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Abstract

We describe and analyse the approach used by Team TinTin (Souhaib Ben Taieb and Rob J Hynd-
man) in the Load Forecasting track of the Kaggle Global Energy Forecasting Competition 2012. The
competition involved a hierarchical load forecasting problem for a US utility with 20 geographical
zones. The available data consisted of the hourly loads for the 20 zones and hourly temperatures
from 11 weather stations, for four and a half years. For each zone, the hourly electricity load for
nine different weeks needed to be predicted without having the location of zones or stations. We
used separate models for each hourly period, with component-wise gradient boosting to estimate
each model using univariate penalised regression splines as base learners. The models allow for the
electricity demand to change with time-of-year, day-of-week, time-of-day, and on public holidays,
with the main predictors being current and past temperatures as well as past demand. Team TinTin
ranked fifth out of 105 participating teams.

Keywords: short-term load forecasting, multi-step forecasting, additive models, gradient boosting,
machine learning, Kaggle competition

1. Introduction

We participated in the Load Forecasting track of the Kaggle Global Energy Forecasting Competi-
tion 2012 organised by the IEEE working group on Energy Forecasting (WGEF) (Hong et al., 2013).
Team TinTin (Souhaib Ben Taieb and Rob J Hyndman) ranked fifth out of 105 participating teams.
The competition involved a hierarchical load forecasting problem. We were required to backcast and
forecast hourly loads (in kW) for a US utility with 20 geographical zones. Thus, 21 separate time
series needed to be backcast and forecast: the 20 zonal level series, and the aggregate series.

Electricity demand is subject to a range of factors including weather conditions, calendar effect,
economic activity and electricity prices. However we were required to use only temperatures and
calendar information. The available data consisted of the hourly loads for the 20 zones, and hourly
temperatures from 11 weather stations, from the first hour of 1 January 2004 to the sixth hour of 30
June 2008. We are unaware of the location of the 20 zones and the 11 weather stations; in particular,
we do not know which stations are located in or near which zones. Consequently, our task was to
find a model that takes temperature and calendar information as inputs, and predicts electricity load
as the output.

We used a separate model for each hourly period ending up with 24 different models for one day
since the electricity demand pattern is changing throughout the day. Each hourly model is estimated
using component-wise gradient boosting (Bühlmann and Yu, 2003) with univariate penalised regres-
sion splines (Eilers and Marx, 1996) as base learners together with an automatic variable selection
during the fitting process. The models can be cast in the framework of additive models allowing
nonparametric and non-linear terms. The models allow for the electricity demand to change with
time-of-year, day-of-week, time-of-day, and on public holidays. The main predictors were current
and past temperatures (up to a week earlier) and past demand (up to a week earlier).
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Our approach has been influenced by the work of Fan and Hyndman (2012) who developed semi-
parametric additive models with penalised spline functions for forecasting electricity demand in
various Australian states.

The paper is organised as follows. The next section presents the data analysis and preprocessing
we performed. Section 3 describes our forecasting methodology, clarifying the differences between
in-sample and out-of-sample weeks. Section 4 presents our model together with the gradient boost-
ing algorithm. The proposed model is analysed in Section 5. Section 6 provides some discussion and
conclusions.

2. Data analysis and preprocessing

Figure 1 shows the average demand for all zones during the period of the data. The average
demand varied greatly across zones with Zone 18 having the highest demand levels and Zone 4
the least. By exploring the data, we noticed that Zones 3 and 7 contain identical data, and Zone 2
contains values that are exactly 92.68% of the demand values in Zones 3 and 7. Also, Zone 10 has a
big jump in demand in year 2008. Finally, Zone 9 contained very erratic demand patterns which did
not seem to relate to the temperature values.

Electricity demand is subject to a wide variety of exogenous variables including calendar effects.
Figure 2 shows that there is a clear time-of-year effect in the demand data with peaks in mean de-
mand around February and July, and troughs in April/May and October. In others words, winter
and summer are showing high demand while fall and spring have lower demand.

