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Abstract: The application of extremum seeking control is investigated to mitigate the spread of
the COVID-19 pandemic, maximizing social distancing while limiting the number of infections.
The procedure does not rely on the accurate knowledge of an epidemiological model and takes
realistic constraints into account, such as hospital capacities, the observation horizon of the pandemic
evolution and the quantized government sanitary policy decisions. Based on the bifurcation analysis
of a SEIARD compartmental model providing two possible types of equilibria, numerical simulation
reveals the transient behaviour of the extremum of the constrained cost function, which, if rapidly
caught by the algorithm, slowly drifts to the steady-state optimum. Specific features are easily
incorporated in the real-time optimization procedure, such as quantized sanitary condition levels
and long actuation (decision) periods (usually several weeks), requiring processing of the discrete
control signal saturation and quantization. The performance of the proposed method is numerically
assessed, considering the convergence rate and accuracy (quantization bias).

Keywords: real-time optimization; extremum seeking; COVID-19; quantization; epidemiological
modeling

1. Introduction

Since January 2020, human society has been deeply impacted by the COVID-19 pan-
demic. In this context, mathematical modeling and numerical simulation of the virus
spread as a function of several factors, including social distancing, testing and quarantining,
mobility restrictions and vaccination, have been playing a key role in the decision policy of
many governments worldwide [1]. The most popular dynamic model finds its origin in the
work of [2], who proposed a compartmental representation, categorizing people in several
possible states such as susceptible (S), symptomatic Infected (I) or Removed/Recovered
(R). The so-called SIR models provide predictions based on historical data and can be
used to develop hypothetical control strategies. For instance, Ref. [3] proposes an optimal
SEIAR model-based open-loop control approach (adding the Exposed and Asymptomatic
compartments) and suggests that on-off policies alternating between strict social distanc-
ing and relaxing can be effective at flattening the infection curve. Furthermore, Ref. [4]
investigates open-loop optimal control as well as model predictive control (MPC) with
online adaptation of the social policy constraint, and robust MPC using interval state esti-
mation to take account of uncertainties in the model and measurements. In the same spirit,
Ref. [5] develops an MPC control strategy taking account of time-dependent specifications
and logical relations between model variables, and multiple predefined discrete levels
of governmental interventions (control input quantization). As all the model variables
are not accessible to measurements, it is necessary to develop state estimators in order to
apply full-state feedback, which poses additional challenges. In [4], an interval observer is
developed, whereas an observer for Linear Parameter Varying (LPV) systems is designed
in [5].

Data-driven control methods have also attracted interest, with different optimal formu-
lations, such as in [6], showing that the cost of eradicating the disease may be significantly
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higher than the cost of managing the pandemic by hospital saturation limitations, which is
claimed to be the policy adopted by several US local administrations. Ref. [7] also recom-
mend deep-learning-based strategies to mitigate the pandemic, assimilating a high number
of data samples to approach hyper parameters (effective reproduction number of the virus
over time, hospitalization rate, etc).

As stressed in [8], one can of course question the validity of the dynamic prediction
models, and several recent research papers have proposed real-time optimization (RTO)
strategies to take model uncertainties into account either by considering robust-to-mismatch
or, more radically, model-free techniques. In one of our recent publications [9], discrete
model-free extremum seeking (ES) has been been applied for the first time to the control
of social distancing while avoiding hospital saturation. This contrasts with the first MPC-
based studies of [3,4], which only aim at limiting the infectious cases in a conservative way.

Another emerging research stream aims at assessing the risk of several alternative
control policies including the consideration of vaccination strategies guided by socio-
demographic and health factors [10] as well as the possible withdrawal of the vaccination
passport to grant more freedom [11].

In this connection, more elaborate objective/cost functions are considered, such as [12],
who proposes a concomitant optimization objective with the concern of providing advanced
solutions considering people psychological health. In the same stream of studies, Ref. [13]
develops an original sliding-mode-based RTO design, adapted to a SIRDQ model with the
objective of reducing the quarantine period while guaranteeing an effective regulation of
the reproduction number to a desired value. Several numerical validations are proposed
using first-order sliding-mode and second-order super-twisting methods.

