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Abstract—Multi-step-ahead forecasts can either be produced
recursively by iterating a one-step-ahead time series model or
directly by estimating a separate model for each forecast horizon.
In addition, there are other strategies, some of them combine
aspects of both aforementioned concepts. In this work we present
a comprehensive investigation into the bias and variance behavior
of multi-step-ahead forecasting strategies. We provide a detailed
review of the different multi-step-ahead strategies. Subsequently,
we perform a theoretical study that derives the bias and variance
for a number of forecasting strategies. Finally, we conduct a
Monte Carlo experimental study that compares and evaluates
the bias and variance performance of the different strategies.
From the theoretical and the simulation studies we analyze the
effect of different factors, such as the forecast horizon and
the time series length, on the bias and variance components,
and on the different multi-step-ahead strategies. Several lessons
are learned, and recommendations are given concerning the
advantages, disadvantages, and best conditions of use of each
strategy.

Index Terms—Multi-step-ahead forecasting, time series, ma-
chine learning, nearest neighbors, neural networks, bias, vari-
ance, Monte Carlo simulation.

I. INTRODUCTION

L INEAR forecasting methods, such as ARIMA and ex-
ponential smoothing [1], have been dominantly used in

the majority of forecasting applications. This is because they
are robust methods, and are fairly well-understood due to
decades of development and analysis. However, in the last two
decades nonlinear forecasting methods have proved themselves
and are making inroads into many applications. Examples of
nonlinear methods are some statistical models, such as bilinear
models, regime-switching models and functional-coefficient
models [2], [3]. Alternatively, they could be machine learning
models [4], [5]. Examples include K-nearest-neighbor [6],
[7], neural networks [8]–[10], support vector machines [11],
boosting [12], and fuzzy neural networks [13]–[15].

There are many situations where the time series behaves
nonlinearly, and therefore a nonlinear model would be the
appropriate choice [16]. For instance, a time series could
exhibit some form of saturation effect (for example the vari-
able’s effect becomes less pronounced as it increases), or
it could switch between two or more different regimes (for
example economic expansion and recession) [2]. In addition
to model development, it is imperative to have a parallel effort
to understand the inner workings of these nonlinear models.
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This will shed light into their strengths and weaknesses, and
therefore channel the research effort into alleviating their
weaknesses. In addition, it can help guiding the user to the
proper selection of models.

As a step towards the understanding of nonlinear forecast-
ing methods, we consider in this paper the multi-step-ahead
forecasting problem and provide an in-depth analysis, using
theoretical arguments, qualitative analysis, and simulation ex-
periments. Forecasting multi-step-ahead, rather than a single-
step, is more prevalent in the majority of applications. In spite
of this, it has been much less studied, partly because it is
a more difficult problem. This is because further steps have
more uncertainty and are typically harder to forecast, and also
because of the potentially complex interaction between the
different steps-ahead, i.e. forecasting horizons. There are three
major strategies for the multi-step-ahead forecasting problem.
In the recursive strategy the forecasting model is trained
to forecast one-step ahead. Subsequently, forecasting h-step
ahead is accomplished by iterating the forecasts h times, using
previously forecasted values as inputs as needed. In the direct
strategy, separate forecasting models are trained to directly
forecast each h-step ahead. In the joint strategy, also called
multi-input multi-output, or MIMO, (available for nonlinear
forecasting models only) one multi-output model is trained
to forecast the whole horizon in one shot. In this work we
are not going to study or propose forecasting models (such
as neural networks, SVR’s, etc), but study multi-step-ahead
forecasting strategies, i.e. the way we apply any forecasting
model to obtain the forecasts for the whole horizon, e.g the
recursive strategy, the direct strategy, and several other ones.

There has been some theoretical and empirical work com-
paring between the recursive and the direct strategies for linear
models [17]–[23]. A summary of the findings is given by [24].
Most studies agree that the direct strategy is superior for the
case of misspecified models, i.e. when the considered class
of models does not contain the true model. Otherwise, for
well-specified models, the recursive strategy may be better.
Essentially, there are two conflicting factors. Misspecification
introduces a bias that gets worse with horizon. On the other
hand, the direct strategy’s error terms are serially correlated
(one can determine that by a simple analysis of the ARMA
process). The direct strategy has also an effectively smaller
in-sample set, and can therefore suffer from a higher variance
of the forecasts.

For the nonlinear case only little work has appeared in the
literature. For example, [25] was one of the earlier studies
that compared the two (direct and recursive) strategies with
respect to their asymptotic efficiency. Also, [26] compared the
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mean squared error (MSE) of both strategies, in addition to a
third strategy that has considered some combination of joint
and recursive forecasting. In their study, which is based on
neural network models, the direct strategy gave the best results.
The works by [27] and [8], which reviewed the literature for
nonlinear forecasting models, studied both direct and recursive
strategies for such nonlinear models. The work of [28] derived
a joint forecasting strategy for support vector regression.
Moreover, they compared it with the recursive and the direct
strategies, and found that the joint strategy is the better of
the three. The study by [29] compared between the direct and
the recursive strategies using the concept of grey relational
analysis. The work by [30] compared between various multi-
step-ahead forecasting strategies. Moreover, they studied the
problem characteristics that may affect the outperformance of
one strategy over another. However, this study does not include
many of the approaches that were developed later. The work
by [31] compared between the three basic multi-step strategies
for some flood forecasting problem using a neural network as
underlying model. They discovered that the recursive strategy
is the best for long-term forecasting. For short-term forecasting
the recursive strategy, tied with the direct strategy, beat the
joint strategy.

Other than nonlinear forecasting models, some researchers
considered multi-step strategies with GARCH-type underly-
ing forecasting models. For example [32] considered three
strategies: recursive, direct, and mixed data sampling (MIDAS)
for multi-step volatility forecasting. The MIDAS strategy is
an approach that uses higher frequency time series as inputs
to forecast time-aggregated values. They found out that the
recursive strategy holds an edge at short horizons, while the
MIDAS strategy considerably beats the other two for larger
horizons.

Other work has focused on developing novel strategies,
combining properties of the three recursive, direct, and joint
strategies (see section II). For example, [33] provided a review
and a comparison of several multi-step strategies using the
NN5 benchmark time series. They propose other variants and
combinations of the three basic strategies. They show that the
joint strategy is superior, but also some of the other derivative
strategies (from the basic three strategies) are competitive.

All the aforementioned studies have considered only overall
measures such as the MSE to evaluate and compare the
different multi-step-ahead strategies for nonlinear forecasting.
However, the error in any forecasting problem can be decom-
posed into the sum of two opposing components: the bias
and the variance. This decomposition is such a fundamental
concept that it exists in other problems that involve some form
of estimation, such as classification, regression and parameter
estimation. The present study investigates the behavior of the
bias and the variance components for each forecasting strategy.
The bias represents the consistent offset of the forecast, away
from the true value. For example, if for a family of forecasting
models the forecast for a specific x is always higher by some
amount than the true value, then the bias is positive. The
variance represents the variation of the forecast around its
mean. So, a forecasting model that, for different realization
of the training set, produces highly variable forecasts, then

it has a high variance. A more complex model (i.e. a model
with a large number of parameters) typically has a low bias
and a high variance, and vice versa for a simple model. The
reason is that a simple model has less parameters. This will
make the model less powerful, and therefore less able to fit any
shape, leading to a large bias. On the other hand the smaller
number of parameters leads to smaller sensitivity to the data,
and therefore smaller variance.

