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Stability of Metal Oxide Semiconductor
Gas Sensors: A Review

Hongfeng Chai, Zichen Zheng, Kewei Liu, Jinyong Xu, Kaidi Wu,
Yifan Luo, Hanlin Liao, Marc Debliquy, and Chao Zhang

Abstract—Sensor stability is defined as the ability to
maintain a relatively stable and repeatable signal over a
sufficient period. Long-term stability for gas sensors is an
essential capability for carrying out long-term data collection
of human exhaled breath, environmental monitoring and other
gas detection in the modern electronic information age. This
article reviews the research advances on the stability of metal
oxide semiconductor gas sensors in the past five years. The
impact of structure, environment, toxicity and sensor array
on the sensor stability are discussed. Then, the improve-
ment schemes of existing materials and structure design are
summarized. The achievements of structure doping, humidity,
anti-poisoning and photoactivation are overviewed. Finally,
the great significance of elucidating the sensing mechanism and carrying out the life acceleration test for future research
and development is pointed out.

Index Terms— Semiconductor, metal oxide, gas sensor, stability.

I. INTRODUCTION

CONVENTIONAL gas analyzers, such as mass spec-
trometry, energy spectrometry and chromatography, are

limited by the high cost of the devices [1]. Compared with the
analyzers, gas sensors based on metal oxide semiconductors
are widely used due to their small size, easy operation, low
cost and other benefits. Among the main characteristics of
gas sensors, sensitivity and selectivity are the main objects
of research. However, as one of the indicators which the
costumers are concerned about, stability is not often discussed.
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In general, commercial sensors should have a life span of
at least 2-3 years (17,000-26,000 hours). During this period,
a stable and repeatable signal should be maintained [2].
Stability tests need to be measured and recorded in the long
term, limiting the study of stability. At the same time, data
about the sensor stability are often retained due to business
secrets. In addition, until now, there is no specific index for
sensor stability in the world [3].

Unlike other semiconductors, which undergo irreversible
chemical reactions to form stable oxides when exposed to
air at high temperatures, metal oxides usually remain stable
when their surfaces interact with oxygen. The target gas
molecules in the environment will interact with the adsorbed
oxygen species on the surface, crystal planes and grain
boundaries of metal oxide semiconductors, which will lead
to the transfer of electrons at the interface, thus making the
resistance change accordingly. Metal oxide semiconductor gas
sensors are classified into two categories. One is the resistive
type, which can be subdivided into surface resistance control
and bulk resistance control. Surface control is divided into
sintering, thick coating and film. The second is non-resistive
type, which consists of solid electrolyte, diode and field-effect
transistors (FET), etc.

According to the perspective of preparation technology
and detection mechanism, the sensor performance is mainly
determined by the gas-sensitive element, heating system and
substrate, among which the gas-sensitive element is the
core, and the gas-sensitive element determines the selectivity,
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sensitivity, stability and other aspects of the sensor.
The heating system provides energy for the activation of
gas sensors. The heating mode also affects the sensor sta-
bility. Continuous high-temperature heating may cause an
unexpected crystal growth of sensing materials. Meanwhile,
some external factors also affect the sensor stability, such as
humidity, operating temperature, target gas, etc. [4].

Sensor life depends on several factors: 1. The material
stability; 2. Environmental conditions (humidity, temperature,
etc.); 3. Target gas (reducing or oxidizing gas, gas concen-
tration, etc.) [5]. To assess sensor stability, the following two
indexes must be tested: (1) Stability of the conductivity, which
is also known as the sensor’s baseline; (2) Stability of the
response. Therefore, from metal oxide sensing materials to
advanced devices, the operating stability of gas sensors should
be a necessary evaluation index. Korotcenkov et al. summa-
rized the factors which affect the stability of semiconductor
gas sensors and the improvement strategies in 2014 [6]. The
research advance on sensor stability in the last five years is
reviewed in this article. Five factors determine the stability
of semiconductor metal oxide sensors: sensitive materials,
element doping, ambient humidity, poisoning and compo-
nent composition of gas sensors, which will be discussed
in Section II. In view of these five factors, according to the
literature in recent years, several schemes to deal with sensitive
materials, environment, poisoning and circuit are summarized,
including photoactivation and advanced manufacturing meth-
ods, which will be discussed in Section III.

