
Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

IMPROVING SYNTHESIZER PROGRAMMING FROM VARIATIONAL AUTOENCODERS
LATENT SPACE

Gwendal Le Vaillant ∗

Numediart Institute
University of Mons

Mons, Belgium
glevaillant@he2b.be

Thierry Dutoit

Numediart Institute
University of Mons

Mons, Belgium
thierry.dutoit@umons.ac.be

Sébastien Dekeyser

ISIB
HE2B

Brussels, Belgium
sdekeyser@etu.he2b.be

ABSTRACT

Deep neural networks have been recently applied to the task of
automatic synthesizer programming, i.e., finding optimal values
of sound synthesis parameters in order to reproduce a given input
sound. This paper focuses on generative models, which can infer
parameters as well as generate new sets of parameters or perform
smooth morphing effects between sounds.

We introduce new models to ensure scalability and to increase
performance by using heterogeneous representations of parame-
ters as numerical and categorical random variables. Moreover,
a spectral variational autoencoder architecture with multi-channel
input is proposed in order to improve inference of parameters re-
lated to the pitch and intensity of input sounds.

Model performance was evaluated according to several criteria
such as parameters estimation error and audio reconstruction accu-
racy. Training and evaluation were performed using a 30k presets
dataset which is published with this paper. They demonstrate sig-
nificant improvements in terms of parameter inference and audio
accuracy and show that presented models can be used with subsets
or full sets of synthesizer parameters.

1. INTRODUCTION

Automatic synthesizer programming consists in transforming
sounds into synthesizer presets, which can be defined as sets of
values of all synthesis parameters. While the task of finding an
optimal preset can be fulfilled manually, it is often cumbersome
and requires expert skills because a lot of synthesizers provide
dozens to hundreds of controls. This topic is an active research
field [1, 2, 3, 4] and models based on neural networks have shown
considerable improvements.

This paper focuses on models which can program synthesiz-
ers from audio and generate new presets as well, such as the Flow
Synth model [3]. An improved architecture, based on a Variational
Autoencoder (VAE) neural network for audio reconstruction and
on an additional decoder for synthesizer parameters inference, is
introduced in Section 3. In contrast to previous generative models,
this architecture is scalable and is able to handle all parameters of
a given synthesizer. Experiments were conducted on the DX7 Fre-
quency Modulation (FM) synthesizer and required a large dataset.

∗ This work was also supported by IRISIB and HE2B-ISIB (Brussels,
Belgium)
Copyright: © 2021 Gwendal Le Vaillant et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution 3.0 Unported License,

which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided the original author and source are credited.

More than 30k human-made DX7 presets were gathered and the
curated dataset has been made publicly available.

Section 4 introduces a novel convolutional encoder-decoder
structure which is able to extract latent features related to varia-
tions of pitch and intensity from multi-channel input spectrograms.
This aspect was neglected in similar projects, which focused on
learning how to reproduce sounds corresponding to a single note.
General results and usability of the final architecture are discussed
in Section 5.

2. STATE OF THE ART

2.1. Variational Autoencoder

2.1.1. Original formulation

VAEs [5] are deep latent variable models which learn mappings
between a space of observed data x ∈ RE (e.g., audio samples or
spectrograms) and a latent space of vectors z ∈ RD with D ≪ E.
They are built upon an encoding model pθ (z|x) and a decoding
model pθ (x, z) = pθ (x|z) pθ (z) parameterized by θ.

The latent prior pθ (z) is most often defined as pθ (z) =
N (z; 0, ID). For audio spectrograms modeling applications,
pθ (x|z) is usually a free-mean, fixed-variance multivariate Gaus-
sian distribution [6]. Those means x̂ are outputs of a decoder neu-
ral network:

x̂ = DecoderNeuralNetwork (z; θ) (1)

Given the above assumptions, pθ (x, z) is easy to compute and
to optimize using Stochastic Gradient Descent (SGD). It is consid-
ered to be a generative model because it allows drawing realistic
samples x from latent codes z.

However, the latent posterior distribution pθ (z|x) is intractable
[5] thus impossible to optimize. The original VAE formulation
proposes to approximate pθ (z|x) with a parametric model qϕ (z|x)
such as:

{
qϕ(z|x) = N (z;µ0, σ

2
0)

µ0, log σ
2
0 = EncoderNeuralNetwork(x;ϕ)

(2)

where σ2
0 ∈ RD+ contains diagonal coefficients of the diagonal

covariance matrix. From these models, the exact log-probability
of a dataset observation xn under the marginal distribution pθ (x)
cannot be computed nor optimized. Nonetheless, we can maxi-
mize the following Evidence Lower-Bound (ELBO):

DAFx.1

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

276

https://web.umons.ac.be/numediart/
mailto:glevaillant@he2b.be
https://web.umons.ac.be/numediart/
mailto:thierry.dutoit@umons.ac.be
https://www.he2b.be/campus-isib
mailto:sdekeyser@etu.he2b.be
http://creativecommons.org/licenses/by/3.0/

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

Lθ,ϕ(x) =Eqϕ(z|x) [log pθ(x|z)]︸ ︷︷ ︸
reconstruction accuracy

+ Eqϕ(z|x) [log pθ(z)− log qϕ(z|x)]︸ ︷︷ ︸
regularization term

(3)

with log pθ (x) ≥ Lθ,ϕ(x) [5]. The first term is consid-
ered to be a reconstruction accuracy because it measures the log-
probability of samples generated from encoded latent vectors. The
second term is equal to −DKL [qϕ(z|x)∥pθ(z)] thus encourages
encoded probability distributions to remain close to the prior pθ(z).

In practice, these expectations can be computed using a one-
sample Monte-Carlo approximation [5], i.e., a single z ∼ qϕ(z|x).
However, for gradients to be back-propagated through the encoder
neural network, z must be reparameterized as z = µ0 + σ0 ⊙ ϵ
where ϵ ∼ N (0, ID). Finally, Lθ,ϕ(xn) values are estimated us-
ing a minibatch of dataset samples xn and (θ, ϕ) model parameters
can be optimized using minibatch SGD.

2.1.2. Latent space properties

The encoder introduces a data bottleneck and is encouraged to
compress observations x while allowing accurate reconstructions
x̂. Therefore, latent distributions qϕ(z|x) can be expected to hold
meaningful information about input data, e.g., amplitude, timbre
or envelope features when x is an audio spectrogram. Thanks to
the regularization term (Equation 3), the latent encoding can also
be expected to be continuous, i.e., similar xn,xm observations
should be encoded as qϕ(z|xn), qϕ(z|xm) densities with similar
joint support.

However, Zhao et al. [7] proved that ELBO optimization fa-
vors fitting the observations xn over performing correct z infer-
ence, mainly because the reconstruction term (Equation 3) encour-
ages encoded probability densities to have a disjoint support. This
phenomenon is further amplified by the usually very large differ-
ence between x and z spaces dimensions (E ≫ D). E.g., whereas
DKL [qϕ(z|x)∥pθ(z)] is a sum of D terms (assuming Gaussian
distributions), log pθ(x|z) is a sum of E negative terms if com-
ponents of x are modeled as independent. The regularization loss
becomes orders of magnitude smaller than the reconstruction loss.

To prevent the aforementioned issues, the β-VAE formulation
[8] applies a β ≫ 1 factor to the regularization term. This hyper-
parameter also leads to a lower entanglement of latent variables, at
the expense of blurrier reconstructions x̂.

2.2. Normalizing Flows

2.2.1. Bijective probability distributions transforms

Normalizing Flows [9] are invertible neural networks primarily in-
tended to transform probability distributions. Let z0, z1 denote
random vectors and T : z0 7→ T (z0) = z1 denote an invertible
and differentiable transform whose inverse is also differentiable.
Given qZ0(z0), the probability density of z1 can be obtained by a
change of variables:

qZ1(z1) = qZ0(z0) |det JT (z0)|
−1 (4)

where JT is the Jacobian matrix of the flow transform T ,
whose determinant should be easy and efficient to compute. In

practice, most flow transforms [9, 10, 11, 12] have lower- or upper-
triangular Jacobian matrices and implementations ensure non-zero
diagonal coefficients for numerical stability.

2.2.2. Latent space normalizing flows

The baseline VAE approximates the true posterior distribution
pθ (z|x) with a simplified parametric model qϕ (z|x) such as a
multivariate Gaussian. Although it can lead to good reconstruc-
tion results, this posterior approximation can be improved by us-
ing a more flexible model [9], e.g., the output of a sequence of
normalizing flows T1, ..., TK .