Analyzing the behavior of bias and variance is paramount
to understanding the inner mechanics of forecasting strategies.
These are fundamental concepts that reveal the relation with
model complexity, model misspecification, and data adequacy.
An in-depth study could therefore give insights into the
different interactions between time series length, model com-
plexity, forecasting horizon (i.e. step-ahead), and the strategy’s
performance. It also could guide the selection of multi-step
strategies. For example, if we are encountering a short time
series, then we are more vulnerable to overfitting, and it
is prudent to use a multi-step strategy that minimizes the
variance. On the other hand, if our application pays much
attention to the direction of the forecast (rather than value),
then it is recommended to use a low-bias strategy, because
a large bias can deteriorate the forecasted direction. The
only study that considered bias and variance for nonlinear
forecasting, and is therefore the closest to our work is the
study [34], which presented an empirical investigation for
one-step ahead forecasting using neural networks. However,
there is a distinctive difference between their study and ours.
First, we consider multi-step forecasting instead of one-step
forecasting, which is a fundamental difference. Second, they
compared forecasting models (or learning algorithms), while
we compare multi-step strategies (like the recursive, direct,
and other strategies). A notable theoretical study on bias
and variance analysis for multi-step forecasting for linear
models was presented by [35]. He proved that standard model
selection criteria, such as Akaike, Schwartz’s BIC, and leave
one out methods are biased estimators of the MSE for multi-
step models. These criteria are generally under-penalizing for
over-parameterization, and he suggested instead the leave-
h-out cross validation criterion, which he proves has better
properties. His study, however, did not consider or compare
multi-step strategies.

In summary, the contributions of our work are the following:

• Review in detail the strategies for multi-step-ahead fore-
casting.

• Present a theoretical analysis for the bias and variance
for several of these strategies.

• Conduct a simulation study for the comparison of the
different strategies from the perspective of bias and
variance components.

• Provide a qualitative reasoning concerning the strengths
and weaknesses of each strategy in their bias and variance
performance.

A brief summary of the findings is that the direct strategy
generally has the smallest bias, and becomes superior for
longer time series. On the other hand, the joint strategy has
the smallest variance. Taking into account the combined effect
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of bias and variance, we recommend as the overall winner a
variant of the joint strategy, whereby the forecasting model is
trained to simultaneously forecast only a portion rather than
the whole horizon at a time.

The paper is organized as follows. The next section provides
the MSE decomposition for multi-step forecasting. Section II
presents the different forecasting strategies. A theoretical bias
and variance analysis for two steps ahead is proposed in Sec-
tion IV. Section V gives the methodology of the simulations
with an explanation of the bias and variance estimation as
well as the simulation details. Section VI presents a discussion
of the results. Finally, Section VII gives a summary and
concludes the work.

II. MULTI-STEP-AHEAD FORECASTING STRATEGIES

Given a univariate time series {y1, . . . , yT } comprising T
observations, we want to forecast the H next observations of
the time series, {yT+1, . . . , yT+H}.

Time series of different fields or applications can have
different resolutions (e.g. yearly, monthly, daily, hourly, etc),
and that could lead to different time series lengths T . Also, de-
pending on the required horizon H , forecasts can be typically
classified into short, medium or long term forecasts. Typically,
the further in the future we attempt to forecast the harder it
can be because of the larger uncertainty.

We will assume the time series {y1, . . . , yT } is a realization
of an autoregressive process of the form

yt = f(xt−1) + εt with xt−1 = [yt−1, . . . , yt−d]
′, (1)

which is specified by a function f , a lag order (or number of
lagged variables) d and a noise term {εt}, which is a stochastic
iid noise process with E[εt] = 0 and E[ε2t ] = σ2.

Different forms or values of these three components can
produce time series with very different characteristics. The
autoregressive process in (1) is also called the data generating
process (DGP) for the time series {y1, . . . , yT }. In particu-
lar, time series generated by different DGPs can have very
different forecastability properties.

In practice, we do not have access to the true DGP (if
it exists). The only information we have is one time series
realization from that DGP. The goal is to produce the best
forecasts (according to an accuracy measure) based on this
time series realization.

We will consider the mean squared error (MSE) as forecast
error measure. Let us denote g(xt; θ̂T ;h) the h-step ahead
forecast from input xt using the set of parameters θ̂T , that
have been estimated from the time series YT = {y1, . . . , yT }.
Then, the MSE at horizon h is defined as

MSEh(xt) = Eε,YT

[
(yt+h − g(xt; θ̂T ;h))2

]
. (2)

It can be shown that the optimal h-step ahead forecast, i.e.
the forecast that has the minimum MSE at horizon h, is the
conditional expectation given by µt+h|t = E[yt+h|xt] (see, for
example [36]). In this article, we will assume the goal of multi-
step-ahead forecasting is to estimate µt+h|t for h = 1, . . . ,H
using one time series realization {y1, . . . , yT }.

For one-step-ahead forecasts, that is h = 1, we have the
expression µt+1|t = f(xt). So, the problem of forecasting
reduces to the estimation of the function f and the lag order
d, given in expression (1).

For multi-step forecasts, that is h > 1, the problem is more
difficult and does not necessarily reduces to the estimation of
the function f and the lag order d. In fact, to produce multi-
step-ahead forecasts, we need a forecasting strategy which
typically involves estimating one or more models which are
not necessarily of the same form as f and may not have the
same lag order d as the function f .

Multi-step-ahead forecasting strategies can be classified
based on whether actual forecasts are used to generate the next
forecasts or if the forecasts are generated directly without use
of these intermediate forecasts. The former group of strategies
is called recursive strategies while the latter group is called
direct strategies. Any multi-step forecasting strategy could also
have some aspects of both recursive and direct approaches. In
what follows we describe different variants of both recursive
and direct strategies.

A. Recursive and direct strategies

The recursive strategy estimates one model m given by

yt = m(zt−1;θ) + et , (3)

with zt = [yt, . . . , yt−p+1]′ and E[et] = 0.
This strategy trains one model which focuses solely on

the one-step ahead forecasting. This means that the set of
parameters θ are estimated by minimizing a one-step error
criterion with

θ̂ = argmin
θ∈Θ

∑
t

(yt −m(zt−1;θ))
2
, (4)

where Θ denotes the parameter space.
After estimating the set of parameters θ, the forecasts are

computed recursively. This means that intermediate forecasts
are used as input variables for forecasting successive time
series values.

The forecasts are computed as µ̂T+h|T = m(h)(zT ; θ̂) for
all h = 1, . . . ,H , where m(h) means applying the model m
recursively h times starting from zT . For example µ̂T+2|T =

m(2)(zT ; θ̂) = m(ẑT+1; θ̂) where ẑT+1 includes intermediate
forecasts in place of actual time series values for the times
where such are not yet known.

One advantage of the recursive strategy is the computational
time since it requires learning a single model. This strategy
will be denoted as REC.

Instead of using one parameter for all horizons, a variation
of REC is to estimate a different set of parameters θ̂(h) for
each horizon h by minimizing an h-step error criterion. In
other words, we compute for each horizon h,

θ̂(h) = argmin
θ∈Θ

∑
t

[
yt −m(h)(zt−h;θ)

]2
, (5)

Hence, a different set of parameters is used at each horizon h.
The forecasts are computed as the recursive strategy with

µ̂T+h|T = m(h)(zT ; θ̂(h)) for all h = 1, . . . ,H .
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One advantage of this strategy is the use of an h-step
criterion instead of an 1-step criterion as with REC . This
strategy will be denoted as RECMULTI.

In the direct strategy for each horizon there is a different
forecasting model, that is trained to specifically forecast only
the h-step ahead value. It uses lagged input variables up to time
t for forecasting time t+h, and therefore does not attempt to
use intermediate forecasts. It is given by

yt = mh(rt−h;θh) + et,h (6)

where rt−h = [yt−h, . . . , yt−h−ph ]′ and h = 1, . . . ,H .
This strategy uses a different set of parameters θh for each

horizon h and computed by

θ̂h = argmin
θh∈Θh

∑
t

[yt −mh(rt−h;θh)]
2
. (7)

Then the forecasts are obtained for each horizon from the
corresponding model, that is µ̂T+h|T = mh(zT ; θ̂h).

One advantage of the direct strategy is its flexibility as it
allows different number of lags ph and a different parameter
set for each horizon h. This strategy will be denoted as DIR.