II. KEY FACTORS OF STABILITY

For metal oxide semiconductor gas sensors, the exchange
of charge carriers in the gas adsorption and desorption is the
cause of the electrical signal change. When the gas-sensitive
layer reacts with gas, the conductivity of the film varies. The
rate of change in conductivity is related to the concentration of
the test gas. Subsequently, the electrical signal is transmitted.
The material microstructure needs to be stabilized to maintain
a stable sensing performance. Sensitive materials, element
doping, ambient humidity and component composition of gas
sensors are the key factors impacting stability, as shown
in Fig 1.

A. Sensitive Materials
Nanomaterials used in gas sensors at a high temperature

must have high thermal stability. The material thermal stability
is related to the temperature at which the chemical sensor using
the material can operate. This is evident in the atmosphere of
reducing gas [4], [7].

Generally, the grain size of metal oxide gas-sensitive layer
is less than 100 nm. The smaller the grain size is, the better
the gas sensing performance of the sensor can be obtained.
The grain size should be similar to twice the Debye length.
Because the variation of grain size is inversely proportional
to the specific surface area, the grain boundary decreases
with the reduction of grain size, resulting in the noteworthy
change of resistance. Because the nanoparticles are basically
in a non-equilibrium state, the heat made the grains grow
and homogenize, and sintering and even melting occurred [4].

Fig. 1. Main influencing factors of stability.

When the sensor is in a high-temperature environment or
the heating temperature rises, the grain size grows, which
affects the sensing performance [8]. Formula (1) is the critical
temperature of grain growth, in which Tst and t are the grain
size and operating temperature, respectively. The length unit
is nm.

Tst = 420(logt)3/4 (◦C) (1)

When the particle size decreases, the surface volume ratio
increases. The decrease of melting temperature is mainly due
to the increase of surface free energy of particles. The decrease
of melting temperature nanoparticles is inversely proportional
to the particle diameter [9].

For example, Motaung et al. found that ZnO grain growth
resulted in long-term baseline drift under high-temperature
conditions [10]. In a network composed of particles, the size
variation of particles forms a gas-sensitive matrix. When the
particles grow, the contact area among particles becomes more
prominent, and the necking among grains is easy to form.
Yin et al. evaporated WO3 onto a tungsten substrate. The
study showed that different temperatures of the substrate in the
evaporating process would affect the structure and morphology
of the material as well as the number of preferred orienta-
tions and grain size, as shown in TABLE I [11]. Similarly,
in the high-frequency chemical vapor deposition technology,
the variation of substrate temperature could change the grain
size, and apparent agglomeration occurs [12].

In the nanometer size range, it is well known that the
specific surface area is positively correlated with the sensitivity
of the material. However, according to studies, there are other
factors besides specific surface area that determine sensitivity.
For example, some specific exposed crystal surfaces can
provide better reaction control [13]. For the deposited metal
oxide clusters, the change in size is generally followed by
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TABLE I
GRAIN SIZES AT DIFFERENT TEMPERATURES

a significant change in cluster structure, which further varies
as the metal oxide clusters are deposited on the substrate [14].
It is the smallest particle that is easy to grow that determines
the stability of the gas-sensitive layer.

B. Doping
Element doping can significantly influence the material

structure, adsorption ability, visual, electrical and other prop-
erties. Crystal boundary migration dynamics generally control
the sintering rate of metal oxide material. The presence of
additional grain boundaries between adjacent metal oxide par-
ticles inhibits cationic diffusion and microcrystalline growth.
It means that changing the properties of grain boundaries
by introducing a second phase can provide a method for
controlling the sintering mechanism, kinetics and final proper-
ties of gas-sensitive materials, and this mechanism is mainly
related to the structure of dopants and the selection of metal
oxides [15].

Although the addition of noble metal additives can effec-
tively improve the response of semiconductor metal oxides,
the complex mechanisms of these additives have not been
fully discussed. For example, SnO2 suffers from excessive
crystallization in sintering. Generally speaking, it reduces the
porosity and specific surface area, which means the decrease
of the adsorption sites for gas molecules and the adsorption
capacity, leading to the decrease of sensor response. After the
calcination of SnO2 doped with the elements In3+ and Si4+,
crystallization inhibition can be seen [16]. However, different
doping elements do not inhibit grain growth. According to
Abbas et al., the concentration of doped Ag is inversely
proportional to the grain size [17]. Ran et al. also found
that doping with Sm can affect the average particle size
of SnO2 nanoparticles [18]. G. Korotcenkov confirmed that
dopants could change the crystal lattice of the material
and cause instability of grain size [19]. In the review of
Motaung et al., it is concluded that recent studies have found
that when ZnO is doped with manganese, the change of crystal
lattice morphology is brought by Mn2+ [10]. Doping elements
also cause the electron recombination of oxides, leading to a
decrease in the concentration of the charge carriers. This effect
is called the neutralization effect [20]. This means that the
control of the doping content and the suitability of the doped
element for the material may change the final stability of the
gas-sensitive layer material.

