment via RSS trajectory
matching between wearable devices,” IEEE Transactions
on Information Forensics and security, vol. 13, no. 3, pp.
802–817, 2017.

[13] A. Arno et al., “Accelerometer assisted authentication
scheme for smart bicycle lock,” in 2015 IEEE 2nd World
Forum on Internet of Things (WF-IoT). IEEE, 2015.

[14] A. Shamir, “How to share a secret,” Commun. ACM,
vol. 22, no. 11, p. 612–613, Nov. 1979.

[15] L. Lamport et al., “The byzantine generals problem,” ACM
Transactions on Programming Languages and Systems
(TOPLAS), vol. 4, no. 3, pp. 382–401, 1982.

