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Abstract. The goal of a profiling attack is to challenge the security
of a cryptographic device in the worst case scenario. Though template
attack is reputed as the strongest power analysis attack, they effective-
ness is strongly dependent on the validity of the Gaussian assumption.
This led recently to the appearance of nonparametric approaches, often
based on machine learning strategies. Though these approaches outper-
form template attack, they tend to neglect the potential source of infor-
mation available in the temporal dependencies between power values. In
this paper, we propose an original multi-class profiling attack that takes
into account the temporal dependence of power traces. The experimental
study shows that the time series analysis approach is competitive and
often better than static classification alternatives.

Keywords: side-channel attack, power analysis, machine learning, time
series classification.

1 Introduction

Embedded devices such as smart cards, mobile phones, and RFID tags are widely
used in our everyday lives. These devices implement cryptographic operations
allowing to secure, for example, bank transfers, buildings and cars. A modern
bank card embeds securely a secret information allowing in fine to transfer
cash. This operation is allowed by the smart card when it receives the right
PIN code. During the verification of the PIN code, a PIN-related information
(associated to the right PIN) is processed by the device. This secret information
could be retrieved by physical attacks that analyze the power consumption [24],
the processing time [23], or the electromagnetic emanation [15] of the device.
In this work, we focus on attacks based on power consumption analysis. These
attacks aim to infer the key-related information (label) from a time series of
power measurements called trace.

Differential Power Analysis (DPA) |24] is an example of physical attack which
first models the theoretic power consumption for each secret information. Then
the real and the predicted power consumption are compared by using metrics,
also known as distinguishers, such as the correlation coefficient [12], the difference
of means [24], the mutual information [16], or the Kolmogorov-Smirnov Test [40].
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The rationale is that the likelihood of a secret information is related to the degree
of similarity between the predicted and the real power consumption.

Profiling attack (PA), and more precisely Template Attack (TA) [11], makes
another step forward in the use of statistical modelling of power consumption;
it estimates the conditional density function of the time series for each key-
related information by using a Gaussian parametric model. Thereafter, the time
series are classified under a maximum likelihood approach. If the assumption
of gaussianity holds, it can be considered as the strongest power analysis in an
information theoretic sense [11]. TA is particularly suitable (1) to analyze the
security of a cryptographic device in the worst case scenario and (2) when the
attacker is only able to observe a single use of the key (e.g. in stream ciphers).

In recent years the cryptographic community explored new approaches based
on machine learning models. These methods demonstrate that template attacks
underestimate the security of embedded devices. Lerman et al. |26, [27] com-
pared a template attack with a binary machine learning approach, based on
non-parametric methods, against a cryptographic device (FPGA Xilinx Spartan
X(C3s5000) implementing 3DES. In this work the authors dealt with a limited
number of traces (between 125 and 256 samples) and a very high number of
dimensions (between 6,000 and 10,000 points per trace) by adopting a robust di-
mensionality reduction methods. Hospodar et al. [20,21] analyzed a software im-
plementation of a portion of the AES algorithm. Their experiments support the
idea that non-parametric techniques can be competitive and sometimes better
(i.e. less number of traces in the attack phase) than state-of-the-art approaches
when simplistic assumptions do not hold. Heuser et al. |19] generalized this idea
by analyzing multi-class classification models in several contexts (e.g. varying
the signal-to-noise ratio by an additional Gaussian noise, and varying the num-
ber of required traces in the attack phase to achieve a fixed guessing entropy). In
the same year Bartkewitz et al. [3] applied a multi-class machine learning model
allowing to improve the attack success with respect to the binary approach.

However, all the attacks proposed so far tend to disregard the potential source
of information available in the temporal dependencies between power values.
We aim to fill this gap by proposing an original multi-class profiling attack
based on the adoption of a time series approach. The idea is to adopt a time
series prediction algorithm (notably the Lazy Learning algorithm [1] 16, 9]) i) to
characterize the temporal dependencies in the traces associated to each target
value (related to a secret key) and ii) to design a classifier based on the temporal
likelihood of the new traces.

We make a detailed assessment of the proposed approach by considering 6
datasets with different signal-to-noise ratios. The experimental results confirm
that the classical template attack is not optimal in several contexts |3, [19-21,
26, 1217, 29]. At the same time we show that our time series profiling attack is
competitive (or better) with state-of-the-art approaches. Our interpretation is
that the proposed method allows a more compact way to address the issue of
large dimensionality. So far classification techniques in side-channel attack focus
on a set of values associated to relevant parts of the trace. Given the noise
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and the large number of collected values, this demands the adoption of feature
selection techniques which have to deal with a large dimensionality issue. This
is no more the case in our approach where the time series is no more seen as a
very large set of independent values but rather as an auto-regressive stochastic
process which can be described by a low dimensional mapping.