C. Poisoning
In addition to the crystal size and the concentration of

charge carriers, the metal oxide can react with some unwanted
molecules, which leads to instability. A gas or chemical
substance other than the target gas is generally called a
disturbance as it causes a reversible reaction, while it is
considered toxic if it produces an irreversible reaction. The
sensing mechanism is the adsorption and decomposition reac-
tion between surface and gas. Generally, the surface activity
of metal oxide is relatively high, so it is easy to have an
irreversible reaction with active elements, which leads to the
decline of the long-term stability of semiconductors.

There are three main poisoning mechanisms: toxicant
adsorption, toxicant-induced surface reconstruction, and com-
pound formation with toxicant and catalyst [21]. The elec-
tron configuration of the reactants influences the interaction
between the potential poison and the dopant. The configuration
determines the final form of bond between the poison and
the catalyst. Hexamethyldisiloxy (HMDS) can take the place
of the reaction sites of Pt and Pd in the catalytic oxidation
of methane, propane, carbon monoxide and hydrogen [22].
Palmisano et al. reported that H2 sensors were affected by a
variety of toxic gases [23]. TiO2 is widely used in oxygen
sensors because of its high sensitivity, fast response and good
chemical stability. TiO2 gas sensors could be poisoned by
methylcyclopentadienyl manganese tricarbonyl (MMT) when
detecting automobile exhaust. Mn mainly exists on the grain
boundary of TiO2 in the form of MnO2, resulting in low
resistance [24].

The adsorption of poisons is mainly through competitive
adsorption with reactive substances, which can be understood
through the classical adsorption isotherm Formula (2) estab-
lished by Langmuir [25].

θ = P/[P + (kdes/kads) exp(−�HP HY /RT )] (2)

The electron density may also explain the sequence of
increased sulfide poisoning activity, as the H2S effect is
stronger than that of SO2. Catalytic poisoning of noble metals
mainly incorporates the adsorption of poisons and the forma-
tion of compounds. Palmisano et al.’s experiments showed
that Pd was more susceptible to sulfur poisoning than Pt, and
the magnitude of the effect depended on the degree to which
the metal atom’s d orbital was involved in metal bonding
(Pt < Pd) [23].

The compound formation between catalysts refers to the
formation of a compound from a toxic precursor and
a catalyst, which is similar to the principle of poison
adsorption [26], [27].

D. Humidity
The relative humidity (RH) in the atmosphere can be close

to 100%. Metal oxide semiconductor sensors are sensitive
to water vapor and their stability is affected by ambient
humidity. Water vapor is an unavoidable vital interfering gas
in metal oxide semiconductor gas sensors [8], [28], [29], [30],
[31], [32]. Firstly, the concentration of H2O in the atmosphere
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is high (for example, a RH value in the range 20-80% corre-
sponds to 1200-4800 ppm at 0◦C, but to 14000-56000 ppm
at 38◦C), while the concentration of the gas to be detected
is in the tens of ppm or ppb level. Secondly, changes
in climate, weather, night and day, temperature and lati-
tude/longitude positions also impact the environment. The
H2O molecules can occupy the adsorption sites on the sen-
sor surface [33]. Surfactant substances associated with H2O
are known as −OH [33], [34], [35]. Changes in humidity
in the environment not only cause long-term shifts in the
baseline resistance, but also in the calibration curve of the
conductance and partial conductance. Studies have shown that
the surface of SnO2 adsorbs more water than oxygen [36].
Degler et al. [33] discussed three different water adsorption
methods based on the interaction between SnO2 and water
vapor. The composition of the surface, the sensor resistance,
and the gas sensing properties can be affected by different
routes of water adsorption. The adsorption of water molecules
is the cause of surface modification, which affects the adsorp-
tion of other gases [2], [37]. Yan et al. studied the sensing
characteristics of four metal oxides for VOCs in different
humidity environments, and the data showed that they were
all affected by humidity [38]. A typical chemisorption reaction
equation for water vapor is shown in Formula (3). Here the
Mm is the metal sites on the surface, Oads is the adsorbed
oxygen and S is the site for chemically adsorbed oxygen.