The objective of the present study is to investigate the application of model-free
quantized discrete extremum seeking control (QESC) to achieve the optimization of social
distancing while mitigating the pandemic and limiting the number of infection cases. Ex-
tremum seeking control (ESC) is an RTO method achieving a direct input adaptation [14]
to reach a steady-state map extremum, either by tracking an uncertain model-based trajec-
tory [15] or by relying on the existence of a measurable convex objective function without
any a priori knowledge about the process model [16]. The latter is also denominated as
model-free perturbation-based ES and aims at estimating the objective function gradient
and forcing its estimate to zero while persistently exciting the input using a periodic dither
signal. Several review papers highlight the potential of the ES methods to solve RTO prob-
lems in different scientific fields (see, for instance, [17,18], for reviews of ESC developments
over the last few decades).

As underlined in [9], discrete ESC presents some operating challenges such as the
condition of persistency of excitation [19], which prevents the output signal from reaching a
true steady-state (the latter is only achieved on average [16]), the convergence dependency
on the dither signal frequency which should be adapted to the process operating conditions
and time constants [20], and the nature of the actuator, which is not assumed to present
saturation or quantized levels. The latter issue has recently been tackled by [21], based
on the work of [22], who lay the foundations of the anti-windup ESC providing stability
and convergence proofs. However, actuator saturation and quantization studies in the
framework of ESC are limited to two-level situations and, in this work, an extension to
multiple quantized levels is proposed, which corresponds to the various social distancing
levels that could be imposed in a governmental policy.

The motivation of this work is therefore to extend our preliminary results [9] in order to
include a rigorous treatment of saturation and quantization of the control signal (i.e., social
distancing in the context of the pandemic) using the results of [21]. To sum up, the objectives
are to design (i) a procedure focusing on psychological health and the reduction of social
distancing since hospitals should be less and less likely to overpass their bed capacities
thanks to the vaccination, (ii) a realistic discrete software tool supporting decision policies
without requiring significant computational loads (in contrast with, for instance, deep-
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learning based methods) and (iii) the first validation of a QESC strategy in the framework
of the COVID-19 pandemic.

The next section presents the epidemiological model used in [3] as an emulator of
the population behavior to test the ESC approaches. Section 2.2 computes the equilibrium
points of the model and demonstrates a bifurcation behavior depending on the level of
social distancing. In Section 2.3, a measurable cost function is proposed, which will use
the concept of barrier functions, and serves as basis for ESC, which is further discussed in
Section 3. The numerical application is detailed in Section 4, where the two time scales of
the convergence are highlighted and the issue of quantization of the measures is introduced.
The final section is dedicated to conclusions and research perspectives.

2. COVID-19 Outbreak Modeling
2.1. SIR Modeling

Compartmental population modeling ([2]) is, by far, the most common formalism to
model epidemics and describe the transitions between susceptible S(t), infected I(t) and
removed/recovered R(t) states. In [9], the compartmental SEAIR model of [3] describing
the COVID-19 outbreak is considered, which also accounts for the asymptomatic population
A(t) (this class of individuals gathers cases which are not detected due to asymptomatic
conditions, or due to the lack of testing) as well as the exposed population E(t). This model
also includes mortality, with a perished population P(t), but no natality. The resulting
dynamics of the several compartmental variables are represented by an ordinary differential
equation system as follows:

dS
dt

=
−αa(t) S(t) A(t)− αi(t) S(t) I(t)

N
+ γ R(t), (1a)

dE
dt

=
αa(t) S(t) A(t) + αi(t) S(t) I(t)

N
− l E(t), (1b)

dA
dt

= l E(t)− κ(t) A(t)− ρ A(t), (1c)

dI
dt

= κ(t) A(t)− β I(t)− µ I(t), (1d)

dR
dt

= ρ A(t) + β I(t)− γ R(t), (1e)

dP
dt

= µ I(t), (1f)

where N is the total population and S, E, A, I, R, and P are, respectively, the susceptible, ex-
posed, unreported infected (asymptomatic or unconfirmed), reported/confirmed infected,
removed/recovered and perished populations. The parameters αa and αi are the rates of
exposure to the A and I populations, respectively. αa characterizes, in a broad sense, social
distancing and αi, quarantining, and can be considered as manipulated (control) inputs
from a system and control perspective, as well as the screening/testing rate κ. Constant
(at least in first approximation) parameters account for the (inverse of the) latent period of
the virus l (0.5 days−1), the infectious period of unconfirmed cases ρ (0.1 days−1) and the
recovery rate β (0.025 days−1). These parameters represent the situation in the US in 2020
according to [3].