Let ψ denote the parameters of the full latent flow transform
T = TK ◦ ... ◦ T1 and zk+1 = Tk+1(zk) denote successive latent
vectors. z0 is the "z" variable in Equation 2 and its closed-form
density is parameterized by the encoder neural network. The deep
latent variable of Equations 1 and 3 becomes zK . Thanks to the de-
terministic relationship between zK and z0, the expectation from
Equation 3 can be written with respect to z0 ∼ qϕ(z0|x). Using
Equation 4, the ELBO with a latent normalizing flow becomes:

Lθ,ϕ,ψ(x) = Eqϕ(z0|x)

[
log pθ(x|zK) + log pθ(zK)

− log qϕ(z0|x) +
K∑
k=1

log |det JTk (zk−1)|
] (5)

2.2.3. Flow models

Two common flow models are Masked Auto-regressive Flows
(MAF) [11] and Real-valued Non-Volume Preserving flows (Re-
alNVP) [12]. On one hand, a single MAF layer is fully auto-
regressive, i.e., it introduces dependencies between all components
of an output vector, and can be considered as a universal approx-
imator [13]. Thus, a multi-layer MAF-based model has a large
expressive power. However, an MAF inverse computation is se-
quential and approximately D times slower than a forward com-
putation. On the other hand, a single RealNVP layer is a cou-
pling layer. Half of the outputs are set equal to the first half of
the inputs, while an affine transformation is applied to the other
half of inputs. The scale and offset coefficients are parameter-
ized by the unmodified first half of the inputs and the layer’s own
parameters. Nonetheless, a sequence of RealNVP layers and per-
mutations forms a fully auto-regressive model. A RealNVP-based
model provides more scalability – at the expense of a lower pa-
rameter efficiency. Moreover, the forward and inverse directions
require the same amount of computation and are equally numeri-
cally stable [12].

2.3. Automatic synthesizer programming

2.3.1. From audio to synthesizer parameters

The main goal of automatic synthesizer programming [1] is to find
optimal values of synthesis parameters so that synthesized sounds
gets as close as possible to target input sounds. Applications range
from transferring a sound from a synthesizer to another, to repro-
ducing natural sounds (voice, acoustic instrument, ...) from a syn-
thesizer. Early works used CPU-intensive genetic algorithms [14],
and more recent techniques such as long short-term memory neu-
ral networks [1] and Convolutional Neural Networks (CNN) com-

DAFx.2

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

277

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

51
2

ch
. 4

x4
 ➡

 A
ct

 ➡
 B

N

20
48

 c
h.

 1
x1

 C
on

v
2d

 ➡
 A

ct

25
6

ch
. 4

x4
 ➡

 A
ct

 ➡
 B

N

12
8

ch
. 4

x4
 ➡

 A
ct

 ➡
 B

N

64
 c

h.
 4

x4
 ➡

 A
ct

 ➡
 B

N

32
 c

h.
 4

x4
 ➡

 A
ct

 ➡
 B

N

16
 c

h.
 4

x4
 ➡

 A
ct

 ➡
 B

N

8
ch

. 5
x5

 ➡
 A

ct µ0
<latexit sha1_base64="oVHXBx3vxA0495lDBVxOVqnA1fE=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IlM0AjuiG+MKE0ESIKQtA07oK+1UQ4gbf8CtfpnxD/QvvDOWRBdEp2l75tx7zsy914k8kUjG3nPG0vLK6lp+vbCxubW9U9zdaydhGru85YZeGHccO+GeCHhLCunxThRz23c8futMLlT89p7HiQiDGzmNeN+3x4EYCdeWRLV6fjpgg2KJlRljlmWZCljVM0agXq9VrJppqRCtErLVDItv6GGIEC5S+OAIIAl7sJHQ04UFhoi4PmbExYSEjnM8okDalLI4ZdjETug7pl03YwPaK89Eq106xaM3JqWJI9KElBcTVqeZOp5qZ8Uu8p5pT3W3Kf2dzMsnVuKO2L9088z/6lQtEiPUdA2Caoo0o6pzM5dUd0Xd3PxRlSSHiDiFhxSPCbtaOe+zqTWJrl311tbxD52pWLV3s9wUn+qWNOD5FM3FoF0pWydldn1aapxno87jAIc4pnlW0cAlmmiRt8AzXvBqXBmR8WBMv1ONXKbZx69lPH0BrEyRMg==</latexit>

�0
<latexit sha1_base64="8ANmKyIkHi3JllkMaZQVebdBWys=">AAACy3icjVHLSsNAFD2N7/qqunQTLIKrMqmi7U5040ZQsLbQFknGsQ7Ni8xE8LX0B9zqf4l/oH/hnTEFXRSdkOTMuefcmXtvkIZSacbeS87E5NT0zOxceX5hcWm5srJ6rpI846LFkzDJOoGvRChj0dJSh6KTZsKPglC0g+GhibdvRKZkEp/p21T0I38QyyvJfU1Up6fkIPIv2EWlymqMMc/zXAO8vV1GoNls1L2G65kQrSqKdZJU3tDDJRJw5IggEEMTDuFD0dOFB4aUuD7uicsISRsXeESZvDmpBCl8Yof0HdCuW7Ax7U1OZd2cTgnpzcjpYpM8CekywuY018Zzm9mw43Lf25zmbrf0D4pcEbEa18T+5Rsp/+sztWhcoWFrkFRTahlTHS+y5LYr5ubuj6o0ZUiJM/iS4hlhbp2jPrvWo2ztpre+jX9YpWHNnhfaHJ/mljTg0RTd8eC8XvO2a+x0p7p/UIx6FuvYwBbNcw/7OMIJWnaOz3jBq3PsKOfOefiWOqXCs4Zfy3n6AvS+kn8=</latexit>

Dr
op

ou
t 0

.3
 ➡

 F
C

 ➡
 B

N

Encoder Strided 2d convolutions

q�(z0|x)
<latexit sha1_base64="niLmLUDv8BYIK3ul7KCw/JfXaLs=">AAAC5nicjVHLLgRBFD3a+z1Y2hQTCZtJ9RBmdhM2liQGiZFJd6sxFf3SXS0Ys7azE1s/YMuniD/gL9wqPQkLoTrdfe6595yqW9eNfZkqzt/6rP6BwaHhkdGx8YnJqenCzOx+GmWJJ+pe5EfJoeukwpehqCupfHEYJ8IJXF8cuGdbOn9wIZJURuGeuorFceCchrIlPUcR1SwsnDcbcVsuNwJHtd1W57rb5OyG9cLL7kqzUOQlzrlt20wDe2OdE6hWK2W7wmydolVEvnaiwisaOEEEDxkCCIRQhH04SOk5gg2OmLhjdIhLCEmTF+hijLQZVQmqcIg9o+8pRUc5G1KsPVOj9mgXn96ElAxLpImoLiGsd2Mmnxlnzf7m3TGe+mxX9Hdzr4BYhTaxf+l6lf/V6V4UWqiYHiT1FBtGd+flLpm5FX1y9q0rRQ4xcRqfUD4h7Bll756Z0aSmd323jsm/m0rN6tjLazN86FPSgHtTZL+D/XLJXi3x3bVibTMf9QjmsYhlmucGatjGDurkfYsnPOPFalt31r318FVq9eWaOfxY1uMnpnudNQ==</latexit>

Re
alN

VP
 ➡

 P
er

m
ut

at
io

n

Re
alN

VP
 ➡

 P
er

m
ut

at
io

n

...z0
<latexit sha1_base64="4NXqf1qhpoRne/PAonTYjEGvltw=">AAACz3icjVHLTsJAFD3UF+ILdemmkZi4IlM1AjuiG5eQyCMBQtoyQGNfaacaJBi3/oBb/SvjH+hfeGcsiS6ITtP2zLn3nJl7rxW6TiwYe89oS8srq2vZ9dzG5tb2Tn53rxkHSWTzhh24QdS2zJi7js8bwhEub4cRNz3L5S3r5lLGW7c8ip3AvxaTkPc8c+Q7Q8c2BVHdrmeKsTWc3s/6rJ8vsCJjzDAMXQKjdM4IVCrlE6OsGzJEq4B01YL8G7oYIICNBB44fAjCLkzE9HRggCEkrocpcREhR8U5ZsiRNqEsThkmsTf0HdGuk7I+7aVnrNQ2neLSG5FSxxFpAsqLCMvTdBVPlLNkF3lPlae824T+VurlESswJvYv3TzzvzpZi8AQZVWDQzWFipHV2alLoroib67/qEqQQ0icxAOKR4RtpZz3WVeaWNUue2uq+IfKlKzc22lugk95SxrwfIr6YtA8KRqnRVY/K1Qv0lFncYBDHNM8S6jiCjU0yDvEM17wqtW1O+1Be/xO1TKpZh+/lvb0BfE6lHo=</latexit>

zK
<latexit sha1_base64="IX4qs9lEgkYHUHnesXXhlpzaZ/s=">AAACz3icjVHLTsJAFD3UF+ILdemmkZi4IlM0AjuiGxM3kAiSACFtGaCxr7RTDRKMW3/Arf6V8Q/0L7wzlkQXRqdpe+bce87MvdcKXScWjL1ltIXFpeWV7GpubX1jcyu/vdOKgySyedMO3CBqW2bMXcfnTeEIl7fDiJue5fIr6/pMxq9ueBQ7gX8pJiHveebId4aObQqiul3PFGNrOL2b9S/6+QIrMsYMw9AlMMonjEC1WikZFd2QIVoFpKse5F/RxQABbCTwwOFDEHZhIqanAwMMIXE9TImLCDkqzjFDjrQJZXHKMIm9pu+Idp2U9WkvPWOltukUl96IlDoOSBNQXkRYnqareKKcJfub91R5yrtN6G+lXh6xAmNi/9LNM/+rk7UIDFFRNThUU6gYWZ2duiSqK/Lm+reqBDmExEk8oHhE2FbKeZ91pYlV7bK3poq/q0zJyr2d5ib4kLekAc+nqP8OWqWicVRkjeNC7TQddRZ72MchzbOMGs5RR5O8QzzhGS9aQ7vV7rWHr1Qtk2p28WNpj58xaZSV</latexit>