Boxplots of the demand by day of week are shown in Figure 3. While the day-of-week effect is
relatively small, there is a drop in demand for the weekends. The average demand for each month

Gwh

Zone 4
Zone 8
Zone 5
Zone 1

Zone 13
Zone 14
Zone 16
Zone 10
Zone 17
Zone 15

Zone 9
Zone 19
Zone 20
Zone 11
Zone 12

Zone 2
Zone 6
Zone 3
Zone 7

Zone 18

0 50 100 150 200

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 1: Average demand for each zone.
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Figure 2: Total demand plotted against the time of year. The smoothed mean demand is shown as a red line.

and each day of the week is plotted in Figure 4. Because the day-of-week pattern is similar for all
months, there is unlikely to be a strong interaction between day-of-week and time-of-year.

We look at the way demand changes with the time of day in Figures 5 and 6. Here hour 0 corre-
sponds to 12am–1am, hour 1 corresponds to 1am–2am, and so on. The night-time pattern is similar
for the two plots, but there is a difference during the working hours (8am–5pm).

Figure 7 shows demand in Zone 18 plotted against current temperature from station 9. There is
a clear non-linear relationship, indicating current temperature is an important predictor of demand.
For temperatures above 20◦C, air conditioning usage drives demand, whereas for temperatures be-
low 15◦C, heating drives demand. Similar but weaker relationships are seen in plots against lagged
temperatures. Due to thermal inertia in buildings, it is important to consider lagged temperatures
as well as current temperatures in any demand forecasting model. Figure 8 shows current demand
plotted against lagged demand for different lags. We can see the relationship between these variables
due to the serial dependence within the demand time series.

Before developing any forecasting models, we pre-processed the data to avoid some potential
problems. First, we removed leap days to have 365 days for each year. This avoided problems with
uneven seasonal periods, and resulted in only a small loss of information. Second, we took a log
transformation for the demand. This is to stabilise the variance of the time series across time. There
were also some outliers and unusual features in the data which we corrected before proceeding.

We identified some outliers in site 8 for the temperature data, and replaced them with the data
of the same period in the closest site in terms of Euclidean distance.

Zone 4 had some outliers in demand. We used Loess for fitting and then classified a point yt as an
outlier if yt − ŷt >median(yt − ŷt) + k ∗MAD where ŷt is the Loess fit of yt, MAD is the mean absolute
deviation and k is chosen so the probability of an outlier is 0.002 under a normal distribution. Then,
the outliers have been replaced by the mean of the data.

For Zone 10, there was a big jump in demand in year 2008. We computed the mean before the
jump and the mean after the jump on the log-transformed data. Then we took the difference and
removed the jump in 2008. For the final forecasts, we restored the jump into the forecasts.
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Figure 3: Boxplots of total demand by day of week.
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Figure 4: Average total demand (GW) by month and day of week.
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Figure 5: Boxplots of demand by time of day for Monday–Friday.
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Figure 6: Boxplots of demand by time of day for Saturday–Sunday.
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Figure 7: Hourly demand (GW) plotted against temperature (degrees Celsius) for Zone 18 and station 9.
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Figure 8: Current demand plotted against lagged demand for different lags for Zone 18.
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3. Forecasting methodology

The competition involved a hierarchical load forecasting problem with 20 zonal level series, and
the aggregate series. We used a bottom-up approach, that is we forecast each zone independently
and then we take the sum of the 20 zonal forecasts to obtain forecasts for the aggregate. For each of
the twenty zones, we were required to backcast the demand for eight in-sample weeks for which the
temperature at various sites was provided.

Because we do not know which temperature site corresponds to which zone, the temperatures
from all sites are potential predictors in each model. We used a testing week (the last week of the
available data) to determine which sites to use for each zone. Figure 9 gives the root mean squared
error (RMSE) obtained on the testing week using the real temperature (in blue) and the forecasted
temperature (in red) from the eleven sites for ten zones. We can see that the difference in forecasts
obtained using the real temperature (in blue) at different sites can be huge. Consequently, when
forecasting the eight in-sample weeks, we use, for each zone, the site which minimises the error over
the testing week.