The three previous strategies have notably been considered
in [24] for the linear case and in [26] for the nonlinear case.

B. Combination of recursive and direct strategies

In addition to the basic recursive and direct strategies,
researchers have considered several combinations of these two
strategies.

A straightforward approach to combine the recursive and the
direct strategies is to take a weighted average of forecasts from
the REC and the DIR strategies. Researchers have considered
more advanced combination schemes which modify the model
building and/or the forecasting procedures.

The DirRec strategy [37], also called the mixed strategy
[38], uses a different set of parameters θh for each horizon
h as in the DIR strategy but includes the previous forecasts
with the input variables. In other words, the parameters are
estimated as follows

θ̂h = argmin
θh∈Θh

∑
t

[yt − [mh(m̂h−1, . . . , m̂1, rt−h;θh)]]
2
.

(8)
where m̂h is a shorthand for mh(rt−h; θ̂h). Then the forecasts
are obtained for each horizon from the corresponding model,
that is µ̂T+h|T = mh(m̂h−1, . . . , m̂1, rT ; θ̂h).

So, the model at horizon h is not learnt independently
from the previous models. However, because the number of
input variables grows linearly with the horizon, this strategy
requires a variable selection/elimination method and so is
computationally demanding.

The MSVR strategy, proposed in [39], is another combination
of the REC and DIR architectures. If we assume H = L ×
R, this strategy estimates the first L direct models as in (7).
Then, the estimated models are used R times to produce the
H forecasts. In other words, the forecasts are obtained as

µ̂T+h|T =

{
ml(rT ; θ̂l) if h ≤ L

ml(m̂l−1, . . . , m̂1, r
′
T ; θ̂l) if h > L

(9)

where l = (h − 1)%L + 1, m̂l is a shorthand for ml(rT ; θ̂l)
and r′T ⊂ rT .

One advantage of the MSVR strategy is the gain in compu-
tational time, since it requires learning L direct models with
L = H

R ≤ H . However, because estimated values are used to
forecast next values, there is a trade-off between computational
time and forecast accuracy.

The RECTIFY strategy [40] seeks to combine the best
properties of both the recursive and direct forecasting strate-
gies. The rationale behind the strategy is to first apply a
linear recursive forecasting model, and then adjust its forecasts
using a nonlinear model trained with the direct strategy. This
adjustment is meant to correct the bias that is typical of
a recursive linear system. The parameters are estimated as
follows

θ̂h = argmin
θh∈Θh

∑
t

[
yt − [m(h)(zt−h; θ̂) +mh(rt−h;θh)]

]2
.

(10)
Then the forecasts are obtained as µ̂T+h|T = m(h)(zT ; θ̂) +

mh(rT ; θ̂h). One advantage of this strategy is that it avoids
the difficult task of choosing between the recursive and the
direct strategies.

C. Multi-horizon strategies
The forecasting strategies in sections II-A and II-B can

be classified into the set of single-horizon strategies, that is
strategies where the forecasting model considers each horizon
in isolation. There is no attempt to connect in some way the
forecasts of different steps-ahead.

Another set of strategies, called the multi-horizon strategies,
is based on forecasting several horizons in one shot. The
forecasting error function that is minimized during the training
process takes into account simultaneously the forecast errors
of several horizons, and therefore there is one set of parameters
shared between these horizons.

The rationale behind the multi-horizon strategies is that the
different models mh in (6) share some common characteristics
because of the serial correlation in time series data. Thus,
estimating the parameters of each model mh in a joint manner
could be beneficial since (i) it allows exploiting the relatedness
between the different horizons’ forecasting tasks to improve
generalization performance, (ii) it avoids potential irregulari-
ties in consecutive forecasts due to using very different models
at each horizon and (iii) it compensates for the small sample
size using additional samples from these other related tasks.

This is a special case of the broader concept of multi-task
regression [41] or multiresponse regression [42], developed in
the machine learning and the statistics literature.

We present here the three multi-horizon strategies which
have been proposed in the literature, each of which makes use
of a different formulation of the objective function, and this,
consequently, reflects on the way the parameters are optimized.

The DIRJOINT strategy uses one set of parameters θ
that is shared with all the horizons, and this is estimated by
minimizing the average error over the entire horizon, i.e.

θ̂ = argmin
θ∈Θ

∑
t

1

H

H∑
h=1

[yt −m(rt−h;θ)]
2
. (11)
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This strategy has been called the MIMO strategy, when
used with nearest neighbors [43], and has also been called the
JOINT strategy in the context of neural networks forecasting
models [44].

An example of how to apply this strategy for neural net-
works (NN) is to consider a NN architecture with an input
layer of size p, corresponding to the time series lags, and
an output layer of size H , corresponding to the different
horizon forecasts. Thus, the neural network is designed so
that it simultaneously produces all H-step ahead forecasts in
its output layer.

The SJOINT strategy [45] takes a middle approach between
the DIR and the DIRJOINT strategies. Instead of having
one parameter set for all horizons or one parameter set for
each horizon, the SJOINT strategy forms several blocks of
consecutive horizons and use ones set of parameters for each
group. In other words, assuming H = L × R, this strategy
obtains L different multi-horizon models where the parameters
are estimated as

θ̂l = argmin
θl∈Θl

∑
t

1

R

l×R∑
h=(l−1)R+1

[yt −ml(rt−h;θl)]
2
. (12)

with l = 1, . . . , L.
In addition to the set of parameters of the different models,

the SJOINT strategy requires the selection of the number of
groups L.

The DIRJOINTL strategy bundles horizons that are in the
vicinity of the current horizon. In other words, we compute
for each horizon h,

θ̂h = argmin
θh∈Θh

∑
t

1
i+j+1

∑h+j
h′=h−i [yt −mh(rt−h′ ;θ)]

2,

where i and j are respectively the number of horizons before
and after the current horizon that are included in the objective
function.

This strategy has been considered in [46] with i = j = 1
for traffic flow forecasting using neural networks.

This previous group is of the direct type. There are also
multi-horizon strategies for recursive models m(h) (see (5)),
where the parameters are estimated in a joint manner.

As with the DIRJOINT strategy, RECMULTI (or rather
REC ) can be extended to minimize an H-step error to select
one set of parameter for all horizons h. In other words, we
compute

θ̂ = argmin
θ∈Θ

∑
t

1

H

H∑
h=1

[
yt −m(h)(zt−h;θ)

]2
, (13)

where m(h) is an iterative h-step ahead forecast obtained by
recursive application of a one-step ahead model.

This means that the parameters are optimized taking into
account their whole effect on all future steps, rather than
the myopic one-step ahead view of REC . This strategy is
akin to the backpropagation through time approach for neural
networks [26], [47] whereby a pass through the whole horizon
in the training process ensures considering the effect on every
step ahead. Once trained, the forecasts are obtained recursively
as with REC . We will denote this strategy as RECJOINT.

We can also define the recursive version of JOINTL ,
denoted RECJOINTL, for which the set of parameters are
computed as

θ̂h = argmin
θh∈Θh

∑
t

1
i+j+1

∑h+i
h′=h−i

[
yt −m(h)(rt−h′ ;θ)

]2
The forecasts are then obtained as for REC .

Note that the idea of minimizing an h-step ahead error has
also been considered in [48] to better match the feature of a
time series.

For all the previously described multi-horizon strategies
(both direct and recursive), we can associate a set Lh ⊆
{1 . . . , H} to each horizon h, which represents the set of
horizons involved in the objective of horizon h. Then each
multi-horizon strategy can be described with {L1, . . . , LH}.

For example, the DIR strategy has Lh = h. This means
the only horizon included in the objective function for hori-
zon h is the horizon h itself. For the DIRJOINT strategy,
Lh = {1 . . . , H}; this means all the horizons are included
in the objective function. Finally, for JOINTL , Lh = {h −
i, . . . , h, . . . , h+ i}.

