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ABSTRACT
We consider zero-sum games on infinite graphs, with objectives
specified as sets of infinite words over some alphabet of colors. A
well-studied class of objectives is the one of 𝜔-regular objectives,
due to its relation to many natural problems in theoretical computer
science. We focus on the strategy complexity question: given an
objective, how much memory does each player require to play as
well as possible? A classical result is that finite-memory strategies
suffice for both players when the objective is 𝜔-regular. We show a
reciprocal of that statement: when both players can play optimally
with a chromatic finite-memory structure (i.e., whose updates can
only observe colors) in all infinite game graphs, then the objective
must be 𝜔-regular. This provides a game-theoretic characteriza-
tion of 𝜔-regular objectives, and this characterization can help in
obtaining memory bounds. Moreover, a by-product of our charac-
terization is a new one-to-two-player lift: to show that chromatic
finite-memory structures suffice to play optimally in two-player
games on infinite graphs, it suffices to show it in the simpler case
of one-player games on infinite graphs.
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Context. In this work,1 we study zero-sum turn-based games on
infinite graphs. In such games, two players, P1 and P2, interact for
an infinite duration on a graph, called an arena, whose state space
is partitioned into states controlled by P1 and states controlled
by P2. The game starts in some state of the arena, and the player
controlling the current state may choose the next state following an
edge of the arena.Moves of the players in the game are prescribed by
their strategy, which can use information about the past of the play.
Edges of the arena are labeled with a (possibly infinite) alphabet
1This short abstract is based on paper [7] of the same name, published in the proceed-
ings of STACS 2022.
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of colors, and the interaction of the players in the arena generates
an infinite word over this alphabet of colors. These infinite words
can be used to specify the players’ objectives: a winning condition
is a set of infinite words, and P1 wins a game on a graph if the
infinite word generated by its interaction with P2 on the game
graph belongs to this winning condition — otherwise, P2 wins.

This game-theoretic model has applications to the reactive syn-
thesis problem [3]: a system (modeled as P1) wants to guarantee
some specification (the winning condition) against an uncontrol-
lable environment (modeled as P2). Finding a winning strategy in
the game for P1 corresponds to building a controller for the system
achieving the specification against all behaviors of the environment.

Strategy complexity. We are interested in the strategy complexity
question: given a winning condition, how complex must winning
strategies be, and how simple can they be? We are interested in
establishing the sufficient and necessary amount of memory to
play optimally. We consider in this work that an optimal strategy
in an arena must be winning from any state from which winning is
possible (a property sometimes called uniformity in the literature).
The amount of memory relates to how much information about the
past is needed to play in an optimal way. With regard to reactive
synthesis, this has an impact in practice on the resources required
for an optimal controller.

Three classes of strategies are often distinguished, depending
on the number of states of memory they use: memoryless, finite-
memory, and infinite-memory strategies. A notable subclass of
finite-memory strategies is the class of strategies that can be im-
plemented with finite-memory structures that only observe the se-
quences of colors (and not the sequences of states nor edges). Such
memory structures are called chromatic [19]. By contrast, finite-
memory structures having access to states and edges of arenas are
called general. Chromatic memory structures are syntactically less
powerful and may require more states than general ones [8], but
have the benefit to be definable independently of arenas.

We intend to characterize the winning conditions for which
chromatic-finite-memory strategies suffice to play optimally against
arbitrarily complex strategies, for both players, in all finite and
infinite arenas. We call this property chromatic-finite-memory deter-
minacy. This property generalizes memoryless determinacy, which
describes winning conditions for which memoryless strategies suf-
fice to play optimally for both players in all arenas. Our work



follows a line of research [4, 6] giving various characterizations of
chromatic-finite-memory determinacy for games on finite arenas.

𝜔-regular languages. A class of winning conditions commonly
arising as natural specifications for reactive systems (it encom-
passes, e.g., linear temporal logic specifications [27]) consists of
the 𝜔-regular languages. They are, among other characterizations,
the languages of infinite words that can be described by a finite
parity automaton [25]. It is known that all 𝜔-regular languages are
chromatic-finite-memory determined, which is due to the facts that
an 𝜔-regular language is expressible with a parity automaton, and
that parity conditions admit memoryless optimal strategies [16, 29].
Multiple works study the strategy complexity of 𝜔-regular lan-
guages, giving, e.g., precise general memory requirements for all
Muller conditions [11] or a characterization of the chromatic mem-
ory requirements of Muller conditions [8, Theorem 28].

A result in the other direction is given by Colcombet and Ni-
wiński [10]: they showed that if a prefix-independent winning con-
dition is memoryless-determined in infinite arenas, then this win-
ning condition must be a parity condition. As parity conditions
are memoryless-determined, this provides an elegant character-
ization of parity conditions from a strategic perspective, under
prefix-independence assumption.