For the eight in-sample weeks, data was available before and after the week for demand and
during the week for the temperature. The data after each of the in-sample weeks is also useful
for predicting the demand values during the in-sample weeks (although this is not possible in real
forecasting operations). In order to use this data, we fitted two forecasting models. The first model
was estimated in the usual way using data available up to the start of the in-sample week. The second
model reversed the time ordering of the data so we were back-casting using data available after the
end of the in-sample week. We expect the forecasts to do best at the beginning of the week, and
the backcasts to do best at the end of the week, because they involve data closer to the days being
predicted. So, after estimating the two sets of models, we took a weighted combination of both sets

of forecasts to produce the final forecasts. More precisely, if we denote ŷ(F)
t+h, the forward forecasts

and ŷ(B)
t+h, the backward forecasts with h = [1, . . . ,168], then the final forecasts are given by

ŷt+h = whŷ
(F)
t+h + (1−wh)ŷ(B)

t+h

where wh = sigmoid(−7 + 14∗h
168 ) and sigmoid(x) = 1/(1 + e−x) is the sigmoid function.

Forecasts were also required for one out-of-sample week without temperature data. In contrast
with the in-sample weeks, temperatures were not provided for the out-of-sample week. So we had
to forecast the temperatures for this week and used these when forecasting demand during that
week. We used the average temperature at the same period across the years as forecasts, shown in
Figure 10. Differences between out-of-sample forecasts obtained using different temperature sites
are not as large as for the in-sample weeks as can be seen in Figure 9 (see red bars). This is because
we do not have actual temperatures in that week, and our forecast temperatures have a smaller range
than the actual temperatures. So, for out-of-sample forecasts, we average the forecasts obtained from
the three best temperature sites when forecasting demand in order to reduce the variance of the
forecasts. These sites are also shown in Figure 9.

Since the demand patterns varies greatly during the year and for computational convenience, we
did not use the whole demand data to estimate our models. Instead, for each of the available years,
we used part of the data around the week to be forecast. More precisely, we computed the average
temperature for the week to be forecast and, for each year, we select the 12 consecutive weeks around
this week which have the closest average temperature. Then we filtered the demand data by keeping
these 12 consecutive weeks of each year. For the out-of-sample week, for which we do not have the
average temperature for the week to be forecast, we used the average temperature of the previous
week to perform the same calculations.

The above procedures was followed for all zones except zones 2, 7 and 9. Zones 3 and 7 contain
identical data, and Zone 2 contains values that are exactly 92.68% of the demand values in Zones 3
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Figure 9: Root mean square error (RMSE) over the testing week using real temperature (in blue) and forecasted temperature
(in red). The sites are ranked according to the RMSE when using real temperature.

and 7. Consequently, we do not fit separate models for Zones 2 and 7, instead we use the forecasts
from Zone 3 to compute forecasts for Zones 2 and 7. And for Zone 9, we used the average of the
same hour for every day of the week over the entire data set to obtain forecasts for each period as we
didn’t find any temperature-related patterns.

4. Forecasting model

One of the earliest electricity forecasting competitions was won by Ramanathan et al. (1997)
using a separate regression model for each hour of the day. This idea has subsequently been used by
Fay et al. (2003); McSharry et al. (2005); Fan and Chen (2006) and Fan and Hyndman (2012).

We follow the same approach and have a separate model for each hour of the day. These models
are used recursively to produce the 168 required forecasts (24 hours multiplied by 7 days). That is,
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Figure 10: Forecasts of temperature for the eleven stations.

9



we first produce the forecasts of the next day and then, use them as inputs to make forecasts for the
day after. We also added the observations from the previous hour and the next hour in order to have
more data. That is, when estimating the model for hour p, we used data from hours p−1, p and p+1.

We fit a model of this form for each hour of the day, for each zone, and for each of the nine
weeks to be forecast. We ended up with 24× 17× 9 = 36721 models to estimate with datasets having
approximately 1000 observations and 43 input variables. The main predictors of the models are
current and past temperatures (up to a week earlier) and past demand (up to a week earlier). In
addition, the models allow for the demand to change with time-of-year, day-of-week, time-of-day,
and on public holidays.

Each regression uses a nonparametric additive model with penalised regression splines. Component-
wise gradient boosting is used to estimate each model including variable selection during the fitting
process. Both aspects are detailed in the following sections.