III. MEAN SQUARED MULTI-STEP FORECAST ERROR
DECOMPOSITION

An in depth analysis of the performance of forecasting
strategies can be accomplished through an examination of the
MSE decomposition into the bias and the variance compo-
nents. Given a realization YT , we denote g(xt; θ̂YT

;h), the
h-step ahead forecasts of a given strategy for the input xt. For
each realization, a lag order p and a set of parameters θ̂YT

are
estimated, and could possibly be different from one realization
to the other. In particular, the estimated lag order p could
possibly be different from the “real” lag order d defined in (1).
The variation of the forecasts g(xt; θ̂YT

;h) with the different
realizations of YT gives rise to the variance component. In
addition, the variation of g(xt; θ̂YT

;h) is around a certain
mean: EYT

[
g(xt; θ̂YT

;h)
]

(or rather a mean curve that is a
function of h). This represents the forecast averaged over all
possible variations of the training set. The difference between
that mean and the optimal forecast µt+h|t represents the bias.

The MSE of the given strategy at horizon h is decomposed
as follows.
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MSEh

= Ext

Eε,YT

[
(yt+h − g(xt; θ̂YT ;h))

2 | xt
]

︸ ︷︷ ︸
MSEh(xt)


= Ext

Eε [(yt+h − µt+h|t)2 | xt]︸ ︷︷ ︸
Nh(xt)

+ (µt+h|t − EYT

[
g(xt; θ̂YT ;h)

]
)2︸ ︷︷ ︸

Bh(xt)

(14)

+ EYT

[
(g(xt; θ̂YT ;h)− EYT

[
g(xt; θ̂YT ;h)

]
)2 | xt

]
︸ ︷︷ ︸

Vh(xt)


= Ext,ε

[
(yt+h − µt+h|t)2 | xt

]︸ ︷︷ ︸
Nh

+ Ext

[
(µt+h|t − EYT

[
g(xt; θ̂YT ;h)

]
)2
]

︸ ︷︷ ︸
Bh

(15)

+ Ext,YT

[
(g(xt; θ̂YT ;h)− EYT

[
g(xt; θ̂YT ;h)

]
)2 | xt

]
︸ ︷︷ ︸

Vh

where Ex and E[·|x] denote the expectation over x and the
expectation conditional on x, respectively.

We can see that the MSE of the forecasts g(xt; θ̂YT
;h) at

horizon h can be decomposed into three different components,
namely the noise term Nh, the squared bias term Bh and the
variance term Vh.

The noise component Nh is the irreducible error that cannot
be eliminated. This means that even with optimal forecasts
(i.e. being able to perfectly estimate µt+h|t so that Bh = 0
and Vh = 0), MSEh will be equal to Nh.

In contrast to the noise component, the bias and variance
depend on the employed forecasting strategy. The bias, de-
noted by Bh in (15), represents the consistent offset of the
forecast, away from the true value, i.e. the conditional mean.
For example, a trend deviation in the forecast or the use of a
linear model with a nonlinear time series may affect the bias
component. In fact, the bias term can decomposed further into

Bh (16)

= Ext

[
(µt+h|t − EYT

[
g(xt; θ̂YT

;h)
]
)2
]

(17)

= Ext

(µt+h|t − g(xt;θ
∗;h)︸ ︷︷ ︸

A

(18)

+ g(xt;θ
∗;h)− EYT

[
g(xt; θ̂YT

;h)
]

︸ ︷︷ ︸
B

)2

 (19)

The A term represents the discrepancy between the con-
ditional mean and the best potential of the model family we
consider. For example, consider that µt+h|t is nonlinear, while
we consider a linear forecasting model, then g(xt;θ

∗;h) is
the forecast, having perfect estimation of the linear parameter.

In such a case the A term is a measure of the limitation
of the selected model (or model family), not taking into
account parameter or model estimation errors. The B term
represents the error due to having the time series limited to
T observations, i.e. it expresses how finite-sampledness will
affect the bias. For example, even if µt+h|t can be correctly
estimated with g(xt;θ

∗;h) (the A term cancels), then the
B term will still remain since there is typically a parameter
estimation error, because we are only considering a time series
with T observations.

The variance, denoted by Vh in (15), represents the variation
of the forecast around its mean. For example, a small sample
time series or a too complex model might affect the estimation
variance component.

A more complex model will tend to have a low bias, as it
is powerful enough to be able to produce any shape of the fit.
On the other hand, a simple model will be less malleable and
will produce large bias. Concerning the variance, in complex
models the fit will tend to be much more volatile, because it
is more sensitive to the data and the random terms. Simple
models, on the other hand, have less sensitivity, because they
have less parameters and hence less “knobs” that can be used
to tune any solution.

The ideal configuration is to have both a low bias and a low
variance. However, this ideal configuration is never achieved
in practice as decreasing the bias will increase the variance and
vice versa. So, the role of model selection is to find a trade-off
between the bias and the variance to obtain the smallest MSE.

The goal of this work is to analyze the bias and the variance
components of the forecasting strategies over the forecast
horizon. The MSE decomposition given in (15) is identical
to the usual decomposition used in the machine learning field
[49]. However, in contrast with usual supervised learning
problems, the multi-step forecasting problem is dealing with
time-dependent data (time series) and requires the learning of
dependent tasks with different noise level changing with the
forecast horizon.

IV. THEORETICAL ANALYSIS OF THE BIAS AND THE
VARIANCE

We present here a theoretical analysis that analyzes the bias
and variance behavior for the different multi-step forecasting
strategies. We will consider the strategies from Sections II-A
and II-C but not from Section II-B. For simplicity, consider
the two-step ahead case. The observed findings will generally
apply to the general h-step ahead situation. In any case, some
Monte Carlo experiments for the case of general forecast
horizon h will be performed later in the paper, in order to
study and validate the behavior as we vary h.

Assume that the time series is generated by the nonlinear
autoregressive process defined in (1). Then, at horizon h = 1
we have the simple expression µt+1|t = E[yt+1|xt] = f(xt).
This means that the conditional expectation at horizon h = 1 is
simply equal to the iteration function f . At horizon h = 2, the
conditional expectation µt+2|t = E[yt+2|xt] can be obtained
as follows. First we compute yt+2 using Taylor series approx-
imation and keeping up to second-order terms. This gives the
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following expression:

yt+2 (20)
= f(f(xt) + εt+1, . . . , yt−d+2) + εt+2 (21)

≈ f(f(xt), . . . , yt−d+2) + εt+1fx1
+ 1

2 (εt+1)2fx1x1
+ εt+2,

(22)

where fx1 and fx1x1 are the first and second derivatives of f
with respect to its first argument, respectively.

The conditional expectation µt+2|t is then given as

µt+2|t = E[yt+2|xt] ≈ f(f(xt), . . . , yt−d+2) + 1
2σ

2fx1x1

(23)
Now let us perform the MSE decomposition. First we derive

the noise component for the first two horizons, that is N1(xt)
and N2(xt), as defined in (14).

The noise component at horizon h = 1 is simply equal to the
variance of the stochastic noise, this means that N1(xt) = σ2.
At horizon h = 2, it can be obtained as

N2(xt) (24)

= Eε
[
(yt+2 − µt+2|t)

2]
≈ Eε

[(
εt+1fx1 + 1

2
ε2t+1fx1x1 + εt+2 − 1

2
σ2fx1x1

)2]
= σ2[1 + f2

x1 ] +
1
2
σ4f2

x1x1 . (25)

where we used the fact that E[ε3] = 0 and E[ε4] = 3σ4 for
the standard normal distribution.

Note that the noise component does not depend on the
forecasting strategy or the learning algorithm, but only on
the data generation process (DGP). One can observe from
expression (25) that the noise term becomes larger for more
strongly nonlinear DGP’s (because, then fx1x1

will be larger).
Note also that it is justified to use a Taylor series approxi-
mation, and retain a few terms. The majority of forecasting
applications in practice possess either approximately linear, or
slightly or moderately nonlinear DGP. This is the nature of
systems encountered in practice, which have relatively simple
relations among the successive time series values, and this is
evidenced by the success of simple forecasting methods [50].
Having a slightly or moderately nonlinear behavior makes a
Taylor series approximation fairly accurate.