2.2. Bifurcation Analysis

Neglecting the death rate µ, which is fortunately very low as compared to the recovery
rate γ (one to two orders of magnitude smaller) and considering a constant total population
N in model (1), two equilibrium points can be obtained, which correspond either to the
extinction of the infection (the steady-state susceptible population level is Sss = N and
all other variables are 0) or to the stabilization of the epidemics, i.e., non-zero steady-
state values of the several variables depending on the several rates defined in Table 1.
The interested reader may refer to [9] to find the detailed expressions and their derivation.
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A local stability analysis based on the Jacobian of (1) around the equilibrium points
show that the eigenvalues are (non-strictly) negative (one eigenvalue is always zero) over
a social distancing range of αa = [0.05 0.4], exhibiting a dynamic bifurcation at a critical
value αa,c, a function of the chosen parametrization. The resulting eigenvalue trajectories
therefore present two arcs, separating the range of αa values in two categories, each of them
leading to the epidemics extinction (αa < αa,c) or stabilization (αa > αa,c).

Table 1. Parameter values in model (1).

N αi [d−1] κ [d−1] β [d−1] l [d−1] ρ [d] γ [d−1]

1.1 107 0.01 0.3 0.025 0.5 0.1 0.1

2.3. Constrained Objective

Most of the published studies of optimal control applications to the COVID-19 out-
break require the knowledge of a dynamic model in the form of Equations (1) and some ro-
bustness provision to account for parameter uncertainties. In contrast, we aim at proposing
a model-free strategy allowing direct social distancing adaptation under realistic decision
policies with long observation periods (e.g., several weeks) and long sampling periods.
Indeed, the pandemic dynamics evolve with the vaccination rate and efficiency as well as
the appearance of new mutant strains, challenging model-based strategies.

In most studies, the focus is put on the fatality or infected case limitations, whereas
the objective of the present study is to apply an optimal control policy minimizing social
distancing (maximizing αa) with the concern of psychological health [3,12,23], under con-
straints such as hospital bed capacity.

The objective function therefore reads:

J = −αa + ψ + φ (2)

where −αa represents social distancing while ψ and φ are respectively a logarithmic barrier
on the infected cases and a penalty constraint on the comfort of social distancing:

ψ = −ηψln

(
I(t)− Ire f

ε

)
, (3a)

φ = ηφ max
(

0, (αa,re f − αa)
3
)

(3b)

where ηψ, ηφ and ε are design parameters. Ire f represents the critical level of infections,
corresponding to a number of infected people which might lead to an overflow of intensive
care hospitalizations. αa,re f is the penalty reference for social distancing, i.e., a level at
which people will start feeling psychologically affected.

However, logarithmic barriers may sometimes induce numerical issues during tran-
sient phases, and, as recommended in [24], Equation (3a) is approximated by a combined
barrier-penalty expression as in:

ψB =

{
ψ i f I(t)− Ire f ≥ ε

0 i f I(t)− Ire f < ε
(4)

which is active in the feasible region I(t)− Ire f ≥ ε and

ψP =

{
0 i f I(t)− Ire f ≥ ε

ηP

(
Ire f − I(t) + ε

)
i f I(t)− Ire f < ε

(5)

which is active in the complementary region and where ηP is a new design parameter.
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Objective 2 is then rewritten as:

J = −αa + ψB + ψP + φ (6)

The chosen parametrization is summarized in Table 2 and Figure 1 shows the evolution
of (6) as a function of αa after 200 days and once in steady-state.

Table 2. Parameter values of the objective function (6).

Ire f αa,re f [d−1] ηψ ηφ ηP ε

2 0.5 1 1 200 0.3

0 0.1 0.2 0.3 0.4 0.5

a

-3

-2.5

-2

-1.5

-1

-0.5

0

J

Figure 1. Evolution of objective function (6) with respect to the input αa, describing the cost of
pandemic mitigation with respect to the social distancing level. This figure highlights a unique
optimum represented by the black star. Continuous line: steady-state values. Dashed line: transient
values after 200 days.