4.1. Non-parametric additive models

We use nonparametric additive models for forecasting electricity demand. These models are
in the regression framework but with some non-linear relationships. In particular, the proposed
models allow nonlinear and nonparametric terms using the framework of additive models (Hastie
and Tibshirani, 1995).

The demand in hour p on day t is modelled with

yt,p = cp(t) + fp(yt,p) + gp(zt,p) + εt , (1)

where
• yt,p denotes the demand on day t in hour p;
• cp(t) models all calendar effects (including time-of-year, day-of-week, holidays, etc.);
• fp(yt,p) models the effect of recent demand variables where yt,p is a vector of past demands,

prior to hour p on day t;
• gp(zt,p) models the temperature effects where zt,p is a vector of recent temperatures variables at

one of the temperature sites, prior to and including hour p on day t; and
• εt denotes the model error at time t.

We fit separate models of this form for each zone and all in-sample and out-of-sample weeks.

4.1.1. Calendar effects
The calendar effects term, cp(t), includes annual, weekly and daily seasonal patterns as well as

public holidays.
• The day-of-week effect was modelled with a factor variable, taking a different value for each

day of the week.
• The holiday effect was modelled with a factor variable, taking value zero on a non-work day2,

some non-zero value on the day before a non-work day and a different value on the day after a
non-work day.

• The time-of-year effect was estimated using a simple first-order Fourier approximation (one
sine and one cosine variables). A more complicated time-of-year effect was not necessary as
each model only included data within a 12 week period.

1There are only 17 zones to be modelled because of the relationship between Zones 2, 3 and 7, and because we use a
different approach for Zone 9.

2We used the US federal holidays as listed in US Office of Personnel Management website: http://www.opm.gov/

Operating_Status_Schedules/fedhol/2008.asp
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4.1.2. Temperature effects
Due to thermal inertia in buildings, it is important to consider lagged temperatures as well as

current temperatures in any demand forecasting model. The function gp(zt,p) models the effects of
recent temperatures on the aggregate demand where zt,p includes

• The current temperature and temperatures from the preceding 12 hours, and for the equivalent
hour on each of the previous two days;

• The minimum and maximum temperature in both the last 24 hours and the previous day;
• The average temperature for the previous day, the day preceding the previous day and the last

seven days.
Recall that when forecasting the eight in-sample weeks, the temperatures from the site which

gave the best forecasts (on the testing week) for each zone were used. When forecasting the out-of-
sample week, the demand forecasts obtained using the best three temperature sites were averaged.

4.1.3. Lagged demand effects
We incorporate recent demand values into the model via the function fp(yt,p) where yt,p includes
• Lagged demand for each of the preceding 12 hours, and for the equivalent hour in each of the

previous two days. For example, when predicting demand at 4pm, we use lagged demand from
4am to 3pm, as well as lagged demand at 4pm on the preceding two days.

• The minimum and maximum demand in the last 24 hours.
• The average demand for the last seven days.

By doing this, the serial correlations within the demand time series can be captured within the model,
and the variations of demand level throughout the time can be embedded into the model as well.

Finally, we did not necessarily use all the previous predictors in each model, but these were all
candidate variables in our models. The process of selecting variables is described in the next section
together with the gradient boosting algorithm.

4.2. Component-wise gradient boosting with penalised splines

Boosting is a prediction algorithm stemming from the machine learning literature based on the
idea of creating an accurate learner by combining many so-called “weak learners”. Since its inception
in 1990 (Schapire, 1990; Freund, 1995; Freund and Schapire, 1996), Boosting has attracted much
attention due to its excellent prediction performance in a wide range of applications both in the
machine learning and statistics literatures (Schapire and Freund, 2012). The improved performance
of boosting seems to be associated with its resistance to overfitting which is still under investigation
(Mease and Wyner, 2008; Mease, 2008).

The gradient descent view of boosting (Friedman and Hastie, 2000; Friedman, 2001) has con-
nected boosting to the more common optimisation view of statistical inference while previous work
focused on bounding the generalisation error via the VC dimension and the distribution of so-called
margins (Schapire et al., 1998). Gradient boosting (Friedman, 2001) interprets boosting as a method
for function estimation from the perspective of numerical optimisation in function space.