16
 c

h.
 4

x4
 ➡

 A
ct

 ➡
 B

N

8
ch

. 5
x5

 ➡
 H

ar
dT

an
h

32
 c

h.
 4

x4
 ➡

 A
ct

 ➡
 B

N

64
 c

h.
 4

x4
 ➡

 A
ct

 ➡
 B

N

12
8

ch
. 4

x4
 ➡

 A
ct

 ➡
 B

N

25
6

ch
. 4

x4
 ➡

 A
ct

 ➡
 B

N

51
2

ch
. 4

x4
 ➡

 A
ct

 ➡
 B

N

20
48

 c
h.

 1
x1

 ➡
 A

ct
 ➡

 B
N

FC
 ➡

 D
ro

po
ut

 0
.3

2d transposed convolutions Decoder

RealNVP ➡ Permutation

RealNVP ➡ Permutation ➡ HardTanh

...

v
<latexit sha1_base64="mH0QbvX9fsOGY/hAXodr+m63Y0g=">AAACzXicjVHLTsJAFD3UF+ILdemmkZi4IlM0AjuiG3diIo8IxLRlgMa+0k5JCOLWH3Crv2X8A/0L74wl0QXRadqeOfeeM3PvtULXiQVj7xltaXlldS27ntvY3Nreye/uNeMgiWzesAM3iNqWGXPX8XlDOMLl7TDipme5vGXdX8h4a8yj2An8GzEJec8zh74zcGxTEHXb9UwxsgbT8ewuX2BFxphhGLoERvmMEahWKyWjohsyRKuAdNWD/Bu66COAjQQeOHwIwi5MxPR0YIAhJK6HKXERIUfFOWbIkTahLE4ZJrH39B3SrpOyPu2lZ6zUNp3i0huRUscRaQLKiwjL03QVT5SzZBd5T5WnvNuE/lbq5RErMCL2L9088786WYvAABVVg0M1hYqR1dmpS6K6Im+u/6hKkENInMR9ikeEbaWc91lXmljVLntrqviHypSs3NtpboJPeUsa8HyK+mLQLBWNkyK7Pi3UztNRZ3GAQxzTPMuo4RJ1NMjbxzNe8KpdaYn2oD1+p2qZVLOPX0t7+gI/gpPT</latexit>

x
<latexit sha1_base64="xAwZDYkagmfJno/NpB1XUKpxT7k=">AAACzXicjVHLTsJAFD3UF+ILdemmkZi4Iq2a6JLoxp2YCBiBmLYMMKGvTKdGgrj1B9zqbxn/QP/CO2NJVGJ0mrZnzr3nzNx73djnibSs15wxMzs3v5BfLCwtr6yuFdc36kmUCo/VvMiPxKXrJMznIatJLn12GQvmBK7PGu7gRMUbN0wkPAov5DBm7cDphbzLPUcSddUKHNl3u6Pb8XWxZJUtvcxpYGeghGxVo+ILWugggocUARhCSMI+HCT0NGHDQkxcGyPiBCGu4wxjFEibUhajDIfYAX17tGtmbEh75ZlotUen+PQKUprYIU1EeYKwOs3U8VQ7K/Y375H2VHcb0t/NvAJiJfrE/qWbZP5Xp2qR6OJI18Cpplgzqjovc0l1V9TNzS9VSXKIiVO4Q3FB2NPKSZ9NrUl07aq3jo6/6UzFqr2X5aZ4V7ekAds/xzkN6ntle79snR+UKsfZqPPYwjZ2aZ6HqOAUVdTIO8QjnvBsnBmpcWfcf6YauUyziW/LePgAyNeTnw==</latexit> bx

<latexit sha1_base64="VHqClnxCCGnuQNxYqaxccQc9NUk=">AAAC2XicjVHLSsNAFD3GV62v+ti5CRbBVUlU0GXRjcsKVgutlEk6tUPzIpmoNXThTtz6A271h8Q/0L/wzpiCD0QnJDlz7j1n5t7rRJ5IpGW9jBnjE5NT04WZ4uzc/MJiaWn5JAnT2OV1N/TCuOGwhHsi4HUppMcbUcyZ73j81OkfqPjpBY8TEQbHchDxM5+dB6IrXCaJapdWW5eiw3tMZi2fyZ7Tza6Gw3apbFUsvcyfwM5BGfmqhaVntNBBCBcpfHAEkIQ9MCT0NGHDQkTcGTLiYkJCxzmGKJI2pSxOGYzYPn3PadfM2YD2yjPRapdO8eiNSWligzQh5cWE1WmmjqfaWbG/eWfaU91tQH8n9/KJlegR+5dulPlfnapFoos9XYOgmiLNqOrc3CXVXVE3Nz9VJckhIk7hDsVjwq5Wjvpsak2ia1e9ZTr+qjMVq/ZunpviTd2SBmx/H+dPcLJVsbcr1tFOubqfj7qANaxjk+a5iyoOUUOdvK/xgEc8GU3jxrg17j5SjbFcs4Ivy7h/BxzGmG4=</latexit>

p�(v|zK)
<latexit sha1_base64="1Tk1zEiOblwG4mh5XGJcQ0OY328=">AAAC63icjVHLTttAFD24vAoUQrtkMyICwSYaQ1XCDtFNJTYgNYBEUDR2JmDhl+wxEk3zB911h7rtD3QL/1HxB/AXPTN1pHaB2rFsn3vuPWfmzg3yOCqNlA8T3ovJqemZ2Zdz8wuvFpcay6+Py6wqQt0JszgrTgNV6jhKdcdEJtaneaFVEsT6JLh6b/Mn17oooyz9aG5yfZ6oizQaRKEypHqN9bw37Mas76vRRjdR5jIYDK9H4rMYB59GvYPNXqMpW1JK3/eFBf7OO0mwu9ve8tvCtymuJup1mDV+oos+MoSokEAjhSGOoVDyOYMPiZzcOYbkCqLI5TVGmKO2YpVmhSJ7xe8Fo7OaTRlbz9KpQ+4S8y2oFFijJmNdQWx3Ey5fOWfLPuc9dJ72bDf8B7VXQtbgkuy/dOPK/9XZXgwGaLseIvaUO8Z2F9YulbsVe3LxR1eGDjk5i/vMF8ShU47vWThN6Xq3d6tc/tFVWtbGYV1b4cmekgMeT1E8D463Wv52Sx69be7t16OexQpWscF57mAPH3CIDr2/4AfucO8l3lfv1vv2u9SbqDVv8Nfyvv8C4veflw==</latexit>

p✓(x|zK)
<latexit sha1_base64="J0jphKr55nEJ5RXhQjZuth61SwI=">AAAC6nicjVHLTttAFD1xoaRpaQMsuxkRIdGNNXGCmuwiukHqJkgkICUoGptJYsUv2WMETfMF3XWH2PYHum0/pOIP2r/gzuBIsIjoWLbvPfecM3PnukngZ4rzu5L1Ym395Ub5VeX1m82376pb2/0szlNP9rw4iNMzV2Qy8CPZU74K5FmSShG6gTx1Z590/fRSppkfRyfqOpHnoZhE/tj3hCJoVN1LRvOhmkolFvvDUKipO55fLdhXtky+LEafP4yqNW6327zZPGDcPuCO47Qo4A2n1a6zus3NqqFY3bj6B0NcIIaHHCEkIiiKAwhk9AxQB0dC2DnmhKUU+aYusUCFtDmxJDEEoTP6TigbFGhEufbMjNqjXQJ6U1Iy7JEmJl5Ksd6NmXpunDW6yntuPPXZrunvFl4hoQpTQp/TLZn/q9O9KIzRMj341FNiEN2dV7jk5lb0ydmjrhQ5JITp+ILqKcWeUS7vmRlNZnrXdytM/a9halTnXsHN8U+fkga8nCJbHfQdu96w+XGz1jksRl3Ge+xin+b5ER0coYseeX/DT/zCbyuwvls31u0D1SoVmh08WdaPezEyn1c=</latexit>

Synthesizer

Act = LeakyReLU(0.1)

Figure 1: Block diagram of our single-channel spectrogram model (general architecture inspired from [3]). The number of channels of
encoding (resp. decoding) convolutional layers denote the number of output (resp. input) channels.

bined with Multi-Layer Perceptrons (MLP) [2] have demonstrated
improving performances.