To solve this minimization problem, a discrete extremum seeking strategy has been
proposed in [9], resulting in a two-stage convergence rate, first, quickly catching the
transient optimum and greedily tracking [25] its drift towards the steady-state optimum
(highlighted by the star in Figure 1). Even if this application was successful, several
practical shortcomings were highlighted, such as the inconsistent daily changes and the
infinity of possible quantization levels (each of them assimilated to an adopted sanitary
policy) of the social distancing variable. In this study, we therefore propose a new problem
formulation including these important aspects to make the control policy applicable in a
real epidemiological context.

3. Social Distancing Real-Time Optimization
3.1. Classical Discrete-Time Extremum Seeking

Extremum seeking (ES) is a real-time optimization (RTO) strategy driving a system
to optimal operating conditions corresponding to the extremum of a measurable convex
objective function J [26]. To apply this approach, model 1 and objective function 6 are first
cast under the following generic nonlinear state-space form:

ẋ = f (x, u) (7a)

y = Cx (7b)

J = h(y(x), u) (7c)

where x ∈ <n is the state vector, u ∈ <r the input vector, y ∈ <m the output vector, C the
m× n measurement matrix and J the cost function to be minimized.

The convergence of the extremum seeking algorithm is guaranteed if (i) there exists a
unique couple of minimizers x∗ and u∗ under achievable steady-state conditions, and (ii)
if the cost function is convex, fulfilling the necessary condition of optimality [16]. In the



COVID 2022, 2 1082

COVID-19 pandemic context, a daily reporting of the cases is delivered, and a discrete
formulation of the perturbation-based ES is therefore recommended, based on the scheme
represented in Figure 2.

Static Map
𝐽(𝛼𝑎)

−𝑘𝐼
𝑧 − 1

𝑧 − 1

𝑧 + 𝑓𝐻𝑃
X

𝑑 = 𝑎 cos(𝜔 𝑘 𝑇𝑠)

+

𝑢 ℎ

ℎ𝐻𝑃መ𝜉ො𝑢

Figure 2. Discrete perturbation-based extremum seeking [26]. The input u is modulated with
the dither signal d perturbing the measured objective function h = J. The latter signal is then
demodulated in two steps: first by removing the continuous component and low frequencies through
a high-pass filter with cut-off frequency fHP, then by multiplying the filtered signal hHP by the dither
signal to isolate the information on the gradient ξ̂ at ω. The integration of the gradient estimate
provides the input estimate û.

The system input is excited by a periodic dither signal and the objective function
measurement is high-pass filtered in order to recover the useful information at the dither
frequency. The filtered signal, hHP, is then demodulated with the same dither signal,
providing the cost criterion gradient estimate ξ̂ = ∂̂h

∂u . Finally, the input signal is recovered
from the integration of ξ̂.

The ES loop of Figure 2 is governed by the following equations:

hHP(k) = h(k)− hHP(k− 1) fHP, (8a)

u(k) = −kI ξ̂(k− 1) + u(k− 1), (8b)

ξ̂(k) = a cos(ωkTs)hHP, (8c)

where fHP is the high-pass filter cut-off frequency, kI the integrator gain, k is the discrete
time variable and Ts the sampling period. The reader may refer to [16,26] for additional
elements about stability and convergence analyses of discrete ES. Moreover, Ref. [27] also
propose further analysis considering state constraints, introducing barrier and penalty
functions, such as Equation (3). In the next subsection, to solve the practical shortcom-
ings discussed in Section 2.3 regarding social distancing management, the particular case
involving quantization of the actuator level is presented, adapting the strategy of [21].

3.2. Discrete-Time Quantized Extremum Seeking

Under specific quantized setting of the actuator over n steps covering the range
of admissible values uk (k = 0, 1, . . . , n − 1) belonging to the set U, the input can be
reformulated as follows:

ū = Γ(u) =

{
u− if u ≤ (uk+uk−1)

2 ,
u+ if u >

(uk+uk−1)
2 ,

(9)



COVID 2022, 2 1083

where the chosen constant actuator quantum is u+ − u−. The discrete perturbation-based
ES equations become:

hHP(k) = h(k)− hHP(k− 1) fHP, (10a)

ū(k) = Γ
(
−kI ξ̂(k− 1) + ū(k− 1) + d(k)

)
, (10b)

ξ̂(k) = d(k)hHP(k), (10c)

d(k) = a cos(ωkTs) + δ(k) (10d)

and the ES scheme is updated by including the new quantizing blocks as shown in Figure 3.