H2O + 2Mm + O−
ads ↔ 2(M+

m − OH) + e− + S (3)

Humidity can also have an impact on the aging of the
sensor. It is reported that the aging phenomenon of the SnO2
sensor can be attributed to the change of water molecule
adsorption [36]. The H2O interacts with oxygen ions in the
inner lattice of SnO2 to produce free holes or electrons, which
explains the decrease in resistance over time as the sensor ages
or humidity increases rapidly [39], [40], [41], [42].

E. Sensor Components
In addition to the gas-sensitive layer and the external

environment, the sensor components also impact its stability.
Metal oxide semiconductor gas sensors generally operate in

the range of 150 to 450◦C and are equipped with integrated
heaters. The response of the gas sensor relies mainly on
the operating temperature, so temperature control is the key
component of the whole gas sensor system [9]. In recent years,
to reduce heating power and energy consumption, the heater
miniaturization strategy has been generally adopted [43], [44].
When the heaters get smaller, the accuracy in the fabrica-
tion becomes challenging to control. This may lead to a
controlling issue of the working temperature. In addition,
to improve selectivity, a temperature-pulse operating mode is
used, in which temperatures are unevenly distributed and vary
rapidly, which can cause severe thermal stress, thus shortening
the life of the sensor and leading to film rupture [45].

Traditional metal-oxide semiconductor sensors need micro-
heaters to control the temperature distribution, as well as
interdigital electrodes to measure the in-situ resistance or
in-situ current of the target material [44]. With the emergence

of wearable flexible devices, sensors with good flexibility and
high stability are urgently needed. The way to design and
arrange electrodes has a significant impact on sensor stability.
For example, electrode materials commonly used in semicon-
ductor metal oxides have different disadvantages. Au electrode
has good long-term stability, but it can quickly diffuse into the
substrate at relatively low temperatures. Although Pt electrode
is the most stable material, it is also prone to instability due to
its poor adhesion [46]. In addition, the commonly used sensor
temperature modulation (modulated by a temperature switch
to enhance sensor selectivity) can lead to repeated expansion
and contraction of wires and contacts, which can reduce sensor
stability and even lead to sensor failure.

To sum up, the factors that determine the stability of
semiconductor metal oxide sensor are not only affected by
their own material structure, but also restricted by external
conditions. How to control the nature of the material itself
and reduce the influence of the surrounding environment will
be discussed in the next Section.

III. IMPROVEMENT METHODS OF STABILITY

The lack of stability leads to the failure of the data model
obtained in the initial calculation in a relatively short time. The
sensors responded differently to the same gas during the aging
process so that the devices had poor repeatability [25], [47].
In this section, the instability factors mentioned in Section II
are addressed through improved sensing materials, environ-
mental impact reduction, circuit design, poisoning solutions,
light activation and advanced manufacturing methods.

A. Sensing Materials
The methods to control the grain size are the key to improve

the thermal stability of the material structure [48].
1) Nano-Phase Materials: Nano-phase materials have

broader thermal stability than nanocrystalline materials, which
is due to the higher activation energy of grain growth of
nanomaterials. At the same time, the activation energy of
micron particles with nanometer phase is more significant
so that the growth of micron particles is difficult, and the
thermal stability is good. Inhibiting interfacial migration can
also prevent grain growth and improve thermal stability.
Excessive energy at the interface and significant energy differ-
ences between adjacent interfaces will likely lead to interface
migration. Therefore, when the crystal grains are selected
as equiaxed grains with uniform particle size and narrow
distribution, and remain isotropic, the interface energy will be
significantly reduced and the growth of grains will not be easy
to occur [4]. During the heating process, the grain boundary
will first undergo a structural relaxation phenomenon, resulting
in the rearrangement of atoms, which tends to be ordered,
to reduce the grain boundary free energy. The energy of
grain boundary relaxation is generally smaller than that of
grain boundary migration. During the heating process, the
energy is first consumed on the grain boundary relaxation,
so the grains of nano-phase materials are not easy to grow
up in a wide range [49], [50]. As a result, using nano-phase
materials or even micron materials as the sensing material can
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effectively improve the stability of metal oxide semiconductor
gas sensors.