These models directly infer synthesizer presets from Mel-
Frequency Cepstral Coefficients (MFCC) [1], audio spectrograms
or raw waveforms [2]. They do not rely on a perceptually regu-
larized, continuous latent space from which new samples can be
generated. Hence, we will qualify them as non-generative. A
comprehensive literature review about non-generative synthesizer
programming is available in the SpiegeLib paper [4].

2.3.2. Differentiable sound synthesis

One very interesting approach to this automatic programming
problem is the recent Differentiable DSP model [15] which pro-
duces sound using oscillators, filters and noise sources imple-
mented as neural networks. This model learns how to synthesize
sound instead of learning how to program an external synthesizer.

However, in contrast to such fully-differentiable solutions, the
perceptual and interactive qualities of usual software synthesizers
have been studied and improved for a long time. They also provide
non-differentiable synthesis methods (filters, oscillators, ...) which
give them unique sonic properties. Moreover, their source code is
carefully optimized because a low CPU-footprint is necessary for
polyphonic and real-time usage. Therefore, only widespread syn-
thesizers such as VST-format plugins are considered in this paper.

2.3.3. Generative models

Recently, Esling et al. [3] introduced the Flow Synth architecture,
based on a spectral VAE. Instead of using a single-path neural net-
work (e.g., MLP, CNN) from audio spectrograms x to synthesizer
presets v, they proposed to add a neural network which infers pre-
sets from latent codes of a VAE. This approach assumes that the
latent space holds enough meaningful audio information.

They compared some feedforward models to several VAE-
based models on limited subsets of numerical parameters (16, 32
and 64) of a sound synthesizer named Diva. Reported test mea-
surements included errors on inferred presets v̂ and distances be-
tween target spectrograms x and audio spectrograms synthesized

from v̂. First, results showed that their VAE-based models im-
proved the spectral error on synthesized audio, although error on
inferred presets v̂ was smaller with feedforward baseline models.
Second, comparative results about the different preset regression
networks of VAE-based models were presented. In terms of syn-
thesized audio accuracy, they demonstrated that the usual MLP re-
gression networks underperformed compared to flow-based ones.
Third, they demonstrated through examples how new presets can
be generated from exploring the neighborhood of a latent vector.
Moreover, thanks to the invertibility of the regression flow, any
preset could be easily encoded into the audio latent space.

There is nevertheless room for improvement. As the authors
admit, the performance of their model decreases as the number of
synthesizer parameters increases. This issue must be addressed
because it prevents the model from using all sonic possibilities of
a given synthesizer. Regarding audio reconstruction and presets
generation, reducing inference errors would generally improve the
model. Moreover, the architecture has been validated on a single
subtractive synthesizer, hence different tests would be interesting.
Categorical parameters, which were excluded from the aforemen-
tioned experiments, should also be considered because they make
up for a large part of synthesizer functionalities.

3. SPECTRAL VARIATIONAL AUTOENCODER AND
SYNTHESIZER PARAMETERS REGRESSION

3.1. Model

3.1.1. General architecture

As previously stated, we focus on a VAE structure similar to Flow
Synth [3], which integrates a regression flow to infer synthesizer
parameters. The detailed architecture is presented in Figure 1.

The CNN-based encoder and decoder are symmetrical. In or-
der to reduce the high computational cost of convolutions, stride is
(2, 2) for convolutional layers whose kernel is larger than one.

DAFx.3

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

278

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

3.1.2. Synthesizer parameters regression flow

Considering the very promising results of Esling et al. [3] on sub-
sets of parameters, an invertible transform v = U (zK) is opti-
mized. This regression model requires the dimension D of latent
vectors z0, ..., zK to be that of the synthesizer parameters vector
v. U is made of L invertible flow layers i.e. U = UL ◦ ... ◦ U1

and λ denotes their parameters. While previous works [3] used an
MAF variant [10] as regression flow, we use a RealNVP model in
order to ensure scalability and to help improve training stability.

To infer v from the latent space, Papamakarios et al. [13] sug-
gest to optimize Ep∗(v) [log pλ(v)] where p∗(v) is the true dis-
tribution of dataset samples (maximum likelihood optimization).
This expectation can be estimated by computing inverse samples
z0 = T−1

(
U−1(v)

)
, their log-probability under the qϕ(z0|x)

distribution, and log-determinants of Jacobian matrices of succes-
sive layers of T−1 and U−1 (see Equation 4). This approach as-
sumes that normalizing flows provide sufficient expressive power
to model complex probability distributions such as p∗(v). Esling
et al. [3] also relied on several closed-form priors and on modeling
an error ϵ such that v = U (zK) + ϵ.

However, we could not successfully train these methods on
large (> 100) sets of parameters. Reasonable learning rate reduc-
tion (down to a 0.01 factor) and long warmup periods (100 epochs)
helped but did not ensure models convergence. The required learn-
ing rate reduction resulted in prohibitively long training durations.

Nonetheless, we observed that RealNVP gave consistent re-
sults when directly maximizing log pλ(v|zK) without using the
inverse flow transforms. Furthermore, synthesizer parameters in-
ference seemed equivalent or better compared to baseline MLP
regression networks.

Thus, we propose to use a flow model as a usual feedforward
neural network for regression, which can be seen as an additional
decoder. During optimization, the regression flow is only used for
sampling and its tractable Jacobian determinant is left aside. This
straightforward approach allows to take advantage of the expres-
sive power of auto-regressive networks, while keeping the bijec-
tive relationship between latent vectors and synthesizer parame-
ters, and a known transform between their probability densities.

3.1.3. Synthesizer parameters vector

Most synthesizers provide numerical (e.g., oscillator amplitude,
cut-off frequency, ...) as well as categorical (e.g., waveform, filter
type, ...) controls. Preset files usually store all parameters’ values
as numerical data in the [0, 1] range, using quantization for cat-
egorical and discrete numerical controls. While such representa-
tions make parameters easier to handle and to automate, it induces
an ordering of categorical variables which is often inappropriate.

Figure 2: Two representations of a subset of three parameters
from a preset. (a) VST representation: all parameters are stored
as numerical although parameter 39 contains categorical data.
(b) Learnable representation: parameters 37 and 38 are left un-
changed while 39 is one-hot encoded.

Experiments presented in the following sub-sections compare
different learnable representations of presets. Num only indicates
a numerical representation of all parameters, including categori-
cal ones; NumCat indicates that numerical parameters are learned
as continuous numerical variables and that categorical parameters
are one-hot encoded (Figure 2); NumCat++ indicates that categor-
ical and low-cardinality (up to 32) discrete numerical parameters
are one-hot encoded. We assume that regression flows are able
to handle such heterogeneous vectors of data and will discuss this
hypothesis in sub-section 3.4.

3.2. Dataset

3.2.1. Dexed synthesizer

Our model was trained to program the Dexed 1 VST synthesizer,
which is an open-source software clone of the famous Yamaha
DX7 FM synthesizer. VST synthesizers can be used inside the
RenderMan 2 Python wrapper to render audio files from presets.

FM synthesizers are able to produce diverse sounds with rich
spectral content, and Dexed automatic programming has been stud-
ied in previous works [1, 4]. However, these studies relied on ran-
domly generated presets which do not accurately represent musi-
cians’ use of a DX7 synthesizer.

Hence, we collected more than 12k DX7 public-domain car-
tridges – which contains 32 presets each – from various online
sources. Cartridges were read using parts of Dexed source code.
A large majority of those presets were duplicates, which were dis-
carded. Some presets produced audio at a lower than −40dB peak
RMS volume, and were also removed. The final dataset contains
approximately 30k items.

Then, we wanted to better understand what our dataset was
made of. For all presets, a single MIDI note (pitch 60, velocity
100) was played and held for 3.0s and audio was recorded for 4.0s
at 22,050 kHz. A 100ms fadeout was applied at the end of audio
files. In order to label presets, we performed Harmonic-Percussive
Source Separation (HPSS) [16] with a residual component [17] on
all audio files. Samples with more than 35% harmonic (resp. per-
cussive) spectral energy were labeled harmonic (resp. percussive).
27.4k presets were harmonic and 1.5k were percussive. 1.7k pre-
sets, which contained mostly HPSS residuals, had no descriptor at
the end of this process. They were arbitrarily assigned a sfx label.

Presets and labels were stored in a SQLite database (26MB)
available from our Github repository 3. Authors and sources of the
original DX7 cartridges are also reported in this database.

3.2.2. Parameters

Dexed provides 155 automatable parameters but ten of them (main
volume and filter, and on/off switches of the six oscillators) were
constant across the whole dataset. Moreover, we decided to set
the transpose control to its middle C3 position. Hence, the total
amount of learnable parameters is 144.