In order to compute the bias and variance terms at h = 2,
B2(xt) and V2(xt), as defined in (14), we model the forecasts
of each strategy as a sum of three terms: the true function
value we are trying to estimate, which is the conditional mean
µt+2|t = E[yt+2|xt], an offset term denoted by δ(zt;θ) and
a variability term denoted by η(zt;θ)εη , where η(zt;θ) is a
deterministic factor giving the standard deviation of the term,
and εη is a stochastic component with E[εη] = 0 and E[ε2η] =
1 (see Eqs. (26), and (34).

The offset term δ(zt;θ) is the discrepancy from the con-
ditional mean µt+2|t arising from (i) the lack of flexibility
of the considered forecasting model (i.e. the model, with its
parameters θ, is not powerful enough to reconstruct µt+2|t
accurately), (ii) potential missing variables in the inputs (zt
not equal to xt), and (iii) an inadequate estimation algorithm
for the parameters θ (i.e. even if the model is powerful,

the training algorithm may fall short of finding the right
parameters).

The variability term η(zt;θ)εη represents the variability of
the forecasts, and it arises due to (i) the finite-sampledness
of the time series YT = {y1, . . . , yT } used to estimate θ,
(ii) the number of input variables in zt potentially including
redundant or meaningless variables, and (iii) the complexity
of the model that may make it too flexible.

We now write the forecasts of the different strategies using
the previous terminology. To simplify the notation, we will
remove the dependence on the size of the time series T .
Forecasts of the recursive strategy. To produce forecasts at
horizon h = 2, the recursive strategy first estimates a one-step
model as in (3) and produces forecasts for h = 1, that is

g(xt; θ̂; 1) = f(xt)︸ ︷︷ ︸
µt+1|t

+δ(zt;θ)

︸ ︷︷ ︸
m(zt;θ)

+η(zt;θ)εη

︸ ︷︷ ︸
m(zt;θ̂)

(26)

Then, forecasts at horizon h = 2 are obtained recursively
and can be computed, after some simplification using a Taylor
series expansion, as follows

g(xt; θ̂; 2) (27)

= m(m(zt; θ̂), . . . , yt−p+2; θ̂) (28)
≈ f(f(xt), . . . , yt−p+2) (29)
+ δ(f(xt), . . . , yt−p+2;θ) + η(f(xt), . . . , yt−p+2;θ)εη2 (30)

+ δ(zt;θ)mz1 +
1

2
[δ(zt;θ)]

2mz1z1 (31)

+ η(zt;θ)εη1mz1 +
1

2
[η(zt;θ)εη1 ]

2mz1z1 (32)

where εη1 and εη2 are the stochastic components of the
variability term around points zt and [f(zt), . . . , yt−p+2]
respectively, and mz1 and mz1z1 are respectively the first and
second derivatives of the model m with respect to its first
argument.
Forecasts of the direct strategy. A model is estimated to
directly produce forecast for horizon h = 2 and can be written
as

g(xt; θ̂2; 2) (33)
= µt+2|t + δ(rt;θ2)︸ ︷︷ ︸

m2(rt;θ2)

+η(rt;θ2)εη

︸ ︷︷ ︸
m2(rt;θ̂2)

(34)

In contrast with the forecasts of the recursive strategy, we can
see that the conditional mean µt+2|t appears in the previous
expression.
Forecasts of the other strategies. Except the recursive
strategy, all the forecasting strategies presented in section II
use the h-step error as their objective. Thus, the forecasts of
these strategies at horizon h = 2 can be written as
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g(xt; γ̂; 2) (35)
= µt+2|t + δ(rt;γ)︸ ︷︷ ︸

m2(rt;γ)

+η(rt;γ)εη

︸ ︷︷ ︸
m2(rt;γ̂)

(36)

where γ is the set of parameter, and this will be different for
each strategy. For example, for RECMULTI , γ = θ(2) and
for DIRJOINT , γ = θ. The number of parameters involved
and the objective used to identify them will have an impact
on both bias and variance components.

Recall that we would like to estimate µt+2|t ≈
f(f(xt), . . . , yt−d+2) + 1

2σ
2fx1x1 . In the following, we will

calculate the sum of the squared bias and variance components
as defined in (15), for horizon h = 2 using the previous
expressions for the forecasts of the different strategies. In other
words, we compute

B2(xt) + V2(xt) (37)

≈ (µt+2|t − g(zt;θ; 2))2 (38)

+ EYT

[
(g(zt; θ̂; 2)− g(zt;θ; 2))2 | xt

]
(39)

We will perform three pairwise comparisons of closely
related strategies in terms of the bias and variance components:
REC vs DIR , RECMULTI vs DIR and DIRJOINT vs
DIR . For the first two comparisons, we will limit ourselves
to horizon h = 2, for clarity and simplicity. Generally,
similar arguments will apply to further horizons. For the last
comparison, we consider a general horizon h.

A. One-step recursive and direct strategies

For the recursive strategy (REC), we have

BREC
2 (xt) + V REC

2 (xt) (40)

≈

{
δ(f(xt), . . . , yt−p+2;θ) + δ(zt;θ)mz1 (41)

+
1

2
[δ(zt;θ)]

2mz1z1 +
1

2
[η(zt;θ)]

2mz1z1 − 1
2
σ2fx1x1

}2

(42)

+ [η(f(xt), . . . , yt−p+2;θ)]
2 + [η(zt;θ)mz1 ]

2 (43)

+
1

2
[η(zt;θ)]

4m2
z1z1 (44)

+ 2η(f(xt), . . . , yt−p+2;θ)η(zt;θ)mz1E[εη1εη2 ] (45)

+ η(zt;θ)
2η(f(xt), . . . , yt−p+2;θ)mz1z1E[ε

2
η1εη2 ] (46)

where we used Eqs. (26)-(34), and the fact that E[ε3η] = 0 and
E[ε4η] = 3 for the standard normal distribution. Note that the
quantity inside the curly brackets represents the bias term.

For the direct strategy, we have

BDIRECT
2 (xt) + V DIRECT

2 (xt) (47)

≈
[
µt+2|t −m2(rt;θ2)

]2 (48)

+ η(rt;θ2)
2 (49)

By comparing the bias and variance terms for both strategies
at h = 2, we observe the following:
• In contrast with DIR , the bias and variance components

of REC at horizon h = 1 are affecting the bias and
variance components at horizon h = 2. For DIR ,
although bias and variance components at h = 2 are
dependent on h = 1 because of the temporal structure
of the time series, the dependence is not explicit.

• Let us take the extreme case of very large training set. We
can then assume that the model of the recursive strategy
at horizon h = 1 has been almost perfectly estimated, so
that δ(·;θ) ≈ 0 and η(·;θ) ≈ 0. Then BREC

2 reduces to
1
2σ

2fx1x1
, and hence the bias has not been completely

eliminated. For the direct strategy, the same assumption
results in BDIR

2 being approximately zero.
• The bias for REC is amplified when the forecasting model

produces a function that has large variations (i.e. mz1

and mz1z1 are large in magnitude). It is well-known
that complex models tend to give low bias but could
get functions with large variations. In the situation of
REC a complex model’s originally low bias will get worse
because of the large variations. Moreover, if the original
bias is low to begin with, then the only direction for it is
to increase in magnitude.

• Because of the quantity 1
2 [η(zt;θ)]2mz1z1 in the bias

equation, a high variance (i.e. a high η(zt;θ)) tends to
make the bias worse, which is in some way paradoxic to
the well-known conflicting relation of bias and variance.