This paper is organized as follows. Section 2] reviews the state-of-the-art of
profiling attacks including the well-known template attack and the profiling at-
tack based on machine learning classification models. Section Bl introduces our
original attack based on time series modeling. Section @ illustrate the power of
our proposal with several datasets. We conclude the paper in Section [l

2 Profiling Attack

2.1 Preliminaries

Let e be an encryption algorithm (a block-cipher) that transforms plaintext
m € M into ciphertext ¢ € C under the control of a secret key O; € O where
O ={01,0a,,...,0k}. More formally

e:OxM—=C

¢ = €o,(m)
Let d be the decryption algorithm such that

d:0OxC—=-M
m = do, (c)

Traditional cryptanalysis techniques search relations between plaintexts, ci-
phertexts and the corresponding used keys. On the other hand, profiling attacks
analyze the implementation of cryptographic operations. In particular they per-
form the worst-case security evaluation of cryptographic devices with the most
powerful adversary in the information theoretic sense, by analyzing the rela-
tion between the leaked information (i.e. the power consumption) and the secret
key O;.

During the encryption, a function fo,(m) called a sensitive variable [37] (f in
short) is executed. Examples of this function are:

fo,(m) = O; (1)
fo,(m) = SBox(m @ O;) (3)

where @ is the exclusive-or and SBox is a nonlinear function.
The attacker focuses on a single (or combined [14]) function f in order to recover
the key. In order to be close to the power consumption, the value of f is mapped
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with a leakage model to another value @ € Q where Q = {Q1,Q2, ..., Qx}. Ex-
amples of leakage models are the identity, the Hamming weight (HW), and the
Hamming distance (HD) [31].

For each value of this function let us observe N times the power consumption
of a device (identically to the one that the attacker wants to target) over a
time interval of length n and denote by trace the series of observations. Let

T, = jTi € R |t €[l;n]; be the j-th trace associated to the target value Q;
t

and 7 be a set of traces.

Profiling Attack approaches model the stochastic dependency between the
value of Q; and a trace /T';. More precisely, they estimate the probability distri-
bution P(Q;|’T;;0;) (where 6; is the parameter of the distribution) on the basis
of a set of traces (training set) associated to each target value (also known as
class).

Two criteria are typically used to assess the quality of a profiling attack: (1)
the number of required traces (the lower the better) (2) the success rate (the
higher the better) of the model. We chose the second but both methods allow to
know which attack is faster to recover the key. Note that these two criteria are
related since a high success rate allows the adoption of a low number of traces
during the attacking phase. In the following, the accuracy of an attack represents
its success rate. More precisely, the accuracy relates to the probability that the
correct target value is returned by the attack.

2.2 Template Attack

In order to classify a trace, the Template Attack strategy estimates a template
P(Q;[’T;; 6;) for each target value @Q;. By making the assumption of normality,
each template’s estimation demands the estimation of the means u; and the
covariance matrix X; from traces associated to the i-th target value. This set of
traces is measured on a controlled device similar to the target chip.

Once a template is estimated for each target value, the attacker classifies a
new trace T (measured on the target device) by computing the value Q € Q
which maximizes the a posteriori probability

Q =arg max P(QIT) (4)
_ P(T|Q) x P(Q)
= argmax P(T) (5)
= arngXP(T\Q;ﬂuffi) x P(Q) (6)

where the apriori probabilities P(Q) are estimated by the user accordingly.
If a set T of traces for a constant secret key are available, the attacker uses
the equation (or the log-likehood rule):

(Trer PTIQ)) x P(@)
X

PQ|T) = .
)= 5 (Taer PTI0) x P(@))

(7)
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2.3 Profiling Attack Based on Machine Learning

In recent years we have assisted to a growing use of machine learning for profiling
attack. These techniques do not require the adoption of any parametric or normal
assumption and are more suitable to deal with very large dimensional noisy
datasets. A conventional machine learning approach to classification relies on
two main steps: the dimensionality reduction and the model building.

Dimensionality Reduction. Dimensionality reduction (also known as feature
selection or points of interest) aims to extract a subset of p informative vari-
ables out of the original n variables [2, [35, 136]. There are plenty of advantages
in dimensionality reduction: speed up of the learning process, enhancement of
model interpretability, reduction of the amount of storage and improvement of
the quality of models by mitigating the curse of dimensionality [4].