Bühlmann and Yu (2003) developed component-wise gradient boosting to handle high-dimensional
regression problems by selecting one variable at each iteration of the boosting procedure. We refer to
Schapire and Freund (2012) and Bühlmann and Hothorn (2007) for a general overview on boosting.

For all our regression tasks, we used component-wise gradient boosting (Bühlmann and Yu, 2003;
Bühlmann, 2006) with penalised regression splines (P-splines) (Eilers and Marx, 1996). By doing
so, we take advantage of the good performance and the automatic variable selection of the boosting
algorithm. In addition, P-splines allow us to have smooth estimation of the demand. We now provide
more details about the procedure we implemented.

Notice that expression (1) can be rewritten as

yt,p = Fp(xt) + εt,p.

11



where xt = [t,yt,p,zt,p] contains all potential predictors to be considered in the model. Our goal is to
estimate the function Fp : Rd → R for a given loss function. Since, the forecasting accuracy for the
competition was evaluated by weighted root mean square error, we used the quadratic loss function.
Estimation of the function Fp based on a sample dataset {(yt,p,xt)}Tt=1 reduces to minimising

F̂p = argmin
Fp

1
T

T∑
t=1

(yt,p −Fp(xt))
2.

Gradient boosting estimates Fp in a stagewise manner. We let F̂(m)
p (xt) denote the estimation of Fp

at the mth stage, where m = 0,1, . . . ,M. The process begins with F̂(0)
p (x) = ȳp where ȳp is the mean

demand for hour p. Then the model is updated using

F̂
(m)
p (xt) = F̂(m−1)

p (xt) + νhm(xt; θ̂m),

where hm(xt; θ̂m) is the weak learner estimate at the mth stage with parameters θ̂m and ν ∈ [0,1] is
a shrinkage parameter. Gradient boosting with the quadratic loss is also called L2Boost (Bühlmann
and Yu, 2003).

Let us note ĥm(xt) as a shorthand for hm(xt; θ̂m). Given an estimation F̂(m−1)
p , each additional term

ĥm(xt) is obtained by computing the negative gradient

umt,p = −
1
2∂(yt,p −F(xt))2

∂F(xt)

∣∣∣∣∣
F(x)=F(m−1)

p (x)
= (yt,p −F

(m−1)
p (xt))

which gives the steepest descent direction. Then, a regression is applied on {umt,p,xt}Tt=1 by the weak
learner, i.e.

θ̂m = argmin
θ∈Θ

T∑
t=1

[umt,p − hm(xt;θ)]2 (2)

In other terms, ĥm(xt) is selected to best predict the residuals from the previous model F(m−1)
p (xt).

Finally, the solution is given by

F̂p(xt) = F̂(M)
p (xt) = ĥ0(xt) +

M∑
m=1

νĥm(xt) (3)

where the estimation of F̂p is continuously improved by an additional component (or boost) νĥm at
stage m and the hyperparameter M prevents overfitting by limiting the number of components.

From expression (3), we can see that the boosting procedure depends on two hyperparameters:
ν, the shrinkage parameter and M, the number of components (or number of stages). The value of ν
affects the best value forM, i.e. decreasing the value of ν requires a higher value forM. Since they can
both control the degree of fit, we should ideally find the best value for both of them by minimising
some model selection criterion. However, Friedman (2001) shows that small values of ν are better
in terms of less overfitting of the boosting procedure. Hence, there is only one hyperparameter
remaining for which the best value need to be selected (Bühlmann and Yu, 2003).

In expression (2), the weak learner is estimating the model parameters using all the predictors
simultaneously A better procedure can be used when having many predictors: component-wise gra-
dient boosting (Bühlmann and Yu, 2003; Bühlmann, 2006). The key idea is to use the weak learner
with one variable at a time and select the one with the largest contribution to the fit. In other terms,

12



expression (2) is replaced by the following procedure:

1. θ̂(k)
m = argmin

θ∈Θ

∑T
t=1[umt,p − hm(xkt;θ)]2 where xkt is the kth variable of xt and k = 1, . . . ,d.

2. km = argmin
k∈1,...,d

∑T
t=1[umt,p − hm(xkt; θ̂

(k)
m )]2.