DX7 FM synthesis relies on six identical oscillators with 21
parameters each. To test our models’ scalability, all experiments
were also conducted on a reduced set of 81 parameters, which in-
cludes the three first oscillators and general DX7 controls.

1https://github.com/asb2m10/dexed
2https://github.com/fedden/RenderMan
3https://github.com/gwendal-lv/preset-gen-vae

DAFx.4

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

279

https://github.com/asb2m10/dexed
https://github.com/fedden/RenderMan
https://github.com/gwendal-lv/preset-gen-vae

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

Table 1: Comparison of flow- and MLP-based regression models for presets inference. Reported values are averages of mean values from
the five training folds, plus or minus one standard deviation.

Parameters Audio
Params Regression Learnable Latent Numerical Categorical Spectrogram MFCC
count model representation dim. D MAE (10−1) Accuracy (%) MAE log SC MAE

81 Flow
Num only 81 1.391± 0.031 58.1± 1.8 0.547± 0.021 1.08± 0.07 17.9± 0.9
NumCat 140 1.187± 0.021 84.3± 1.0 0.510± 0.014 1.28± 0.06 17.2± 0.6

NumCat++ 340 0.916± 0.025 85.3± 1.0 0.470± 0.009 1.15± 0.06 12.1± 0.5

81 MLP
Num only

340
1.242± 0.022 66.6± 0.7 0.496± 0.005 0.99± 0.01 16.1± 0.3

NumCat 1.187± 0.013 83.9± 0.9 0.548± 0.022 1.22± 0.03 17.1± 0.4
NumCat++ 1.026± 0.028 83.3± 0.7 0.471± 0.011 0.98± 0.01 12.2± 0.4

144 Flow
Num only 144 1.465± 0.008 63.4± 2.3 0.740± 0.035 1.03± 0.05 19.2± 0.6
NumCat 224 1.284± 0.013 85.1± 0.3 0.650± 0.011 1.09± 0.01 18.6± 0.6

NumCat++ 610 1.049± 0.011 86.0± 0.6 0.615± 0.008 1.03± 0.01 14.7± 0.3

144 MLP
Num only

610
1.360± 0.016 68.6± 0.8 0.699± 0.007 0.97± 0.01 19.1± 0.1

NumCat 1.274± 0.004 84.4± 0.6 0.654± 0.009 1.03± 0.02 18.6± 0.2
NumCat++ 1.110± 0.021 84.4± 0.5 0.637± 0.007 0.94± 0.03 15.0± 0.4

3.2.3. Spectrograms

Audio files were rendered as described in sub-section 3.2.1 and
were not amplitude-normalized. MIDI notes played depended on
the experiment, and each MIDI note corresponded to approximately
10GB of audio files. These files were transformed into 257-bins
Mel-Spectrograms computed from the log-magnitude of a STFT
(Hann window, width 1024, hop size 256, 347 time frames). Then,
a −120 dB threshold was applied to these Mel-spectrograms, which
were finally scaled into [−1, 1] using the minimum and maximum
amplitudes of the entire dataset.

3.3. Implementation

3.3.1. Neural networks

All models were implemented using PyTorch and nflows4. De-
tails about CNNs and Fully-Connected (FC) layers are provided in
Figure 1. Latent and regression flows are made of K = L = 6
layers. Internal scale and translation coefficients of each RealNVP
layer are computed using a 2-layer MLP (300 hidden units) with
residual connection, Batch Normalization (BN) and 0.4 dropout
probability. A hardtanh activation with [0, 1] range is applied to
the regression flow’s output.

3.3.2. Loss functions

A Mean-Square Error (MSE) reconstruction loss is computed on
decoder outputs x̂ and the negative regularization loss is described
in equation 5. An MSE loss is evaluated on each numerical param-
eter, while a categorical cross-entropy loss is computed on each
categorical sub-vector. Cross-entropy softmax activations have a
0.2 temperature to compensate for the limited range of categorical
logits. Nonetheless, we observed that categorical representations
of discrete numerical parameters lead to higher losses for a given
accuracy. Thus, we apply an empirical 0.2 factor on all categorical
losses. The total regression loss is the sum of per-parameter losses.

To perform fair comparisons between variants of our models
(sub-sections 3.4.1 and 3.4.2), we decided to normalize all three
losses, i.e., divide them by the dimension of corresponding data.
This prevents the model from favoring, for instance, parameters
inference over spectral reconstruction when D increases.

4https://github.com/bayesiains/nflows

Such a normalization implies a β ≈ D/E regularization fac-
tor, which roughly ranges from 150 to 1000 across presented tests.
We multiplied the normalized latent loss by an arbitrary 0.2 fac-
tor to improve the tradeoff between VAE regularization and x̂ re-
construction accuracy. Resulting β values are similar to those of
Higgins et al. [8] for 178x218 pictures modeling tasks, who also
reported that the β hyper-parameter is hard to tune, even on a log-
arithmic scale.

3.3.3. Training and evaluation

Presets were randomly split into a held-out test set (20%) and a
train/validation set (80%) used during models development. Each
model was trained five times in order to perform a k-fold cross-
validation procedure (64% train set, 16% validation set). Results
presented in Tables 1 and 2 were obtained from the test set only.

Models were trained during 400 epochs using the Adam opti-
mizer with a minibatch size of 160. In order to help normalizing
flows training, the learning rate increased linearly from 2×10−5 to
2× 10−4 over the first 6 epochs. A scheduler divides the learning
rate by 5 when validation losses did not improve during 12 epochs,
and training could be stopped earlier if learning rate became lower
than 10−7. A linear β-warmup [18] from 50% to 100% was per-
formed from epoch 0 to epoch 25. During early tests, we remarked
that β-warmup starting from 0% significantly decreased valida-
tion performances. Models training lasted about 2.5 hours on two
Nvidia GTX 1070 GPUs.

3.4. Results

3.4.1. Flow regression

This first experiment studies how the flow-based regression net-
work handles the three proposed representations of presets. MIDI
notes played had a pitch of 65 and an intensity of 85.

Results are presented in Table 1. The Mean Absolute Error
(MAE) of numerical DX7 parameters and accuracy of categori-
cal DX7 parameters are reported. To measure audio accuracy, au-
dio files were rendered using inferred presets. The MAE between
true and synthesized log STFTs, as well as the 40-band MFCCs
(86 time frames) MAE are presented. Spectral Convergence (SC),
which measures a discrepancy between the largest components of
linear-scale STFTs [19], is also reported. While these three met-
rics provide audio similarity measurements, an in-depth perceptual

DAFx.5

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

280

https://github.com/bayesiains/nflows

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

evaluation is left for future works. Comparative audio examples
are available from the paper’s companion website 5.

The Num only representation, which induces an unnatural or-
dering of categorical variables, leads to the worst results for most
metrics. NumCat, which is the most natural representation, gener-
ally improves performance, and NumCat++ helps improve it even
more. The error on MFCCs, which can be considered as an error
on timbre and general harmonic structure, is particularly reduced
by this last model. This might be partially explained by the one-
hot representation of some frequency discrete numerical controls,
which are likely to take specific values such as +0, ±7 or ±12
semitones. We conclude that the heterogeneous representations of
presets introduced in sub-section 3.1.3 do improve performance of
the regression flow.

Surprisingly, good SC values can be observed for models which
perform poorly otherwise. However, SC measures an error on a
non-perceptual linear scale. After listening to some presets in-
ferred by Num only models, it seems that these models lead to
simpler and non-diversified sounds, but reconstruct quite well the
main spectral components hence present the best SC values.

Regarding scalability, the performance of our model degrades
only slightly when using six oscillators (144 parameters) instead
of three (81 parameters). This could be expected because the three
added oscillators are the deepest ones in DX7 FM architectures
(i.e., routing of oscillators signals, also called algorithms). They
are usually responsible for subtle modulations of higher harmon-
ics, which are harder to identify from Mel-Spectrograms. Interest-
ingly, the accuracy of categorical parameters inference improves
as the number of learned parameters increases. These elements al-
low to conclude that presented models are scalable and should be
usable for any synthesizer that provides a larger number of con-
trols.

3.4.2. MLP regression - constant latent space dimension

The NumCat++ representation introduces a quite large increase of
D, which eases the compression task of the spectral VAE. There-
fore, it is necessary to know if the benefits of NumCat++ models
come from the representation itself, or from the D increase.

For this second experiment, the three parameter representa-
tions were tested with a constrained large latent space dimension
D. However, the invertible transform U had to be replaced by a
non-invertible, feedforward neural network. We chose a 4-layers
MLP with 1024 hidden units and ReLU hidden activations. BN
and dropout (0.4 probability) were appended to the two first MLP
layers only. Similar to Figure 1, a hardtanh activation was applied
to the last layer’s output. The largest MLP regression network
contains 3.0M parameters (5.9 MFLOP) whereas the largest flow
regression network contains 1.6M parameters but requires more
operations per item (11.3 MFLOP).