• In comparison with DIR , REC generally tends to obtain a
worse variance. This underperformance is also amplified
for functions having large variations (i.e. mz1 and mz1z1

are large in magnitude).
• Even though REC seems to be inferior to DIR regarding

the bias and variance performance, it does sometimes
have some advantages. It reduces the problem of h-step
ahead forecasting to an estimation of only one function f ,
thereby breaking up the problem into more manageable
pieces. This could be advantageous for highly nonlinear
time series, or when the stochastic error term grows with
the horizon, drowning out the deterministic component
and making it hard to forecast directly. Also, for very
short time series, DIR has a comparatively smaller train-
ing set, thus penalizing its variance.

B. Multi-step recursive and direct strategies

By comparing the objectives of RECMULTI and DIR strate-
gies, which are given in (5) and (7), we can see that they are
both minimizing an h-step forecasting error.
RECMULTI and DIR reduce or avoid the error accumu-

lation over the horizon compared to REC strategy, which
minimizes a 1-step forecasting error. The difference between
RECMULTI and DIR is that the former minimizes an h-step
recursive error while the latter minimizes an h-step direct
error.

After estimation, RECMULTI produces the forecasts simi-
larly to REC , that is applying the estimated model recursively
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h times. The only difference with REC is that a different
parameter θ(h) will be used for each h-step forecast. DIR pro-
duces the forecasts directly using the estimated model.

Let us compare these two strategies at horizon h. For
RECMULTI , we have

BRECMULTI
2 (xt) + V RECMULTI

2 (xt) (50)

≈
[
µt+2|t −m(2)(rt;θ

(2))
]2

(51)

+ η(rt;θ
(2))2 (52)

where θ(2) is the set of parameter obtained by minimizing a
2-step recursive error. The same expression for DIR is given
in (47).

Assuming the right input variables are given, optimality can
be achieved by DIR with an infinitely large training set (thus
wiping out the variance term) and a flexible learning model
able to learn the function (thus cancelling the bias term). For
RECMULTI we need to be able to find a model with a set
of parameters that when applied recursively h times is able
to estimate the function. In other words, RECMULTI incurs
restrictions on the model that may somewhat limit its ability
to fit the true DGP, leading to some bias.

With a finite but large dataset, we expect DIR to have
a better bias and variance properties. In fact, with a large
dataset, DIR will be able to correctly estimate the potential
complex function at horizon h while RECMULTI can lose
some performance because of the recursive application of the
model. This analysis is also valid when comparing other direct-
type strategies with recursive-type strategies, like for exam-
ple DIRJOINT versus RECJOINT , or DIRJOINTL versus
RECJOINTL .

However, with small datasets, DIR selects every model
independently at each horizon, thus effectively decoupling the
different horizon’s forecasts. In reality the DGP dictates some
structure that governs the evolution of the time series across
the horizon. Decoupling the forecasts, as done in DIR will
therefore lead to a relatively higher variance (for small data
sets). This argument is also valid and even more pronounced
when comparing between DIR and DIRJOINT as will be seen
in the next section.

C. Single-horizon and multi-horizon strategies

To learn the model at horizon h, single-horizon strategies
(SIN), such as DIR and RECMULTI , include only data
samples for that horizon. Multi-horizon strategies (MUL) such
as DIRJOINT and RECJOINT use additional samples from
other horizons to learn the same model, thus increasing the
effective size of the training set.

To show the advantage of multi-horizon strategies, we can
use a measure such as the number of residuals per parameter
(RPP), which can be defined as the number of residuals
divided by the number of parameters. This is a measure of
data adequacy, as it gauges the amount of data per tunable
parameter. The variance should generally vary inversely with
the RPP. Of course, the RPP will depend on the forecast
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Fig. 1: Residuals per parameter for three strategies for different
sizes of time series.

horizon for the number of residuals and the learning algorithm
for the number of parameters.

Let us consider a single-layer neural network (MLP) with
p input nodes, u hidden units. At horizon h, the residual per
parameters for single-horizon strategies is given by

RPPSINh =
T − p− h+ 1

(p+ 1)× u+ u+ 1
(53)

and for the multi-horizon strategies, by

RPPMULh =
|Lh|(T − p−max(Lh) + 1)

(p+ 1)× u+ (u+ 1)× |Lh|
(54)

where Lh (defined in section II-C) is the set of horizons
considered in the objective for horizon h.

If we consider a non-parametric learning algorithm, such as
K-nearest neighbors (KNN), then the residual per parameters
is simply equal to the number of residuals since we have only
one hyper-parameter, K, the number of neighbors. For single-
horizon strategies, the number of residuals per parameter is
then given by

RPPSINh = T − p− h+ 1 (55)

and for the multi-horizon strategies, by

RPPMULh = |Lh|(T − p−max(Lh) + 1) (56)

For illustration purposes, Figure 1 gives the number of
residuals per parameter for strategies DIR , DIRJOINT and
JOINTL (with i = j = 2) for all horizons in {1, . . . ,H =
10}. The size of time series T is ranging in [50, 200] and
p = 2. On the left, the results are shown for MLP with u = 2
and, on the right, for KNN.

From Figure 1, we can see that for both NN and KNN,
RPPMULh > RPPSINh . In others words, multi-horizon strategies
have a higher RPP compared to single-horizon strategies. In
addition, we can also see that the difference for the case of
KNN is much higher than the case of MLP, mainly because of
the larger number of parameters to estimate. Therefore, KNN
may benefit more from multi-horizon strategies over single-
horizon strategies compared to MLP.

The increase of RPP can be particularly useful since by
using more observations, the variance term at each horizon can
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be decreased, and this is particularly effective for small sample
time series. However, it comes with a drawback due to the fact
that one set of parameters is used to estimate jointly several
functions. This can reduce the flexibility of the forecasting
strategy, which may in turn increase the bias.

So, to obtain better forecast with multi-horizon strategies
compared to single-horizon strategies at horizon h, the de-
crease in variance must be higher than the increase in bias. In
other terms, multi-horizon strategies will beat single-horizon
strategies at horizon h (in an MSE-sense) if

V SIN
h (xt)− V MUL

h (xt)︸ ︷︷ ︸
Decrease in variance

> [BMUL
h (xt)]

2 − [BSIN
h (xt)]

2︸ ︷︷ ︸
Increase in bias

(57)

V. BIAS AND VARIANCE ANALYSIS BY SIMULATION

We carry out a Monte Carlo study to investigate the perfor-
mance of the different multi-step-ahead forecasting strategies
from the perspective of bias and variance.

Because we do not know the ground truth for the case
of real-world time series, simulated data with a controlled
noise component is the only way to accurately and effectively
measure bias and variance effects.

A. Data generating processes

We consider three data generation processes (DGP’s) in the
presented simulation study, described as follows:
• The smooth transition autoregressive (STAR) process

yt = 0.3yt−1 + 0.6yt−2

+ (0.1− 0.9yt−1 + 0.8yt−2)[1 + e−10yt−1 ]−1 + εt (58)

where εt is independently and identically distributed (i.i.d.)
N (0, σ2), with σ = 0.01. This particular STAR process
has been used in several other published simulations studies
notably for the purposes of model selection, model evaluation
and model comparison. Theoretical background and applica-
tions of the STAR process are given in references [3] and [2].
• The nonlinear autoregressive (NLAR) process

yt = −0.17 + 0.85yt−1 + 0.14yt−2

− 0.31yt−3 + 0.08yt−7

+ 12.80 G1(yt−1) + 2.44 G2(yt−1) + εt

with
G1(yt−1) = (1 + exp{−0.46(0.29yt−1 − 0.87yt−2 + 0.40yt−7 − 6.68)})−1

G2(yt−1) = (1 + exp{−1.17× 10
3
(0.83yt−1 − 0.53yt−2 − 0.18yt−7 + 0.38)})−1

where εt is independently and identically distributed (i.i.d.)
N (0, 1). We set the error variance to a value which assures
a reasonable amount of predictability for the time series.
[51] build this process by fitting an artificial neural network
with two hidden units to the annual sunspot series. In [8],
this process has been used to compare different forecasting
methods in a nonlinear setting.
• The linear AR (LAR) process

yt = 1.32yt−1 − 0.52yt−2 − 0.16yt−3

+ 0.18yt−4 − 0.26yt−5 + 0.19yt−6 + εt,

where εt is independently and identically distributed (i.i.d.)
N (0, 1). This process exhibits cyclic behavior and was se-
lected by fitting an AR(6) model to the famous annual sunspot
series. Because it is a linear process, the variance of εt
simply scales the resulting series. Consequently, we set the
error variance to one without loss of generality. Considering
a linear process allows us to evaluate the costs of extending
the hypothesis space beyond linear functions for the different
strategies when the true DGP is indeed linear.