3. Use θ̂(km)
m at the mth stage.

Then, the final solution is expressed as

F̂p(xt) = ĥ0(xk0t) +
M∑
m=1

νĥm(xkmt) (4)

where ĥm is function of the kmth predictor.
In our implementation, we used P-splines with 20 equally spaced knots and four degrees of free-

dom for the weak learner hm(xkmt) terms. For the hyperparameters values, we set the value of ν
to 0.15 and the maximum number of components (or stages) M to 500. Our implementation of the
model depended on the mboost package for R (Hothorn et al., 2012). We used the gamboost function
with the following values for the mboost_control parameters: nu=0.15 and mstop=500. For the base
learners, we used the bbs function for numerical variables and the bols function for factor variables.
Finally, we select the best number of stages M(M ∈ {1, . . . ,mstop}) using the cvrisk function with
5-fold cross-validation.

5. Model analysis

In this section, we analyse and interpret the results of the proposed forecasting model to shed
light about its attractive features.

Figure 11 gives the root mean squared error (RMSE) obtained for the different zones on the testing
week. Zones that have higher errors are also zones with high average demand (see Figure 1). This
suggests that zones with high average demand will carry a higher weight in the final error.

Figure 12 gives the true hourly demand together with the fitted values for an increasing number
of boosting iterations. Recall that gradient boosting is a stagewise fitting procedure which depends
on an hyperparameters M (the number of boosting iterations), as shown in formula (4). We can see
that the first iterations significantly reduce the error of the model while the final iterations are less
and less contributing to the model. This confirms the theoretical analysis performed in (Bühlmann
and Yu, 2003) where the authors proof that the bias decreases exponentially fast and the variance
increases with exponentially diminishing terms as the number of boosting iteration M increases.

One of the attractive feature of the component-wise boosting algorithm is the automatic variable
selection induced by the procedure at each iteration. That is, among all the potential predictors
which are given in Table 1, few will be selected and contribute to each hourly model. See Section 4.1
for a more detailed description of the different predictors.

Note that the final solution of the boosting procedure, given in formula (4), can be rewritten as

F̂p(xt) =
M∑
m=0

νĥm(xkmt) =
∑

k∈{1,...,d}

∑
{m:km=k}

νĥm(xkmt)︸               ︷︷               ︸
Ĥ(xkt)

=
∑

k∈{1,...,d}
Ĥ(xkt),
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Figure 11: Root mean squared error (RMSE) obtained for each zone on the testing week.

Id Variable Id Variable Id Variable Id Variable
1 day of the week 12 demand[t-8] 23 temp.[t+h-2] 34 temp.[t+h-13]
2 holiday 13 demand[t-9] 24 temp.[t+h-3] 35 temp.[t+h-25]
3 time of year (sin) 14 demand[t-10] 25 temp.[t+h-4] 36 temp.[t+h-49]
4 time of year (cos) 15 demand[t-11] 26 temp.[t+h-5] 37 min. temp. (prev 1)
5 demand[t-1] 16 demand[t-12] 27 temp.[t+h-6] 38 min. temp. (prev 2)
6 demand[t-2] 17 demand[t+h-25] 28 temp.[t+h-7] 39 max. temp. (prev 1)
7 demand[t-3] 18 demand[t+h-49] 29 temp.[t+h-8] 40 max. temp. (prev 2)
8 demand[t-4] 19 min. demand (prev 1) 30 temp.[t+h-9] 41 avg. temp. (prev 1-7)
9 demand[t-5] 20 max. demand (prev 1) 31 temp.[t+h-10] 42 avg. temp. (prev 1)
10 demand[t-6] 21 avg. demand (prev 1-7) 32 temp.[t+h-11] 43 avg. temp. (prev 3)
11 demand[t-7] 22 temp.[t+h-1] 33 temp.[t+h-12] – –

Table 1: Description of all potential predictors. Forecasts are from demand[t-1] to demand[t+h-1] where h ∈ {1, . . . ,24}.

where Ĥ(xkmt) is the relative contribution of the variable k to the final model and d is the number of
initial predictors (the dimensionality of xt).

