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Infectious disease forecasting is challenging notably due to the complexity of diseases and population dy-1

namics, data paucity, and the prophet dilemma (Lauer et al., 2020). In an influenza forecasting exercise,2

Katsikopoulos et al. found that the simple recency heuristic provides better forecasts than Google Flu Trends,3

a black box machine learning algorithm 1. The authors give various other forecasting applications where simple4

heuristics have outperformed ML models, including U.S. presidential elections, consumer purchases, and terror-5

ist attacks. They highlight the fact that complex ML methods tend to overfit the past, and are unable to deal6

with quickly-changing situations. As a result, they advocate using simple and transparent heuristics, based on7

psychological theory, as benchmarks when testing modern complex and black-box ML algorithms.8

With the recent development and proliferation of new complex and black-box big data models, the authors9

discuss important issues related to model overparameterization and the lack of model transparency. We think10

Katsikopoulos et al essentially invite us to revisit the calls by Box (1976) for model parsimony, and avoid ex-11

cessive elaboration and overparameterization. We join the authors in encouraging the systematic comparison of12

complex ML methods with simple heuristics in infectious disease forecasting, and other forecasting applications13

with high uncertainty. However, given the recent progress in interpretable and explainable AI, and the excellent14

performance of modern ML models in various predictive modelling applications, we argue that these models15

should not be undermined. In this note, we would like to draw attention to certain topics that could help16

better understand the differences between simple heuristics and complex ML methods. Although we focus on17

infectious disease forecasting, similar observations can be made in other similar forecasting applications.18

Katsikopoulos et al only present point forecasts, but there will be inherent uncertainty associated with these19

forecasts. Gneiting & Katzfuss (2014) describe how optimal decision-making relies on probabilistic forecast,20

rather than just a single point forecast. Probabilistic forecasting is essential in many applications, including21

smart grid operations (Ben Taieb et al., 2020), economic and financial risk management (Groen et al., 2013),22

and demographic projection (Raftery et al., 2012). There have been also calls for probabilistic forecasting in23

epidemiological models, for example, from Ray et al. (2020) and also Ioannidis et al. (2020), who are cited by24

the authors. In the context of the COVID-19 pandemic, Taleb et al. (2020) also pointed out how inadequate25

point forecasts are as input to decision-making when the underlying processes are highly uncertain and complex.26

Furthermore, Katsikopoulos et al only present the results for a single time series. Without seeing data on the27

accuracy of their heuristic compared with that of a number of different time series and ML methods, it is hard28
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to draw general conclusions.29

ML methods often struggle to beat simple benchmarks especially on short and highly noisy time series.30

However, there have been significant recent progress in ML and neural forecasting methods (Benidis et al.,31

2020; Hewamalage et al., 2021). In particular, when forecasting a group of time series, a recent trend in ML is32

to build a single (global) model for all series (Mariet & Kuznetsov, 2019; Montero-Manso & Hyndman, 2020).33

This is different from the (classical) local approach where a different model is trained for each series. A major34

advantage of the global approach is that the global model can afford to be more complex with less chance of35

overfitting. For example, top entries in the M4 forecasting competition have used global models (Makridakis36

et al., 2020). These global models have been shown to perform well even on heterogeneous groups of time series37

(Montero-Manso & Hyndman, 2020). In infectious disease forecasting, a global “complex” ML model could be38

trained for example using data from different geographic regions. By exploiting the fact that a disease spreads39

at different speeds and on a different scale in different regions, a global model could extract similar progression40

patterns in these regions within different time intervals.41

Katsikopoulos et al used the concept of bias and variance tradeoff to explain the better accuracy of simple42

heuristics compared to complex forecasting methods. Specifically, while simple heuristics have a high bias, their43

low variance often lead to smaller prediction errors. For complex ML methods, their low bias does not generally44

compensate their high variance. As a result, it often induces an overfitting of the training data, and leads45

to higher prediction errors. The classical bias and variance error decomposition is a useful tool to study and46

compare sources of forecast errors (Ben Taieb & Atiya, 2015). However, some of the observed learning behaviors47

of modern ML methods can not be explained using the classical bias and variance tradeoff (Belkin et al., 2019;48