Results are also reported in Table 1. First, the Num only rep-
resentation leads to the worst results regarding parameters infer-
ence and for most audio criteria. Second, compared to NumCat,
the NumCat++ models improve all metrics but categorical param-
eters accuracy, which is similar or slightly decreases. Therefore,
we conclude that performances observed in sub-section 3.4.1 were
not caused by the D increase alone. Third, these results also allow
to compare MLP- and flow-based regression models. Consistent
with [3], we confirm that MLP regression networks generally un-
derperform.

5https://gwendal-lv.github.io/preset-gen-vae/

4. MULTI-CHANNEL SPECTROGRAMS

4.1. Multiple input notes

Most synthesizers provide parameters to modulate sound depend-
ing on the pitch and intensity of played notes. For instance, a cut-
off frequency can depend on note pitch, while an oscillator’s am-
plitude can be related to the articulation of note via MIDI velocity
(intensity). To the best of our knowledge, these parameters have
been neglected in all related studies.

For a model to learn these parameters, multiple spectrograms
corresponding to different MIDI notes should be provided. There-
fore, we propose an architecture that encodes and decodes multiple
spectrograms (Figure 3) generated from the same ground truth pre-
set. This approach is conceptually related to the Generative Query
Network [20] which feeds multiple 2D renders of a 3D scene to a
model that infers a high-level representation of that scene. Here,
a 3D scene corresponds to a preset and a high-level scene repre-
sentation corresponds to a zK latent code. A 2D view of a scene
(from a given position and angle) corresponds to a particular audio
rendering of a preset (using a given MIDI note).

VAE inputs are multi-channel images, each channel cor-
responding to a single note. The experiment presented be-
low processes six-channel spectrograms whose associated (pitch,
intensity) MIDI values are (40, 85), (50, 85), (60, 42), (60, 85),
(60, 127) and (70, 85). This architecture relies on a single-
spectrogram encoder neural network which is sequentially applied
to each input channel. The outputs are small 256-channel feature
maps which contain deep, high-level information about each spec-
trogram. These feature maps are then stacked and mixed together
by a convolutional layer. The decoder follows a similar principle.

Compared to the previous model (Figure 1), this new VAE
processes six times more data thus requires more parameters. Our
multi-channel VAE neural network contains less than two times
more parameters (42.8M vs. 27.3M) so that it can be considered
parameter efficient.

4.2. Experiment

To compare single- and multi-channel architectures fairly, and to
demonstrate the interest of the latter, we used a slightly modi-
fied version of the single-channel encoder presented in Figure 1.
Firstly, the 512-channel encoder and decoder layers were deep-
ened to 1800 channels such that the total number of parameters
was 43.0M. Secondly, the two first elements of µ0 were set to the
pitch and intensity (normalized into [−1, 1]) of the input spectro-
gram. The two first elements of σ0 were set to 2/127.

Both models were trained as described in the previous section.
Training durations increased to approximately seven hours.

4.3. Results

Results are available in Table 2. Similar to the previous section,
audio synthesis accuracy and parameters inference accuracy are re-
ported. Audio accuracy evaluation was performed on the six train-
ing MIDI notes, whereas Table 1 focused on one note. Results also
include inference accuracy for parameters specifically related to
the pitch and intensity of played notes. Models with multi-channel
input spectrograms demonstrate a significant performance increase
for all criteria but SC (which was discussed earlier).

Learning all parameters of a synthesizer by using a single MIDI
note was probably an ill-formed problem, because some parame-

DAFx.6

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

281

https://gwendal-lv.github.io/preset-gen-vae/

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

......

10
24

ch
 1

x1
 ➡

 A
ct µ0

<latexit sha1_base64="oVHXBx3vxA0495lDBVxOVqnA1fE=">AAACyHicjVHLTsJAFD3UF+ILdemmkZi4IlM0AjuiG+MKE0ESIKQtA07oK+1UQ4gbf8CtfpnxD/QvvDOWRBdEp2l75tx7zsy914k8kUjG3nPG0vLK6lp+vbCxubW9U9zdaydhGru85YZeGHccO+GeCHhLCunxThRz23c8futMLlT89p7HiQiDGzmNeN+3x4EYCdeWRLV6fjpgg2KJlRljlmWZCljVM0agXq9VrJppqRCtErLVDItv6GGIEC5S+OAIIAl7sJHQ04UFhoi4PmbExYSEjnM8okDalLI4ZdjETug7pl03YwPaK89Eq106xaM3JqWJI9KElBcTVqeZOp5qZ8Uu8p5pT3W3Kf2dzMsnVuKO2L9088z/6lQtEiPUdA2Caoo0o6pzM5dUd0Xd3PxRlSSHiDiFhxSPCbtaOe+zqTWJrl311tbxD52pWLV3s9wUn+qWNOD5FM3FoF0pWydldn1aapxno87jAIc4pnlW0cAlmmiRt8AzXvBqXBmR8WBMv1ONXKbZx69lPH0BrEyRMg==</latexit>

�0
<latexit sha1_base64="8ANmKyIkHi3JllkMaZQVebdBWys=">AAACy3icjVHLSsNAFD2N7/qqunQTLIKrMqmi7U5040ZQsLbQFknGsQ7Ni8xE8LX0B9zqf4l/oH/hnTEFXRSdkOTMuefcmXtvkIZSacbeS87E5NT0zOxceX5hcWm5srJ6rpI846LFkzDJOoGvRChj0dJSh6KTZsKPglC0g+GhibdvRKZkEp/p21T0I38QyyvJfU1Up6fkIPIv2EWlymqMMc/zXAO8vV1GoNls1L2G65kQrSqKdZJU3tDDJRJw5IggEEMTDuFD0dOFB4aUuD7uicsISRsXeESZvDmpBCl8Yof0HdCuW7Ax7U1OZd2cTgnpzcjpYpM8CekywuY018Zzm9mw43Lf25zmbrf0D4pcEbEa18T+5Rsp/+sztWhcoWFrkFRTahlTHS+y5LYr5ubuj6o0ZUiJM/iS4hlhbp2jPrvWo2ztpre+jX9YpWHNnhfaHJ/mljTg0RTd8eC8XvO2a+x0p7p/UIx6FuvYwBbNcw/7OMIJWnaOz3jBq3PsKOfOefiWOqXCs4Zfy3n6AvS+kn8=</latexit>

Dr
op

ou
t ➡

 F
C
➡

 B
N

Fl
ow

 (T
)

z0
<latexit sha1_base64="4NXqf1qhpoRne/PAonTYjEGvltw=">AAACz3icjVHLTsJAFD3UF+ILdemmkZi4IlM1AjuiG5eQyCMBQtoyQGNfaacaJBi3/oBb/SvjH+hfeGcsiS6ITtP2zLn3nJl7rxW6TiwYe89oS8srq2vZ9dzG5tb2Tn53rxkHSWTzhh24QdS2zJi7js8bwhEub4cRNz3L5S3r5lLGW7c8ip3AvxaTkPc8c+Q7Q8c2BVHdrmeKsTWc3s/6rJ8vsCJjzDAMXQKjdM4IVCrlE6OsGzJEq4B01YL8G7oYIICNBB44fAjCLkzE9HRggCEkrocpcREhR8U5ZsiRNqEsThkmsTf0HdGuk7I+7aVnrNQ2neLSG5FSxxFpAsqLCMvTdBVPlLNkF3lPlae824T+VurlESswJvYv3TzzvzpZi8AQZVWDQzWFipHV2alLoroib67/qEqQQ0icxAOKR4RtpZz3WVeaWNUue2uq+IfKlKzc22lugk95SxrwfIr6YtA8KRqnRVY/K1Qv0lFncYBDHNM8S6jiCjU0yDvEM17wqtW1O+1Be/xO1TKpZh+/lvb0BfE6lHo=</latexit>

zK
<latexit sha1_base64="IX4qs9lEgkYHUHnesXXhlpzaZ/s=">AAACz3icjVHLTsJAFD3UF+ILdemmkZi4IlM0AjuiGxM3kAiSACFtGaCxr7RTDRKMW3/Arf6V8Q/0L7wzlkQXRqdpe+bce87MvdcKXScWjL1ltIXFpeWV7GpubX1jcyu/vdOKgySyedMO3CBqW2bMXcfnTeEIl7fDiJue5fIr6/pMxq9ueBQ7gX8pJiHveebId4aObQqiul3PFGNrOL2b9S/6+QIrMsYMw9AlMMonjEC1WikZFd2QIVoFpKse5F/RxQABbCTwwOFDEHZhIqanAwMMIXE9TImLCDkqzjFDjrQJZXHKMIm9pu+Idp2U9WkvPWOltukUl96IlDoOSBNQXkRYnqareKKcJfub91R5yrtN6G+lXh6xAmNi/9LNM/+rk7UIDFFRNThUU6gYWZ2duiSqK/Lm+reqBDmExEk8oHhE2FbKeZ91pYlV7bK3poq/q0zJyr2d5ib4kLekAc+nqP8OWqWicVRkjeNC7TQddRZ72MchzbOMGs5RR5O8QzzhGS9aQ7vV7rWHr1Qtk2p28WNpj58xaZSV</latexit>