Let us define the model without the effect of predictor j as

F̂
(−j)
p (xt) =

∑
k∈{1,...,d}\{j}

Ĥ(xkt),

and the corresponding squared error as

E(−j) =
T∑
t=1

(yt −F
(−j)
p (xt))

2.
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Figure 12: . M = 500 is the best in terms of cross-validation.
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We then define the relative importance of a predictor j as

Ij =
E(−j) −E

E

where E is the squared error of the final model with all the selected variables. In other words, the
predictors which most increase the error after removing their relative effect are the most influential
variables given the other predictors.

Figure 13 shows the ten most influential variables (according to Ij ) on the demand at different
hours of the day. We assign the importance value Ij∗ = 100 to the most influential variable and the
values of the others are scaled accordingly as in Friedman and Hastie (2000). To help visualisation,
variables belonging to the same effect are plotted with the same color. That is, demand variables are
colored in green, temperature variables in blue and calendar variables in red.

We can see that variables from the different effects are selected: calendar effect (in red), temper-
ature effect (in blue) and lagged demand effect (in green). The importance of these different effects
has been shown in Section 2. We have seen the different calendar effects in Figures 2–6. The clear de-
pendence between demand and temperature was illustrated in Figure 7. Finally, Figure 8 has shown
that there is a clear dependence between the actual demand and previous lagged demand variables.

For the first horizon (h = 1), we see that the most important variable is the current demand
(variable 5). This is not surprising since the demand at hour p+1 is highly dependent on the demand
at hour p. However, as one moves away from the starting point (i.e. h=2–3), other variables, such as
the demand at the equivalent hour for the previous day (variable 17), become important while the
current demand loses importance.

During working hours (10:00–19:00 or h=4–13), temperature variables (in blue) dominate de-
mand variables (in green). In fact, among the most important variables we find the current tempera-
ture with some of the corresponding lagged temperatures (variables 22−−25). During that period of
the day, we can also see that the variable 17 is gaining importance with the horizon, with the highest
importance at 19:00.

For the last hours of the day (20:00–24:00 or h=14–18), temperature variables become the most
influential variables. For 20:00 and 21:00, both variable 17 and 21 have a high importance while for
the remaining hours of the day, only variable 17 remains as a most influential variable.

For the first hours of the next day (1:00–05:00), temperature variables are gaining more impor-
tance with a new variables appearing from 03:00 to 05:00, the average temperature of the previous
day (variable 42).

Finally, at 06 : 00, we see that variable 17 is again the most influential variable together with the
day of the week.

The analysis of Figure 13 has shown that the relative importance of the different variables and
effects is changing with the time of the day. This shows that the dependence between the demand
and the different considered variables is changing with the forecasting horizon, making electricity
load forecasting a challenging statistical problem.

For illustration purposes, Figure 14 gives the forecasts of the aggregate series (i.e. the sum of the
forecasts over all zones) for the eight in-sample weeks and the out-of-sample week.

6. Conclusion

Our entry ranked fifth out of 105 participating teams. This suggests that our modelling strategy
is competitive with the other models used to forecast the electricity demand. We have identified
several aspects that makes our modelling strategy successful.

First, as in any prediction task, data analysis allowed us to identify and clean the data from any
corrupted information for better model performance. The data analysis step was also important for
identifying useful variables to use in the model.
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Figure 13: Relative importance of the five first variables on the demand for different times of the day. Demand variables
are colored in green, temperature variables in blue and calendar variables in red.
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Figure 14: Forecasts for zone 21 for the eight in-sample weeks and the out-of-sample week.
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Second, we used different models including different effects for each hour of the day to model the
demand patterns which are changing throughout the day.

Third, each hourly model allowed nonlinear and nonparametric terms to be included in the final
model. This provided a great flexibility to the model and avoided making too many assumptions
about the data generating process.

Finally, gradient boosting has proven many times to be an effective prediction algorithm for both
classification and regression tasks. By selecting the number of components included in the model,
we can easily control the so-called bias-variance trade-off in the estimation. In addition, component-
wise gradient boosting increases the attractiveness of boosting by adding automatic variable selection
during the fitting process.

The Kaggle load forecasting competition was a challenging prediction task which required solv-
ing several statistical problems such as data cleaning, variable selection, regression and multi-step
time series forecasting.
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