Congruence. A well-known tool to study a language 𝐿 of finite
(resp. infinite) words is its right congruence relation ∼𝐿 : for two
finite words 𝑤1 and 𝑤2, we write 𝑤1 ∼𝐿 𝑤2 if for all finite (resp.
infinite) words 𝑤 , 𝑤1𝑤 ∈ 𝐿 if and only if 𝑤2𝑤 ∈ 𝐿. There is a
natural deterministic (potentially infinite) automaton recognizing
the equivalence classes of the right congruence, called theminimal-
state automaton of ∼𝐿 [24, 28].

The relation between a regular language of finite words and
its right congruence is given by the Myhill-Nerode theorem [26],
which provides a natural bijection between the states of the minimal
deterministic automaton recognizing a regular language and the
equivalence classes of its right congruence relation. Consequences
of this theorem are that a language is regular if and only if its right
congruence has finitely many equivalence classes, and a regular
language can be recognized by the minimal-state automaton of its
right congruence.

For the theory of languages of infinite words, the situation is not
so simple:𝜔-regular languages have a right congruencewith finitely
many equivalence classes, but having finitely many equivalence
classes does not guarantee 𝜔-regularity (for example, a language is
prefix-independent if and only if its right congruence has exactly one
equivalence class, but this does not imply 𝜔-regularity). Moreover,
𝜔-regular languages cannot necessarily be recognized by adding
a natural acceptance condition (parity, Rabin, Muller. . . ) to the
minimal-state automaton of their right congruence [1]. There has
been multiple works about the links between a language of infinite
words and the minimal-state automaton of its right congruence;
one relevant question is to understand when a language can be
recognized by this minimal-state automaton [1, 24, 28].

Contributions. We characterize the 𝜔-regularity of a language of
infinite words𝑊 through the strategy complexity of the zero-sum
turn-based games on infinite graphs with winning condition𝑊 :
the 𝜔-regular languages are exactly the chromatic-finite-memory

determined languages (seen as winning conditions). As discussed
earlier, it is well-known that 𝜔-regular languages admit chromatic-
finite-memory optimal strategies [8, 25, 29] — our results yield the
other implication. This therefore provides a characterization of
𝜔-regular languages through a game-theoretic and strategic lens.

Our technical arguments consist in providing a precise connec-
tion between the representation of𝑊 as a parity automaton and a
chromatic memory structure sufficient to play optimally. If strate-
gies based on a chromatic finite-memory structure are sufficient to
play optimally for both players, then𝑊 is recognized by a parity
automaton built on top of the direct product of theminimal-state au-
tomaton of the right congruence and this chromatic memory structure.
This result generalizes the work from Colcombet and Niwiński [10]
in two ways: by relaxing the prefix-independence assumption about
the winning condition, and by generalizing the class of strategies
considered frommemoryless to chromatic-finite-memory strategies.
We recover their result as a special case.

Moreover, we actually show that chromatic-finite-memory de-
terminacy in one-player games of both players is sufficient to show
𝜔-regularity of a language. As 𝜔-regular languages are chromatic-
finite-memory determined in two-player games, we can reduce
the problem of chromatic-finite-memory determinacy of a win-
ning condition in two-player games to the easier chromatic-finite-
memory determinacy in one-player games. Such a one-to-two-player
lift holds in multiple classes of zero-sum games, such as determin-
istic games on finite arenas [4, 13, 20] and stochastic games on
finite arenas [6, 14]. The proofs for finite arenas all rely on an
edge-induction technique (also used in other works about strategy
complexity in finite arenas [9, 12, 17]) that appears unfit to deal
with infinite arenas. Although not mentioned by Colcombet and
Niwiński, it was already noticed [19] that for prefix-independent
winning conditions in games on infinite graphs, a one-to-two-player
lift for memoryless determinacy follows from [10].

Related works. We have already mentioned [8, 10, 11, 18, 29]
for fundamental results on the memory requirements of 𝜔-regular
conditions, [4, 6, 13, 14] for characterizations of “low” memory
requirements in finite (deterministic and stochastic) arenas, and [1,
24, 28] for links between an 𝜔-regular language and the minimal-
state automaton of its right congruence.

One stance of our work is that our assumptions about strategy
complexity affect both players. Another intriguing question is to
understand when the memory requirements of only one player are
finite. In finite arenas, a few results in this direction are sufficient
conditions for the existence of memoryless optimal strategies for
one player [2, 17], and a proof by Kopczyński that the chromatic
memory requirements of prefix-independent 𝜔-regular conditions
are computable [18, 19].

Wemention other works on finite-memory determinacy in differ-
ent contexts: finite arenas [23], non-zero-sum games [22], countable
one-player stochastic games [15], concurrent games [5, 21].
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