The curse of dimensionality is a well known problem in machine learning
which states that by increasing dimensionality, the sparsity of data increases at
an exponential rate, too. This is a problem when considering classifiers which
have to group traces associated to the same target value.

There are several feature selection methods in the literature but we restrict
ourselves to three methods. The MAX method selects a set of highest values in
a trace.

Another feature selection is the minimum Redundancy Maximum Relevance
(mRMR). It was first proposed in the bioinformatics literature [34] in order to
deal efficiently with configurations where the number of points in each trace
is much larger than the number of traces in the learning set. Its purpose is
to rank variables by prioritizing the ones which have a low mutual depen-
dence (i.e., low redundancy) while still providing a large amount of informa-
tion about the output (i.e., large relevance). The method starts by selecting
the variable r = {{TZ |ie[l;K];j€ [1;N]} having the highest mutual in-
formation about the target variable @ = {Q; | ¢ € [1; K|}. Given a set of se-
lected variables R, the criterion updates this set by adding the variable ¢t =
{{TZ- |ie[1;K];j€[l;N];t ¢ R} that maximizes the mutual information with
the target variable and that minimizes the mutual information with the already
selected variables.

Another feature selection method is the Sum of Squared Pairwise t-differences
(SOST) [17] based on the T-Test. The T-Test assesses whether the weighted
means of traces associated to two different classes are significantly different from
each other at time ¢. More precisely it is expressed by:

thi — ¢y
Sl 5)
N, T N,

where ,u;, ,0; and N; are respectively the means, the standard deviation and
the number of traces at time ¢ that are associated to the class Q);.
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The SOST method selects the most relevant components ¢ that have the
highest values according to:

2

Z Wi = ¢l
th tr] (9)
2 2

j>i=0 \/Jt\gi \/Jt\gy

Model Building. Machine learning literature proposes plenty of nonparametric
algorithms to estimate P(Q;|?T;6;) on the basis of data. Two well-known ex-
amples are Random Forest (RF) [10] and a Support Vector Machine (SVM) [13].
These two techniques allow to remove the Gaussian assumption and to infer in a
data driven manner the model which best fits the stochastic dependency between
target value and power consumption.

SVM. In a binary classification setting (e.g. @1 = —1 and Q2 = 1), if the two
classes are separable, the SVM algorithm is able to compute from a set of traces
the separating hyperplane with the maximal margin, where the margin is the
sum of the distances from the hyperplane to the closest traces of each of the two
classes.

The SVM classification computes the parameters b (the bias) and w (the
weight vector) of the separating hyperplane [w' T + b] by solving the following
convex optimisation problem:

1
min 5 (w " w) (10)
subject to

Qi(w'IT; +b) > 1Viec[1;2],5 € [1;N] (11)

A trace T is assigned to class Q if w'T + b < 0 and to Qs otherwise.

In a setting where the two classes cannot be linearly separated the formulation
is changed by introducing a set of slack variables 5;- >0withi € [1;2],5 € [1; N]
then leading to the problem

2 N
N i
min  (w w)+cZZgj (12)
i=1 j=1
subject to
Tj i\ . ; . i
Qz(w ]TH'b)Zl—f]VZE[LQ]JE[LN] C=>0 5320 (13)

A larger C' means that a higher penalty to classification errors is assigned.

SVM is also modifiable to nonlinear classification tasks by performing a non-
linear transformation k of traces. This function is named kernel function and
can have several forms (e.g. linear, polynomial, radial basis function, sigmoid).
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Its purpose is to find a linear separation in a higher dimension if there are no
linear separation in the initial dimension. We refer to [19] for a discussion about
the role of the kernel function in Equation We used the kernel Radial Basis
Function in our experiments.

Several extensions for constructing a multi-class SVM are possible such as
one-against-one and one-against-all [22]. We used the one-against-one strategy
in our experiments since all methods perform similarly [25].

RF. The Random Forest algorithm was introduced by Breiman in 2001 to ad-
dress the problem of instability in large decision trees, where by instability we
denote the sensitivity of a decision tree structure to small changes in the training
set. In other words, large decision trees prone to high variance resulting in high
prediction errors.

Let DT; be a decision tree. In order to reduce the variance, this method relies
on the principle of model averaging by building a set of B (B > 1) approximately
unbiased decision trees ({DT7,DTs,...,DTp}) and returning the most consen-
sual prediction. This means that the target value Q of an unlabeled observation
T is calculated through a majority vote of the set of trees. More formally,

Q = fmajority (DTI (T) , DT, (T) , DT (T)) (14)
where fimajority is the majority vote function and DT; is the i-th classification
tree which returns its prediction for 7T'.