B. Forecasting strategies and learning algorithms

Table I gives a list of the different strategies that we will
consider in the analysis. These are a variety of strategies that
belong to the single-horizon or the multi-horizon categories,
and are either of a recursive type or the direct type.

TABLE I: List of strategies considered in the simulations. Each
strategy is either a single-horizon or a multi-horizon strategy
and is either recursive or direct.

Single-horizon Multi-horizon

Recursive REC RECJOINT(RJT)
RECMULTI(RTI) RECJOINTL(RJTL)

Direct DIR
DIRJOINT(DJT)
DIRJOINTL(DJTL)

For both RECJOINTL and DIRJOINTL note that we used
i = j = 1 (see (II-C)). In other words, at each horizon
h, we used data samples from the previous and the next
horizon, thus using a total of 2 additional horizons. These
two strategies will be denoted RECJOINTL11(RJTL11) and
DIRJOINTL11(DJTL11).

The goal of this research is not to make a comparison
of machine learning algorithms for forecasting (which has
been already conducted in [4]), but rather to analyze the
behavior of bias and variance for different multi-step strategies
using machine learning models. The machine learning models
considered in this study are the K-Nearest Neighbor (KNN)
and the multilayer perceptron (MLP).

The KNN model is frequently considered as a benchmark
model in the machine learning community, and has proven to
be an effective and robust forecasting model [7], [33], [45].
The KNN is a nonparametric model where the prediction for
a given data point xq is obtained by averaging the target
outputs y[i] of the K training data points in the vicinity of
the given point xq [52]. We used a weighted KNN model,
whereby a weighted average rather than a simple average
is used. The used weights are a function of the Euclidean
distance between the query point and the neighboring point
(we used the biweight function [52]).

MLP (also called neural networks) is one of the most suc-
cessful machine learning algorithm in time series forecasting
[4], [10], [34]. We considered the standard feedforward neural
network with one-hidden layer. The MLP is given as follows

ŷ = α0 +

NH∑
j=1

αjg(wT
j x
′) (59)

where x′ is the input vector x, augmented with 1, i.e., x′ =
(1,xT )T , wj is the weight vector for jth hidden node, α0, α1,
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. . . , αn are the weights for the output node, NH is the number
of hidden nodes, and ŷ is the prediction at the output of the
network. We used the logistic function for the function g. For
training the network we used the BFGS method implemented
in the optim package which is used by the nnet package
in the R programming language.

For each of the two models there are one or two parameters
that controls the complexity of the model, and therefore
it has to be selected with care. For the KNN model the
number of neighbors K is this key parameter. A large K
will lead to a smoother fit, and therefore a lower variance,
of course at the expense of a higher bias, and vice versa for
a small K. For MLP it is the number of hidden nodes NH
that controls its complexity. Weight decay, another but less
influential parameter, adds some kind of regularization to the
network. In addition to these hyperparameters, the number of
lagged values p is a critical parameter that should be carefully
selected. We used a 5-fold validation approach with two nested
loops, one for p and the other for the other hyperparameters.
For MLP, we considered an additional loop for the weight
decay parameter. For KNN, the tested values of K are in the
range [2, N ] where N is the size of the dataset. For MLP,
the tested possible values of NH are as follows {0, 1, 2, 3, 5}
(where 0 means no hidden neurons, i.e. effectively a linear
network). The weight decay λ’s possible values are from the
following choices {0.005, 0.01, 0.05, 0.1, 0.2, 0.3}.

C. Bias and variance estimation

As given by expression (15), we have seen that the MSE
can be decomposed into the three different components: noise,
squared bias and variance. We will estimate, for each strategy,
the bias and the variance terms, Bh and Vh, defined in (15),
by replacing expectations with averages.

For a given DGP, we generate L independent time series
Y

(i)
T = {y(i)1 , . . . , y

(i)
T }, i ∈ {1, . . . , L}, each composed of T

observations using different randomly generated numbers for
the noise terms. These generated time series represent samples
of the DGP.

In addition, we generate another independent time series
from the true DGP for the testing purpose. From this time
series we extract R input/output pairs {(xj ,yj)}Rj=1, where
xj is the temporal pattern of length d that will yield the
lagged input variables, and the vector yj is the subsequent
pattern of length H that needs to be forecasted, e.g. if uj
is the test time series, then xj = [uj , . . . , uj+d−1] and
yj = [uj+d, . . . , uj+d+H−1].

Let g(xj ;θY (i) ;h) denote the forecast of a given strategy
for the input xj at horizon h using dataset Y (i) (T is omitted
for simplicity) and let yj(h) denote the hth element of the
vector yj , then the MSE at horizon h, given in expression

(15), can be estimated as

M̂SEh =
1

R

R∑
j=1

1

L

L∑
i=1

(yj(h)− g(xj ;θY (i) ;h))
2

︸ ︷︷ ︸
M̂SEh(xt)

(60)

=
1

R

R∑
j=1

[
N̂h(xj) + B̂h(xj)

2 + V̂h(xj)
2
]

(61)

=
1

R

R∑
j=1

N̂h(xj)︸ ︷︷ ︸
N̂h

+
1

R

R∑
j=1

B̂h(xj)
2

︸ ︷︷ ︸
B̂h

+
1

R

R∑
j=1

V̂h(xj)
2

︸ ︷︷ ︸
V̂h

(62)

with

N̂h(xj) = (yj(h)− Avg[yj(h) | xj ])2 ,
B̂h(xj)

2 = (Avg[yj(h) | xj ]− ḡ(xj ;θ;h))
2
,

V̂h(xj)
2 =

1

L

L∑
i=1

[g(xj ;θY (i) ;h)− ḡ(xj ;θ;h)]
2
,

where ḡ(xj ;θ;h) = 1
L

∑L
i=1 g(xj ;θY (i) ;h).

We will explain here the term Avg[yj(h) | xj ]. For every xj
there are different possible subsequent patterns yj that depend
on the realization of the error term. These variations account
for the noise term Nh(xj) in the bias and variance decompo-
sition. To compute the aforementioned average we generate S
different realizations of y(h)s (xj) given a fixed starting vector
xj . Then we evaluate Avg[yj(h) | xj ] = 1

S

∑S
s=1 y

(h)
s (xj).

In the simulations, the first three hundred simulated values
were discarded for each simulated series to stabilize the time
series, as suggested by [53]. To investigate the effect of the size
of the time series T for each strategy, we compare different
sizes, namely T = [50, 100, 400]. We took L = 2000 time
series for training. We used a long testing time series, and
extracted from it R = 2000 testing pairs. The number of
realizations for computing the noise term S is taken as 30,000.

VI. RESULTS AND DISCUSSION

Figures 2-4 gives the MSE decomposition for the
NLAR DGP. Figures 5-7, for the STAR DGP. And Figures
8-10, for the LAR DGP.