Bartlett et al., 2020). Specifically, it is possible to train a complex ML model (e.g, a neural network) to exactly49

fit (i.e., interpolate) the data, and still obtain good or even better (out-of-sample) test prediction accuracy. In50

other words, overparametrization can play a beneficial role in the interpolation regime. This phenomenon is51

referred to as “double descent” and “benign overfitting”. To the best of our knowledge, there are no studies52

on the impact of this phenomenon on modern ML forecasting methods, especially when global ML models are53

used.54

Katsikopoulos et al criticize SIR-type disease models 2, but the performance of their heuristic is not compared55

with any SIR-type model. In rejecting SIR-type models in favour of their own heuristic, the authors cite Ioannidis56

et al. (2020), who have highlighted the challenges of modelling the effects of COVID-19, as so much is unknown57

about this novel disease. It would have been nice to have some consideration of the studies that have used SIR-58

type models of influenza. In contrast to the situation with COVID-19, there is a considerable volume of historical59

data on the influenza virus. Simple SIR-type models are also transparent. In fact, Katsikopoulos et al question60

SIR-type models in such uncompromising terms, without accepting their established role in epidemiological61

modelling. These models are not simply used to make forecasts under the current circumstances, but by62

changing their assumptions, they can also provide an experimental platform to obtain insight into the effects of63

changes to the current scenario. Recently, hybrid models which integrate ML into SIR type models have been64

shown to improve forecast accuracy in predicting the progression of COVID-19, while providing explainable65

models (Arik et al., 2020).66

2Includes SIR and SEIR models which have compartments representing those of the population who are Susceptible, Exposed,

Infected and Removed or Recovered from the disease.
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The authors have focused on identifying the best model and discussing the best type of model, but of course67

another alternative would be to combine forecasts from multiple different models. Aggregation can incorporate68

information underlying different prediction methods in a pragmatic way, diversify the risk inherent in relying69

on a single model, and offset the statistical bias associated with individual models, with overestimation and70

underestimation potentially cancelling out (Bates & Granger, 1969). Given the uncertainties in epidemiological71

modelling, aggregation makes sense, and there is an increasing number of epidemiological applications of forecast72

aggregation, aiming to produce more accurate forecasts (Lutz et al., 2019), for example with influenza models73

(Yamana et al., 2017; Reich et al., 2019) and, more recently, COVID-19 models (Ray et al., 2020; Taylor &74

Taylor, 2020). The COVID-19 Hub ensemble forecast is a simple average aggregation of probabilistic forecasts75

from time-series, SIR-type, ML, and other models (Ray et al., 2020). In the influenza ensemble model, Yamana76

et al. (2017) produce a weighted average, with weights based on records of historical accuracy of the individual77

component models. Weighting forecasts and comparing the accuracy of aggregated forecasts against the accuracy78

of the individual forecasts are not straightforward for COVID-19 models, as COVID-19 is a novel disease and79

subsequently, there are limited data on historical accuracy. Both the ensemble influenza models described by80

Yamana et al. (2017) and Reich et al. (2019) were reported as being more accurate than the individual models.81

McGowan et al. (2019) have also found that ensemble forecasting techniques consistently outperformed simple82

benchmarks.83

One would expect the COVID-19 pandemic to have an impact on future influenza infections, and on influenza84

forecasting. Our world has changed, as social distancing, shielding, and increased attention to hand hygiene have85

become the norm. These measures, along with government lockdown restrictions, have led to fewer reported86

cases of influenza in England (Iacobucci, 2020). It is possible that the winter peak of influenza infections87

this winter will be markedly reduced and that the peak of deaths by influenza will be masked by COVID-19.88

Therefore, the current and future influenza years could be very different from the years prior to 2020. It is not89

clear how COVID-19 will impact the relative performance of sophisticated methods and simplistic benchmarks.90

Uncertainties about how the pandemic might evolve in 2021, and beyond, present various challenges (Scudellari,91

2020).92

We believe more efforts is needed to explore the strength and weaknesses of simple heuristics and ML methods93

for infectious disease forecasting. Forecasting competitions such as FluSight for Influenza (McGowan et al., 2019)94

or RAPIDD for Ebola (Viboud et al., 2018) have been very useful in that regard. These competitions highlight95

the importance of probabilistic forecasting and seem to indicate that forecast combination leads to consistently96

better forecast accuracy. Finally, as pointed out by Saltelli et al. (2020), being aware of model assumptions and97

model ignorance while aiming for an appropriate model complexity will ensure that our forecasting models will98

better serve society.99
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