FC
 ➡

 D
ro

po
ut

Flow (U)

v
<latexit sha1_base64="mH0QbvX9fsOGY/hAXodr+m63Y0g=">AAACzXicjVHLTsJAFD3UF+ILdemmkZi4IlM0AjuiG3diIo8IxLRlgMa+0k5JCOLWH3Crv2X8A/0L74wl0QXRadqeOfeeM3PvtULXiQVj7xltaXlldS27ntvY3Nreye/uNeMgiWzesAM3iNqWGXPX8XlDOMLl7TDipme5vGXdX8h4a8yj2An8GzEJec8zh74zcGxTEHXb9UwxsgbT8ewuX2BFxphhGLoERvmMEahWKyWjohsyRKuAdNWD/Bu66COAjQQeOHwIwi5MxPR0YIAhJK6HKXERIUfFOWbIkTahLE4ZJrH39B3SrpOyPu2lZ6zUNp3i0huRUscRaQLKiwjL03QVT5SzZBd5T5WnvNuE/lbq5RErMCL2L9088786WYvAABVVg0M1hYqR1dmpS6K6Im+u/6hKkENInMR9ikeEbaWc91lXmljVLntrqviHypSs3NtpboJPeUsa8HyK+mLQLBWNkyK7Pi3UztNRZ3GAQxzTPMuo4RJ1NMjbxzNe8KpdaYn2oD1+p2qZVLOPX0t7+gI/gpPT</latexit>x

<latexit sha1_base64="xAwZDYkagmfJno/NpB1XUKpxT7k=">AAACzXicjVHLTsJAFD3UF+ILdemmkZi4Iq2a6JLoxp2YCBiBmLYMMKGvTKdGgrj1B9zqbxn/QP/CO2NJVGJ0mrZnzr3nzNx73djnibSs15wxMzs3v5BfLCwtr6yuFdc36kmUCo/VvMiPxKXrJMznIatJLn12GQvmBK7PGu7gRMUbN0wkPAov5DBm7cDphbzLPUcSddUKHNl3u6Pb8XWxZJUtvcxpYGeghGxVo+ILWugggocUARhCSMI+HCT0NGHDQkxcGyPiBCGu4wxjFEibUhajDIfYAX17tGtmbEh75ZlotUen+PQKUprYIU1EeYKwOs3U8VQ7K/Y375H2VHcb0t/NvAJiJfrE/qWbZP5Xp2qR6OJI18Cpplgzqjovc0l1V9TNzS9VSXKIiVO4Q3FB2NPKSZ9NrUl07aq3jo6/6UzFqr2X5aZ4V7ekAds/xzkN6ntle79snR+UKsfZqPPYwjZ2aZ6HqOAUVdTIO8QjnvBsnBmpcWfcf6YauUyziW/LePgAyNeTnw==</latexit>

bx
<latexit sha1_base64="VHqClnxCCGnuQNxYqaxccQc9NUk=">AAAC2XicjVHLSsNAFD3GV62v+ti5CRbBVUlU0GXRjcsKVgutlEk6tUPzIpmoNXThTtz6A271h8Q/0L/wzpiCD0QnJDlz7j1n5t7rRJ5IpGW9jBnjE5NT04WZ4uzc/MJiaWn5JAnT2OV1N/TCuOGwhHsi4HUppMcbUcyZ73j81OkfqPjpBY8TEQbHchDxM5+dB6IrXCaJapdWW5eiw3tMZi2fyZ7Tza6Gw3apbFUsvcyfwM5BGfmqhaVntNBBCBcpfHAEkIQ9MCT0NGHDQkTcGTLiYkJCxzmGKJI2pSxOGYzYPn3PadfM2YD2yjPRapdO8eiNSWligzQh5cWE1WmmjqfaWbG/eWfaU91tQH8n9/KJlegR+5dulPlfnapFoos9XYOgmiLNqOrc3CXVXVE3Nz9VJckhIk7hDsVjwq5Wjvpsak2ia1e9ZTr+qjMVq/ZunpviTd2SBmx/H+dPcLJVsbcr1tFOubqfj7qANaxjk+a5iyoOUUOdvK/xgEc8GU3jxrg17j5SjbFcs4Ivy7h/BxzGmG4=</latexit>

...

st
ac

k

1-spec. enc.

1-spec. dec.

...

1-spec. enc.

20
48

ch
 1

x1
➡

Ac
t➡

BN

sp
lit

1-spec. dec.76
8c

h
4x

4➡
Ac

t➡
BN

Figure 3: Multi-channel spectrograms architecture. 1-spec blocks partially encode or decode a single spectrogram. They contain the blocks
indicated by the same color on Figure 1. The 1-spec enc and 1-spec dec neural networks are unique and sequentially applied.

Table 2: Comparison of the single-channel and multi-channel models described in sub-section 4.1.

All parameters Pitch and intensity params Audio
Params

D
Input Numerical Categorical Numerical Categorical Spectrogram MFCC

count channels MAE (10−1) Accuracy (%) MAE (10−1) Accuracy (%) MAE log SC MAE

81 340 1 0.97± 0.01 83.9± 0.4 0.240± 0.003 85.6± 0.3 0.472± 0.005 1.37± 0.05 12.1± 0.3
6 0.86± 0.01 86.3± 0.4 0.185± 0.006 87.3± 0.3 0.456± 0.012 1.44± 0.28 11.1± 0.3

144 610 1 1.14± 0.02 84.0± 0.3 0.308± 0.008 84.3± 0.3 0.643± 0.009 1.03± 0.02 15.2± 0.1
6 0.99± 0.02 86.7± 0.4 0.240± 0.008 86.4± 0.3 0.595± 0.009 1.05± 0.04 13.9± 0.3

ters do require multiple pitches and/or intensities to be estimated.
Hence, we argue that all automatic synthesizer programming frame-
works should implement multi-channel convolutional structures
such as ours.

5. DISCUSSION

5.1. Presets inference and encoding

When our model is used to program a synthesizer from audio files,
the decoder neural network is not used and the data path resem-
bles non-generative solutions such as [2]. An important contribu-
tion of VAE-based synthesizer programming, as initially proposed
by Esling et al. [3], is to introduce an auditory-meaningful latent
bottleneck from which new presets can be generated.

Section 3 demonstrated the usability of our model for full-size
(144 parameters) DX7 presets, whereas previous similar models
focused on subsets of parameters and showed degraded perfor-
mance as the number of learned parameters increased. Moreover,
we provided means to improve performance by turning this infer-
ence problem into a hybrid regression and classification problem.

Section 4 focused on learning dynamic parameters which are
related to the pitch and intensity of notes played into the synthe-
sizer. This aspect had been neglected in the relevant literature. We
introduced a multi-channel spectral VAE and proved that it is able
to learn such parameters. This means that these dynamic audio fea-
tures, which quantify how the sound evolves in relation to MIDI
notes played, were properly encoded into the latent space. This
multi-channel architecture can be used for out-of-domain synthe-
sizer programming, e.g. using voice or acoustic instrument input
sounds. However, this matter requires a more in-depth study and
is left for future research.

Our final architecture ensures that any preset – including one-
hot encoded parameters – can be precisely encoded into the latent
space by inverting the numerically stable RealNVP-based regres-
sion flow. Thanks to the strong latent β-regularization of the spec-
tral VAE, the auditory latent space is continuous. As described in
[3], it becomes possible to generate new similar presets by encod-
ing a given preset v as zK = U−1(v), generating new latent vec-
tors from the neighborhood of zK , and converting them back into

presets using U . Moreover, smooth preset morphing effects can
be performed by interpolating between zK latent vectors. Preset
inference and generation examples are available from the paper’s
companion website (link provided in sub-section 3.4.1).

5.2. Latent space and macro-controls

The latent space dimension’s lower bound is the number of param-
eters, which can reach several hundreds with some synthesizers.
Moreover, section 3 demonstrated that increasing the size of pre-
sets learnable representations – which constrains the latent space
dimension D – improves preset inference.

Therefore, is seems hard to handle a synthesizer by using the
numerous coefficients of zK as independent macro-controls. It
is also probably impossible to assign a distinct perceptual mean-
ing to each coefficient of zK . Hence, in contrast to [3], we argue
that the objective of disentangled semantic macro-controls might
be unachievable, and might not be suited to such generative mod-
els. Instead of individual macro-controls, tools such as graphical
presets interpolators [21, 22] can be used to manage large latent
vectors directly for presets generation.