2) Pinning Effect: A stabilizer can be added to nano-phase
material to make it segregate at the grain boundary, reducing
the electrostatic energy and distortion energy of grain bound-
ary. It also plays a role in pinning grain boundary, making
grain boundary migration difficult, and finally realizes the
control of grain growth. This effect is known as the pinning
effect. In gas sensing materials, the pinning effect can be used
to stabilize the grain growth in the life span of the sensing
layer. Wu et al. found that Mn decreased grain boundary
surface energy, and its influence on grain boundary energy was
particularly significant, which was due to the segregation of
Mn [51]. Tobaldi et al. reported that the addition of Cu element
could cover the surface of nano TiO2, which limited the further
changes of its crystal lattice [52]. Doped zirconate particles in
common metal oxides can effectively prevent grain growth,
which has high stability and low diffusion kinetics, and can
limit the movement of grain boundaries. A similar pinning
effect is known as Zener pinning. Wildfire et al. prepared a
sensing material composed of Y-GZO (Gd1.8Y0.2Zr2O7) and
SnO2, of which the stability and sensitivity were improved
compared with pure SnO2 [53].

3) Preheating Treatment: It is an effective method to
improve the sensor stability by aging the sensor before test-
ing at a higher temperature than the working temperature.
Preheating sensors have several functions. It can somehow
clean the surface contamination of the sensor and remove the
possible organic compounds left from the fabrication period.
Furthermore, it can limit the grain growth in the working
period and eliminate the defects which can cause the sensor
instability. In the study of Zhang et al., since the heat treatment
can effectively transform WO3−x into WO3 under 24 hours,
the sensor performance can be stabilized [54].

In addition to processing on the integrity of materials and
the structure of grains, it is also mentioned in Section 2.1 that
the minimum grain size determines the activation energy of
grain growth, so controlling the grain size at the beginning
of deposition is considered to be the best way to improve
stability [12]. According to Nanda’s study, the morphology
and grain size of CuO were controlled by chemical vapor
deposition to obtain appropriate gas sensing properties and
good stability [55]. In the experiment of Amarnath et al., V2O5
and WO3 coatings with controllable size were developed by
in-situ chemical oxidation polymerization [56].

B. Testing Environment
In this section, the methods from the previous work about

how to reduce interference from the service environment are
summarized.

1) Temperature: Recently, temperature switches [57] or
temperature-modulation [58] in metal oxide semiconductor
gas sensors have become a prevalent technology. Compared
with organic sensors, a heating device is equipped in metal
oxide sensors. With the progress of micromechanics, the heater
becomes smaller and the overall heat capacity is reduced
simultaneously.

Since the temperature has a significant influence on the
baseline resistance and the sensor response, the sensing char-
acteristics can be optimized and the stability can be improved
by adjusting the actual temperature of the heater itself through
using a dedicated temperature sensor or heating resistance.
In the experiment of Shaposhnik et al., the chemical and
physical properties and a good selection of temperature modu-
lation parameters made the sensor obtain a good response and
excellent stability [59].

Although sensors with temperature modulation introduce
additional circuit complexity and increase cost, they have high
reliability, especially when combined with pulse drives, but
this method can effectively improve the recovery rate and the
sensor stability [60], [61]. Wu et al. improved the recovery
stability of the gas sensor at room temperature. 10 s pulse
heating was used to reduce the time needed to reach the initial
resistance [60].

By temperature modulation, the target gas can be accurately
distinguished and the stability can be improved [62], [63].
Di Giuseppe et al. optimized the modulation system and
realized drift compensation and fault identification [64].

2) Humidity: To obtain moisture-resistant sensors that can
work in atmospheric conditions, it is essential to minimize
the effects of −OH [65]. Generally, there are two methods
to address the instability in a high humidity environment
(especially when detecting human exhaled breath). Firstly,
in terms of sensing materials and hardware, the response to
humidity sensitivity can be weakened by improving the tech-
nology and preparation method. Suematsu et al. overcomed
−OH poisoning by loading V2O5 on the surface of SnO2
and prevented degradation of sensor response caused by −OH
poisoning [66].