Static Map
𝐽(𝛼𝑎)

−𝑘𝐼
𝑧 − 1

𝑧 − 1

𝑧 + 𝑓𝐻𝑃
X

𝑑 = 𝑎𝑘 መ𝜉 cos 𝜔 𝑘 𝑇𝑠 + 𝛿𝑘

+

𝑢

ℎ

ℎ𝐻𝑃መ𝜉ො𝑢

Γ(𝑢)

Bias 
estimator

𝛿

ത𝑢

Figure 3. Quantized discrete perturbation-based extremum seeking (adapted from [21]). In com-
parison with Figure 2, this scheme allows for estimating the bias δ due to the input quantization
(saturation) Γ(u), and providing a correction (by addition to the dither signal).

The bias created by the quantization of the input is comparable to a saturation which
should be compensated in order to avoid windup of the ES integral loop and loss of
convergence. A signal δk is introduced by [21], accounting for the estimation bias in such a
way that

lim
k→∞

1
N

k+N−1

∑
i=k

Γ(ûi + di + δi) = uk, (11)

where N denotes a horizon over which the input signal is averaged. Equation (11)
highlights the role of variable δ which acts on the input to compensate asymptotically the
saturation bias. This variable is updated as follows:

δk+1 = δk − λYk, (12)

where λ is an adaptation gain chosen so as to allow δ to reach a sufficient level with respect
to the dither signal magnitude and

Yk = Γ
(
Γ
(
−kI ξ̂(k)

)
+ dk + δk

)
− Γ

(
−kI ξ̂(k)

)
, (13)

which measures the deviation between the quantization of the perturbed/compensated
gradient (i.e., including the dither and the bias estimation) and its original quantized coun-
terpart.

The magnitude of the dither signal a evolves in relation with the gradient estimate as
suggested in [28], until a lower bound a− is reached. This allows the ES algorithm to reduce
its oscillations (or even halt if a− ≈ 0) when reaching a sufficiently close neighborhood of
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the optimum. It also allows for increasing the dither magnitude if the gradient estimate
suggests that a departure from the neighborhood has occurred (for instance, in the presence
of external disturbances). It should be noticed that the adaptation of the dither magnitude
assumes smoothness of the cost function in the optimum vicinity. Under persistence
of excitation (PE), the ES algorithm converges in a close neighborhood of the optimum,
function of the dither signal magnitude and frequency. This PE condition is fulfilled with:

ak+1 = max
(

a−, ak + σa

(
γa

2
π

tan−1(
∣∣ξ̂∣∣)− ak

))
, (14)

where 2
π tan−1(ξ̂) forces the magnitude a to evolve with the gradient. σa should be set

taking into account that the larger the dither magnitude, the faster the ES converges and the
smaller the dither magnitude, the more accurate the ES algorithm. The value of γa should
then be selected so that gradient variations can be taken into account even if convergence is
under progress and the magnitude of the dither signal has already significantly decreased.

4. Quantized ESC Application to the SEAIR Model

Following the evolution of the sanitary policies in the years 2020–2021 applied by the
governments, which have been periodically tighten and relaxed, a quantized ES strategy
appears quite instinctive. The application of classical constrained discrete-time ESC to a
SEIAR model considering objective function 6 reveals that convergence is achieved in about
100 days to a transient optimum which is drifting with time to a steady-state optimum.
The ESC is able to track this optimum in a greedy way over hundreds of days. However,
classical ESC considers a daily policy change, which is impractical. The quantized ESC
together with a sufficiently long sampling period is a more appropriate approach. In the
following, this update period is set to one month (30 days).

The QESC parametrization is based on the guidelines of [21,26,27], and is reported in
Table 3.