However, the size and entanglement of the latent space can
be discussed more. The latent space dimension D of our models
might seem quite large, but it remains much lower than that of the
NSynth paper [23] for instance. Disentanglement is harder to as-
sess. Although decorrelation does not imply disentanglement, it
is a necessary condition. Thus, we computed Spearman rank cor-
relation matrices on zK along with corresponding p-values ma-
trices. Correlation coefficients lie in the [−1, 1] range. Matrices
corresponding to training folds of the last model (multi-channel
spectrograms, 144 parameters, D = 610) were stacked to pro-
vide the following metrics. 78% of latent variables are unlikely to
be fully-decorrelated (p-value < 0.05), which is a quite high pro-
portion. Nonetheless, the average absolute Spearman correlation
coefficient is 0.10 (SD = 0.10), which can be considered as a low
(< 0.3) correlation. This last result seems to indicate that most of
latent variables contains useful audio information although a weak
correlation exists between most of them.

DAFx.7

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

282

Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020), Vienna, Austria, September 2020-21

6. CONCLUSION

This paper presented solutions to improve automatic synthesizer
programming using spectral VAE models with regression flows.
These models are able to infer synthesizer parameters from audio
samples but can also generate new presets from the regularized
VAE latent space. Compared to previous works, architecture mod-
ifications and new training methods were introduced to scale mod-
els to large vectors of synthesizer parameters. Moreover, combina-
tions of representations – continuous or one-hot encoded – of syn-
thesizer parameters were compared. An heterogeneous represen-
tation of categorical and numerical variables demonstrated large
improvements in terms of parameters inference and synthesized
audio accuracy.

Then, it was explained that some synthesizer parameters need
multiple input sounds to be properly estimated. A new VAE archi-
tecture, which handles multi-channel spectrograms, was presented.
Performances were significantly enhanced while neural networks’
sizes had been only moderately increased.

All experiments were conducted on a software implementation
of the DX7 FM synthesizer. Whereas previous works on the DX7
used datasets of randomly generated presets, we gathered and cu-
rated 30k human-made presets. The dataset, as well as models and
evaluation source code, is available from our Github repository.
We hope that our work will help extend VAE-based control and
automatic programming to many other synthesizers and encour-
age developers and researchers to fork our source code for future
experiments or to integrate it into existing VST plug-ins.

7. ACKNOWLEDGMENTS

We thank Alexandra Degeest and Rudi Giot for their thoughtful
comments and for proofreading this paper.

8. REFERENCES

[1] M. J. Yee-King, L. Fedden, and M. d’Inverno, “Automatic
programming of vst sound synthesizers using deep networks
and other techniques,” IEEE Transactions on Emerging Top-
ics in Computational Intelligence, vol. 2, no. 2, pp. 150–159,
2018.

[2] O. Barkan, D. Tsiris, O. Katz, and N. Koenigstein, “Inver-
synth: Deep estimation of synthesizer parameter configura-
tions from audio signals,” IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, vol. 27, no. 12, pp.
2385–2396, 2019.

[3] P. Esling, N. Masuda, A. Bardet, R. Despres, and A. Chemla-
Romeu-Santos, “Flow synthesizer: Universal audio synthe-
sizer control with normalizing flows,” Applied Sciences, vol.
10, no. 1, pp. 302, 2020.

[4] J. Shier, G. Tzanetakis, and K. McNally, “Spiegelib: An
automatic synthesizer programming library,” in Audio Engi-
neering Society Convention 148, May 2020.

[5] D. P. Kingma and M. Welling, “Auto-encoding variational
bayes,” International Conference on Learning Representa-
tions, 2014.

[6] L. Girin, F. Roche, T. Hueber, and S. Leglaive, “Notes on the
use of variational autoencoders for speech and audio spec-
trogram modeling,” in International Conference on Digital
Audio Effects, 2019.

[7] S. Zhao, J. Song, and S. Ermon, “Infovae: Balancing learn-
ing and inference in variational autoencoders,” in The Thirty-
Third AAAI Conference on Artificial Intelligence, 2019, pp.
5885–5892.

[8] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot,
M. Botvinick, S. Mohamed, and A. Lerchner, “beta-vae:
Learning basic visual concepts with a constrained variational
framework,” International Conference on Learning Repre-
sentations, 2017.

[9] D. Rezende and S. Mohamed, “Variational inference with
normalizing flows,” in International Conference on Machine
Learning. PMLR, 2015, pp. 1530–1538.

[10] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen,
I. Sutskever, and M. Welling, “Improved variational infer-
ence with inverse autoregressive flow,” in Advances in Neu-
ral Information Processing Systems, 2016, vol. 29.

[11] G. Papamakarios, T. Pavlakou, and I. Murray, “Masked au-
toregressive flow for density estimation,” in Advances in
Neural Information Processing Systems, 2017, vol. 30.

[12] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estima-
tion using real nvp,” International Conference on Learning
Representations, 2017.

[13] G. Papamakarios, E. Nalisnick, D. Rezende, Shakir Mo-
hamed, and B. Lakshminarayanan, “Normalizing flows
for probabilistic modeling and inference,” arXiv preprint
arXiv:1912.02762, 2019.

[14] R. A. Garcia, “Automatic design of sound synthesis tech-
niques by means of genetic programming,” in Audio Engi-
neering Society Convention 113, Oct 2002.

[15] J. Engel, L. Hantrakul, C. Gu, and A. Roberts, “Ddsp: Dif-
ferentiable digital signal processing,” in International Con-
ference on Learning Representations, 2020.

[16] D. Fitzgerald, “Harmonic/percussive separation using me-
dian filtering,” in International Conference on Digital Audio
Effects (DAFx), 2010.

[17] J. Driedger, M. Müller, and S. Disch, “Extending harmonic-
percussive separation of audio signals.,” in ISMIR Confer-
ence, 2014, pp. 611–616.

[18] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and
O. Winther, “Ladder variational autoencoders,” in Advances
in Neural Information Processing Systems, 2016.

[19] S. Ö. Arık, H. Jun, and G. Diamos, “Fast spectrogram inver-
sion using multi-head convolutional neural networks,” IEEE
Signal Processing Letters, vol. 26, no. 1, pp. 94–98, 2019.

[20] S. M. Ali Eslami et al., “Neural scene representation and ren-
dering,” Science, vol. 360, no. 6394, pp. 1204–1210, 2018.

[21] D. Gibson and R. Polfreman, “Analyzing journeys in sound:
usability of graphical interpolators for sound design,” Per-
sonal and Ubiquitous Computing, pp. 1–14, 2020.

[22] G. Le Vaillant, T. Dutoit, and R. Giot, “Analytic vs. holistic
approaches for the live search of sound presets using graph-
ical interpolation,” in International Conference on New In-
terfaces for Musical Expression, 2020, pp. 227–232.

[23] J. Engel, C. Resnick, A. Roberts, S. Dieleman, M. Norouzi,
D. Eck, and K. Simonyan, “Neural audio synthesis of musi-
cal notes with wavenet autoencoders,” in International Con-
ference on Machine Learning, 2017, p. 1068–1077.

DAFx.8

Proceedings of the 24th International Conference on Digital Audio Effects (DAFx20in21), Vienna, Austria, September 8-10, 2021

283

	1 Introduction
	2 State of the art
	2.1 Variational Autoencoder
	2.1.1 Original formulation
	2.1.2 Latent space properties

	2.2 Normalizing Flows
	2.2.1 Bijective probability distributions transforms
	2.2.2 Latent space normalizing flows
	2.2.3 Flow models

	2.3 Automatic synthesizer programming
	2.3.1 From audio to synthesizer parameters
	2.3.2 Differentiable sound synthesis
	2.3.3 Generative models

	3 Spectral Variational Autoencoder and synthesizer parameters regression
	3.1 Model
	3.1.1 General architecture
	3.1.2 Synthesizer parameters regression flow
	3.1.3 Synthesizer parameters vector

	3.2 Dataset
	3.2.1 Dexed synthesizer
	3.2.2 Parameters
	3.2.3 Spectrograms

	3.3 Implementation
	3.3.1 Neural networks
	3.3.2 Loss functions
	3.3.3 Training and evaluation

	3.4 Results
	3.4.1 Flow regression
	3.4.2 MLP regression - constant latent space dimension

	4 Multi-Channel Spectrograms
	4.1 Multiple input notes
	4.2 Experiment
	4.3 Results

	5 Discussion
	5.1 Presets inference and encoding
	5.2 Latent space and macro-controls

	6 Conclusion
	7 Acknowledgments
	8 References

@inproceedings{DAFx20in21_paper_7,
 author = "Le Vaillant, Gwendal and Dutoit, Thierry and Dekeyser, Sébastien",
 title = "{Improving Synthesizer Programming From Variational Autoencoders Latent Space}",
 booktitle = "Proceedings of the 24-th Int. Conf. on Digital Audio Effects (DAFx20in21)",
 editor = "Evangelista, G. and Holighaus, N.",
 location = "Vienna, Austria",
 eventdate = "2021-09-08/2021-09-10",
 year = "2021",
 month = "Sept.",
 publisher = "",
 issn = "2413-6689",
 volume = "2",
 doi = "",
 pages = "276--283"
}