Similarly, Pawar et al. prepared a 3D porous In2O3
microcube, and the response changed little when the relative
humidity varied [67]. Metal oxide sensors decorated with
graphene showed long-term stability under various environ-
ments with varying humidity and oxygen conditions [68]. The
effect of water vapor can be reduced by coating the surface of
the metal oxide with some specific metal-organic frameworks
(MOF). For example, MIL-160 can act as a filter for the
selective adsorption of H2O [31]. SiO2 shows powerful water
absorption properties. Using the commercial atmospheric pres-
sure plasma spraying method to prepare an ultra-thin SiO2
layer on the cover of ZnO columnar film can effectively reduce
the influence of water vapor [69]. SnO2 composited with g-
C3N4 has excellent moisture resistance, since g-C3N4 is an
ideal layered material that can overlie the cover of SnO2
like a film, limiting the hydrolysis of SnO2[70]. Lou et al.
synthesized three-dimensional porous ZrO2 film through a
template method, and SnO2 was deposited onto the substrates
by Atomic Layer Deposition (ALD) technology. Since porous
zirconia formed a hydrophobic layer, the influence of humid-
ity on SnO2 was significantly reduced [71]. Except for the
addition of a protecting layer, some other methods can also
be used to design humidity-independent sensors. Suematsu et
al. aged the gas-sensitive material in the wet air at 580◦C,
and the oxygen adsorption equilibrium constant increased no
matter in dry or wet environments. The increased oxygen
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adsorption inhibited the adsorption of −OH [72]. Oxidation of
−OH can also be achieved by doping elements. Kwak et al.
found that Tb4+ and Tb3+ can react with −OH to update the
SnO2 cover and reduce the influence of vaporous water [35].
The latest research showed that adding appropriate desiccant
can decrease the impact of water vapor and hydrophobic
agents on the target gas at the same time. Mahdavi et al.
reduced the impact of vaporous water on the gas sensor by
using CaCl2. Fig. 2 shows the influence of desiccant on the
sensor [73].

Humidity drift compensation can depend on the develop-
ment of software. In order to reduce or avoid resistance drift
resulted from environmental fluctuations, Vafaei and Amini
developed a compensation mechanism in which the sensor
model was made with temperature, humidity, and response as
inputs and concentration values as outputs. The sensor con-
sisted of a built-in light source, a thermo-electric pile detector
and two reflective walls. The cavity-free structure reduced the
diffusion time and increased the linearity of the response [74].
The principle is to use the actual operation of the data
processing to get a neural network, then direct output gas con-
centration through the introduction of humidity. Several reports
in recent years have taken similar approaches [75], [76], [77],
[78], [79]. Yan et al. realized the humidity model according to
a power-law response, using absolute humidity to compensate
relative humidity and temperature, and the final error was
within 0.5-10% [38].

C. Sensor Design
The long-term drift of the sensor signal can be controlled

in two ways. The first is to reduce or avoid the aging of the
device, in which the electrode is the most critical, and the
second is to offset the drift, such as pattern recognition [80].

1) Electrode Design: The electrode is responsible for trans-
ferring power or receiving current to the outside of the
semiconductor gas sensor, which significantly influences the
stability of the semiconductor gas sensor. The electrode
must also have high-temperature resistance under extreme
conditions [46].

In terms of the interdigital electrode, Pt is generally used
as an electrode material, but its adhesion is poor. In order to
solve the problem, adhesive can be added to the Pt material.
Capone used a Ti/Au structure to reduce the dissolution of the
gold electrode and pointed out that the Ti/Pt structure provides
better stability [81].

At the same time, due to the heating and electricity, the
sensing material will be subjected to mechanical stress, such
as the nanowire structure, which will make the electrode
and the material lose contact, resulting in sensor instability.
The problem can be effectively solved by the reasonable
arrangement of electrode gap. In Vallejos et al.’s study, a 5 μm
electrode gap was found to have the best sensor stability [82].

2) Calibration Design of Sensor Array: The intrinsic change-
ability of gas sensors can degrade the ability to calibrate mod-
els, especially when the system changes [80]. Therefore, even
if the conditions of the detection sensors are the same, each
system needs to be calibrated separately. Fonollosa et al. built
five dual-sensing units, each containing eight mixed-oxide gas

Fig. 2. Responses to different concentrations of acetone without any
desiccant (a) and CaCl2 (b) [73].

sensors, using a calibrated transfer strategy to offset drift [80].
Tian et al. adopted the method of classifier integration to
cope with the sensor drift well [83]. Rehman et al. proposed
an innovative classification strategy for reconfigurable sensor
arrays. This approach allows sensors/individual classifiers to
be added or removed from the model without recalibrating
the entire system, while it also offsets the degradation in
classification performance due to the occurrence of drift or
sensor failure [84].