Figures 2-10 have three rows and four columns. Each row
corresponds to a length of time series T = [50, 100, 400].
For the four columns, we have the MSE (first column), the
squared bias (second column), the variance (third column)
and the squared bias plus variance (fourth column). In the
first column, which represents the MSE, the bias and variance
components are substantially masked by the noise term, mak-
ing comparisons between the strategies difficult. Consequently,
we consider the three other columns for the purpose of
comparing the strategies, and use the MSE as a measure of
the predictability of the time series relative to the mean (the
red line). In the first column, the grey line represents the noise
component N̂h defined in (62).
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Fig. 2: MSE decomposition for the NLAR DGP with KNN
(I/II).
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Fig. 3: MSE decomposition for the NLAR DGP with KNN
(II/II).
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Fig. 4: MSE decomposition for the NLAR DGP with MLP.

Let us analyze the performance of each of the methods.
We will consider both the absolute performance, and the
relative performance (i.e. the performance compared to the
other strategies), with more focus on the latter. When we say
“relative performance improves”, we do not mean that in the
absolute, but rather that the standing of the method compared
to others becomes better. Here are our general observations
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Fig. 5: MSE decomposition for the STAR DGP with KNN
(I/II).
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Fig. 6: MSE decomposition for the STAR DGP with KNN
(II/II).
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Fig. 7: MSE decomposition for the STAR DGP with MLP.

concerning the following compared strategies.
The one-step recursive (REC) strategy: It has an erratic

performance. Generally it gives the highest variance, while
the results for the bias are mixed (sometimes it is bad and
sometimes it is the best). For most of the DGP’s the variance
increases significantly with the horizon as can be seen in
the third column of Figures 2, 5 and 8. This is due to the
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Fig. 8: MSE decomposition for the LAR DGP with KNN (I/II).
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Fig. 9: MSE decomposition for the LAR DGP with KNN
(II/II).
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Fig. 10: MSE decomposition for the LAR DGP with MLP.

additive or accumulative effect of forecast error in the absence
of a corrective mechanism. Also, the relative performance
(compared to other strategies) for the bias and the variance
almost always gets worse for longer time series (except for the
LAR DGP) as can be seen, for example, in the last column of
Figure 2. This illuminates the fact that REC ’s advantage is in
shorter time series. The reason is that for other strategies the
effective training set size is smaller, typically by an amount

h − 1 when forecasting h-step ahead, due to the lack of use
of the end portion of the time series.

In Figures 4 and 10, we can also see that REC which uses
MLP as learning model has an advantage for the NLAR and
LAR DGP’s. This is because the former’s DGP is equivalent
to a one-layer MLP (so iterating the forecasts would still be
consistent with the DGP), and because the latter is linear, so
it is encompassed by the MLP model. This also lessens the
effect we discussed in Subsection IV-A that nonlinearities
worsen the performance of REC , because in that case we are
effectively dealing with a linear model.

The direct (DIR) strategy: From the experiments, its
distinctive feature is that it consistently obtains a better relative
performance for the bias and the variance with increasing time
series length. At T = 400 it generally becomes the leading
strategy for the bias. The reason for underperformance for
small time series is that DIR has a smaller number of effective
training data points compared to REC , because of edge effects
(the size of the training set is less by h− 1 when forecasting
h-step ahead), and this becomes a relatively bigger problem
for small time series.

The results for the variance are not very good for the case
of MLP model as can be seen in Figures 4 and 10. The reason
why the variance of DIR often lags some other strategies,
such as DIRJOINT is the following. Each horizon h is
forecasted in isolation of the other horizons. So the strategy
could produce completely unrelated forecasts over the whole
horizon, possibly leading to unrealistic discontinuities. In
reality, however, time series have some aspects of continuous
behavior. It is this aspect that DIRJOINT exploits to some
extent to make up for smaller time series lengths, and control
overfitting. This is also accentuated for DIR with MLP,
since MLP is a highly complex model, and therefore more
vulnerable to a variance deterioration effect. This described
fact also explains why for long time series DIR make a
comeback: it makes use of the larger amount of data points,
and that helps overcome the effect of the large variance.
These arguments are also consistent with the analysis that we
presented in Subsection IV-A.

The multi-step recursive (RECMULTI) strategy: As
can be seen in Figures 2, 5 and 8, RECMULTI is a better
alternative to the REC strategy for long-term horizons.
At short-term horizons, its performance is very close to
REC since they have a closer objective. Overall, the gain
with RECMULTI compared to REC is in terms of variance.
This can be explained by the multi-step-ahead objective
used by RECMULTI which limits the propagation of errors.
RECMULTI has close or better performance to DIR with
short time series but as the length of the time series increases,
DIR becomes the leader. Recall that one particularity of
RECMULTI is that the same model (structure) is used for
all horizons but different values of the model parameters are
allowed at each horizon. Overall, RECMULTI is in the middle
of the pack, for both the bias and the variance. It is never a
prominent and leading strategy, but at the same time never
gets very bad performance.
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The multi-horizon strategies: let us start with
DIRJOINT and RECJOINT . These two strategies have
similar behavior, and have many common features. Generally,
they obtain a smaller variance than other strategies (see,
for example, Figures 5 and 6). However, their relative
performance (also in terms of variance) suffers a little for
longer time series. The negative aspect of these two strategies
is that they possess a very high bias for small horizons
(see, for example, Figures 4 and 7). This can be explained
by observing the objective function of DIRJOINT in the
expression (11). In fact, DIRJOINT and RECJOINT select
the parameters that give minimum mean square forecast error
over the whole horizon. But these errors are of a different
scale. Errors at longer horizons are generally larger than
errors at short term horizons, so they dominate the error
function. So DIRJOINT and RECJOINT are implicitly
putting more weight on these longer horizons. As a result,
the final estimated set of parameters give a large bias for
the first few horizons. For large horizons the bias improves
considerably, and becomes comparable to the other strategies.
If we compare DIRJOINT and RECJOINT , we observe
that they generally give comparable performance for the
variance, but DIRJOINT is generally better for the bias.
The reason is that for longer horizons RECJOINT dictates
an iterated function formulation for the fit. This may not
be flexible enough, and would produce a bias. On the other
hand, DIRJOINT does not have this constraint, and uses the
full power of the forecasting model to directly fit the h-step
ahead function.

If we now compare DIRJOINTL11 and RECJOINTL11 ,
we see that they have very good and robust performance.
The effect of the high bias that we encounter for the
DIRJOINT and the RECJOINT strategies is less pronounced,
and quite acceptable. DIRJOINTL11 is somewhat better than
RECJOINTL11 for the case of the bias, and comparable for
the case of the variance. The reason is similar to the case of
DIRJOINT and RECJOINT .

VII. SUMMARY AND CONCLUSION

In this work we have presented a comprehensive inves-
tigation into the bias and variance behavior of multi-step-
ahead forecasting strategies. The bias and variance are central
quantities that can give considerable insight into model per-
formance. We considered the three major multi-step strategies,
the recursive strategy, the direct strategy, and the joint strategy,
along with other variants and combination strategies. We
applied some theoretical analysis that investigates the bias and
variance behavior. We also applied a detailed simulation study,
that analyzes some of the effects of different factors, such as
time series length, forecasting horizon and learning model, on
the bias and variance. We could observe that the simulation
study has confirmed many of the findings of the theoretical
study.

A short digest of the findings is that REC holds advantage
for short time series and for cases when there is reason to
believe we have a well-specified forecasting model. DIR is

superior for the case of long time series or if we need
a particularly small bias, like in some applications where
there is a focus on directional forecasting. RECMULTI can
be useful if we want to produce recursive forecasts with
the same model but at the same time allow more flexibility
for the forecast function over the horizon. DIRJOINT and
RECJOINT are particularly attractive for short time series and
long-term horizons because of their better variance behavior.
DIRJOINTL and RECJOINTL give balanced and robust
performance for both bias and variance. As such, they are
some of the highly recommended models because of their good
performance for most conditions.

We hope this work would lead to a much more reliable
selection of which strategy to use, since it would be grounded
on qualitative arguments, theory, and simulations. Also, this
work could help identify how to overcome some of the
weaknesses of the different strategies, possibly through some
modifications, since the sources of the weaknesses are to some
extent pinned down.
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