Table 3. Parameter values of the ES algorithm.

h [d−1] ω [d−1] a− a0 σa γa u+ − u− kI =
1
τI

0.99 2 π
205 0.005 0.05 0.15 0.7 0.025 1

7

The following numerical study considers two case studies, either with bias compensa-
tion or without (in the latter case, δ is simply set to zero and never updated). Figures 4–7
show the results of the QESC application over 1000 days. In Figure 5, the input evolution in
both cases is similar, even though an offset appears after 100 days. The objective function
reaches a transient optimum after 100 days, as it was observed in [9], before drifting to the
neighborhood of the steady-state optimum after 350 days (about 1 year). We can conclude
that constraining the problem by input quantization and longer sampling periods does not
deteriorate the convergence time of the ESC strategy and, furthermore, that the bias com-
pensation allows approaching more accurately the steady-state optimum. The adaptation
of the dither signal magnitude a behaves as expected since it stops decreasing between 100
and 200 days, when the gradient has, on average, not yet converged to 0. After 200 days,
the exponential decrease restarts and, interestingly, the bias compensation variable δ also
stops varying at the same time.
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Figure 4. Application of discrete QESC to system (1)—time evolution of the states. In blue: QESC
with bias compensation—In dashed red: QESC without bias compensation. Even if the state variables
present almost identical transient trajectories, the latter diverge after 200 days and end up in different
steady-states. Non-intuitively, converging to a closer neighborhood of the cost objective optimum
(i.e., optimizing social distancing) unfortunately leads to slightly higher casualties while still limiting
the number of infections.

0 100 200 300 400 500 600 700 800 900 1000

Time [d]

0.1

0.2

0.3

a

0 100 200 300 400 500 600 700 800 900 1000

Time [d]

-2

-1

0

J

Figure 5. Application of discrete QESC to system (1): time evolution of the input u = αa and output
y = J. Blue line: QESC with bias compensation. Dashed red line: QESC without bias compensation.
The impact of bias compensation is highlighted by the faster decrease of the discrete social distancing
level (as αa increases) after 200 days.
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Figure 6. Application of discrete QESC to system (1): time evolution of the gradient ξ̂, the dither
magnitude a and the bias δ. Blue line: QESC with bias compensation. Dashed red line: QESC without
bias compensation. This figure shows the small but important impact of the bias estimation during
the transient period, which allows gaining one quantized level on αa as illustrated in Figure 5.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

a

-3

-2.5
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-1

-0.5
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J 100 d

50 d
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1000 d

Figure 7. Application of discrete QESC to system (1)—evolution of the output y = J with respect to
the input u = αa. Black arrows indicate the convergence direction. Continuous line: QESC with bias
compensation. Dashed line: QESC without bias compensation. The blue lines indicate the transient
cost functions in 50, 100 and 360 days, while the red line indicates the cost function steady-state after
1000 days. Blue stars show the ending state of the QESC algorithms while the red star indicates the
numerical steady-state optimum y∗ = J∗ = −2.1665 and u∗ = α∗a = 0.28. This diagram confirms
that, thanks to the bias estimation, the QESC is able to drive the system at the closest quantized level
of the optimum J∗(α∗a ).
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5. Conclusions

This study proposes an original application of quantized extremum seeking control
(QESC) to solve the social distancing optimization problem in the framework of the COVID-
19 pandemic. The problem formulation aims at minimizing social distancing, preserving
population psychological health, while avoiding the number of infections from rising above
a specific level defined, for instance, by hospital bed capacities. The proposed strategy does
not rely on the a priori knowledge of an epidemiological model and only adapts social
distancing on the basis of an objective function measurement. Considering a compartmental
SEAIR model as digital simulator of a hypothetical sanitary situation, discrete ES is able
to quickly converge to a transient optimum of the objective map which slowly drifts until
reaching steady-state. The proposed QESC deals with practical shortcomings such as (i) the
dither signal magnitude reduction/extinction when stabilizing at the optimum, (ii) the long
observation period following the application of a sanitary policy and the corresponding
long sampling period constraint, (iii) the quantization of the decision policy over a limited
number of decision levels and (iv) the compensation of the saturation bias. The results show
no deterioration of the convergence performance while improving the simplicity of decision-
making. Future work includes the combination of quarantining, testing and vaccination as
new inputs, requiring strategies like mutivariable ES [16], maximum-likelihood ES [29] or
Newton-based ES [30].
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