D. Sensor Poisoning Solutions
Octamethylcyclotetrasiloxane (OMCTS) is usually found

indoors, and it can easily poison semiconductor gas sensors
based on SnO2. Organic compounds containing silicon can
be toxic to semiconductor sensors as well. DSR (differential
surface reduction) method can be used for further study of the
effect of siloxane treatment on the dynamic performance of
MOS sensors. DSR method focuses on the surface reaction
rate, and can determine the sensor toxicity according to the
application [85]. Schüler et al. showed that impedance-based
detection of HMDSO (hexamethyldisiloxane) toxicity could
be used to further improve the reliability of metal oxide gas
sensor measurements by monitoring the time the sensor is
exposed to the toxic gas of the sensor [86]. In the presence
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of sulfur, cerium oxide is easily converted to cerium sulfate,
resulting in a significant decrease in activity. Kim et al.
developed a method to form an octahedral nanoceria on the
crystal face of CeO2(111) after hydrothermal treatment of
nano cerium oxide loaded on activated γ -Al2O3, and then
loading Pt. The low basicity defect sites of Ce3+ are reduced,
showing good sulfur resistance [87]. Suchorsk et al. studied
CO poisoning and found that the higher CO tolerance at the
nano-level around the metal-oxide interface made the whole
micron-size Pd particles more resistant to CO poisoning [88],
which provided a theoretical basis for improving the resistance
of sensors to CO. In recent years, carbon nanotubes, as a
stable material with support structure, have been widely used
in combination with nano-metal or metal oxide as sensors. Due
to the internal limitation of carbon nanotubes, it can effectively
prevent the contamination of nano-metal elements like doped
or loaded by external substances, such as CO. However, the
uncontrollable formation process of carbon nanotubes leads to
certain defects and vacancies, which also affects the stability
of the composite with the sensor material [45].

In addition to improving the stability of baseline resistance,
the detection of sensor poisoning can also reduce drift. Song
et al. proposed a method for sensor array management, which
can effectively evaluate the system status and achieve a main-
tenance recommendation accuracy of 98.25% [89].

E. Light Activation
Baseline drift is one of the most critical problems of

metal oxide sensors, which must be reduced to improve the
long-term stability [90]. As in sensor materials, excessive
heating temperature always affects the stability of the material.
To alleviate this problem, new activation methods other than
heating can be used [91].

Adsorption begins when a semiconductor surface comes into
contact with a gas, and light affects the adsorption rate [92].
Because ultraviolet (UV) light can activate metal oxides,
it is considered to be utilized for sensor activation at room
temperature [93], [94], [95]. Unfortunately, according to the
equation E = hν, the higher the frequency of UV, the higher
the energy of the photon, which can harm the electronics or the
sensing layers in long-term service, leading to poor stability.
So to obtain better stability, people are trying to use visible
light to activate metal oxide sensors [96], [97]. Fig. 3 shows
the effect of visible light on the sensing coating resistance.
A combination of UV and temperature-activated ZnO nanos-
tructures improves sensor dynamics, reduces response and
recovery times, and decreases baseline drift [98]. To acquire
good performance at room temperature, Choi et al. employed
UV emitters (365 nm) as photoactivation, and used the photon
energy of UV light to replace the heating energy [91]. The
photon energy can increase the number of charge carriers in
the conduction band, improve the surface chemical activity,
and provide more active regions on the surface.

The advantage of light activation is that performing the test
at room temperature reduces the damage from heating at a high
temperature, while the disadvantage is that it can lead to rela-
tively low gas response and a slow response/recovery rate [98].
Modifying the oxide bandgap to the absorption range of

Fig. 3. (a) Response curve of SPPS sensor coating to 1.0 ppm NO2
under different visible light at room temperature; (b) the stability test
results of the SPPS coatings to 1.0 ppm NO2 under blue light illumination
at room temperature [93].

visible light can extend the optical response range [99]–[101].
Geng et al. prepared a CdS-ZnO sensitive layer by liquid
plasma spraying technology, which can be activated by visible
light and respond to NO2 [102].

F. Advanced Preparation Methods
The sensor stability can be enhanced by improving the

synthesis/deposition method.
Ink-jet printing is a simple and effective method to prepare

coatings of metal oxide sensing materials by dipping the
droplets onto the substrate by a printer. The In2O3 prepared
by Jan et al. remained stable under an inert gas atmosphere
without baseline drift, but the baseline had a significant drift
when exposed to air [103]. Thermal spraying can obtain a
unique gas-sensitive layer [104]. Zhang et al. deposited WO3
gas-sensitive layer by atmospheric plasma spraying (APS),
solution precursor plasma spraying (SPPS) and APS combined
with SPPS (APS+SPPS). The coatings prepared by all three
methods obtained good stability. Fig. 4 shows the combination
of plasma spraying and gas-sensitive coating deposition [105].
Liu et al. used the method of APS to deposit the ZnO1−x gas-
sensitive coating to obtain the room temperature gas sensor,
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Fig. 4. (a) Plasma spray setup with micro-nano-structure coating
schematic; (b) electrical resistances-time curves of the APS, SPPS and
APS+SPPS coatings deposited at 24.5 kW exposed to 1 ppm NO2 at
200◦C with a relative humidity of 50% [105].

which slowed down the aging of components and improved
sensor stability [106].

The micro-nano structure can improve the sensing per-
formance and increase the sensor stability [107]–[109]. The
preparation of spherical shell model can not only improve
sensitivity, but also promote stability. The yolk-shell ZnFe2O4
synthesized by Zhou et al. using the template-free solution
method had good long-term stability and improved sensing
performance at the operating temperature of 200 ◦C [110].
Wang et al. synthesized a series of polyphase composites with
multi-shell structure, high specific surface area and crystalline
mesoporous skeleton, including binary (Fe-Co, Ni-Zn and
Ni-Co oxide), ternary (Ni-Co, Mn-Ni-Co and Ni-Co ZnO) and
five-element (Ni-Co, Fe-Cu-Zn oxide) polyphase composites
with good stability [111].

Spray pyrolysis can form stable metal oxide nanocompos-
ites with high porosity [82]. In the study of Song et al.,
an easy method to synthesize ZnO/ZnFe2O4 three-shell hollow
microspheres (ZZFO TSHMSS) by annealing and calcina-
tion of Zn3[Fe(CN)6]2·xH2O precursors was proposed, which
showed excellent long-term stability [112].

The stability of the sensor can be effectively increased by
improving the material, optimizing the synthesis scheme and
designing the sensor components reasonably. However, some

parts, such as doping elements and material poisoning, need
further research due to the lack of mechanism.

IV. PROSPECT

The stabilization of metal oxide semiconductor gas sensors
is a very intricate problem, influenced by numerous factors,
including physical and chemical properties of materials, envi-
ronment, sensor design, etc. For materials, the main factors
that affect the stability are the uncontrolled grain growth
during the service period and the irreversible reactions between
the surface and some molecules in the environment or target
gases. For the electronic parts, the most crucial problem comes
from the aging of the components such as the connection or the
measuring elements, i.e., a regulator and a resistance. When
it comes to the improvement of the stability, it can be divided
into two general parts: improve the material stability, such as
inhibiting the growth of grains, avoiding the effect of humidity
and poison molecules, and improving the design of the sensing
device, such as the circuit for correcting the errors or using
new data treatment methods. Combining multiple methods
can be an effective way. For example, fixing the response
to humidity and sensing temperature reduction at the same
time can effectively improve sensor stability. The electrical,
UV and gas sensing properties evaluated by Postica et al. in the
different situations over 203 days showed that SiO2-covered
ZnO/TiO2 had higher immunity to water vapor and higher
long-term stability [113].

Nevertheless, not all superpositions are good, because the
sensing mechanisms involved are not fully understood. It is
of great significance to clarify the sensing mechanism for
improving sensor stability. For example, the grain size of
metal oxide increases at high temperatures, leading to the
change of gas-sensitive performance, which makes the sensing
performance unstable. In terms of design, compensating and
calibrating drift is still the focus of research. In addition,
to facilitate research on sensor stability, rapid and effective
life-accelerating tests are urgently needed to be developed.
With the development of flexible equipment and long-term
monitoring equipment becoming the mainstream, the direction
of future sensors will be miniaturization and energy saving.
Maintaining the sensor stability under this development trend
is still the focus of future research.
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