RF is based on two aspects. First each tree is constructed with a different
set of traces through the boostrapping method. This method builds a bootstrap
sample for each decision tree by resampling (with replacement) the original data
set. Observations in the original data set that do not occur in a bootstrap sample
are called out-of-bag observations and are used as a validation set. Secondly,
each tree is built by adopting a random partitioning criterion. This idea allows
to obtain decorrelated trees, thus improving the accuracy of the resulting RF
model. The number of trees (B) in the random forest has to be large enough to
create diversity among the predictions. In our experiment we use 500 trees which
as a rule of thumb is considered as a sufficient number for obtaining accurate
prediction.

In conventional decision trees each node is split using the best split among all
variables. In the case of a random forest, each node is split using the best among
a subset of variables randomly chosen at that node. Also, unlike conventional
decision trees, the trees of the random forest are fully grown and are not pruned.
In other words, each node contains traces associated to a value of the key. This
implies null training error but large variance and consequently a large test error
for each single tree. The averaging of the single trees represents a solution to the
variance issue without increasing the bias, and allows the design of an overall
accurate predictor. Hence the improvements in prediction obtained by random
forests are solely a result of variance reduction.
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3 A Time Series Approach for Profiling Attacks

Power analysis deals with time series representing the power consumption of
a cryptographic device over time. A time series represents a sequence of data
points. The most distinctive aspect of a time series is the existence of a stochastic
dependency between past and future values. This section introduces our original
approach to take into account such a dependency during a profiling attack.

State-of-the-art approaches assume that this dependency is negligible [3, 19—
21, 126, [27]. They start with a feature selection step (before a classification step)
by projecting traces in new dimensions where (1) the new dimensions correlate
highly with the target value and, optionally, (2) the new dimensions correlate
weakly between them. We intend to show that in fact such temporal dependence
is relevant and can be used in order to improve the success rate of the attack.

Let y = {y1, Y2, ..., Yn } be a time series made of n observations. In the time se-
ries literature, the autoregressive formalism is the conventional way to represent
the stochastic dependency in a time series |7, 30]. According to this formalism
there exists a dependency between the future value y;11 and a set of p past
values {y¢, Y¢—1, -y Yt—p+1}- More formally it is assumed that each time series
has been generated by an autoregressive process of the form

Yerr = fo (Ytr Ye—1s s Yi—ps1) + €141 (15)

where ¢, is the additive noise at time ¢ and f is the autoregressive function
parametrized by 6. For instance f can be a linear function defined as

p—1

Jo (Y Yty s Yrop1) =+ Y aili—s (16)
i=0

where 0 = [¢, ag, a1, ..., ap—1] is the parameter of the model.
The fitting error of f represents the difference between the observed values y
and the fitted values ¢ provided by the estimated model f;, i.e.

n—1

= %

. 2
(f@ (Yt Yt—1, ooos Yt—pt1) — yt+1) (17)
n—p=

In our case the time series y is a trace /T;. A trace contains a succession
of consumptions peaks related to the rising and falling edge of the clock (see
Figure B]). The data processed inside the cryptographic device are supposed to
influence the amplitude of these peaks. As a result, it is expected that the pa-
rameter 6 describing these peaks is related to the secret (or target) information.

In order to take into account the temporal dependence we fit a time series
model féi for each class 7. The embedding step allows to estimate the parameter
0; by transforming each time series (related to the i-th class) in a set of n — p
time series. More precisely this step transforms each time series {y1, y2, ..., Yn}
into
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Yp+1 Yp - Y2 Y1
Yp+2 Yp+1 - Y3 Y2 (18)
Yn Yn—1 -+ Yn—p+1 Yn—p

where the matrix (n—p) x 1 represents the expected output value of the regression
model fp given the other matrix (n — p) x p. Then the learning step selects the
value of #; that minimizes the fitting error on the set of transformed time series
(by the embedding step) related to the i-th class.

Once a time series model is fitted for each class, we use them to perform
a classification of a new trace T. Our technique returns the class by mapping
the fitting errors of each regression model to the real class with a classifier h.
Examples of classifier h are the random forest, the support vector machine and
the argmin function. The arg min function is formalized by

Q = argmiinr(féi,T) (19)

The resulting method presents two main advantages with respect to the state-
of-the-art: (1) it allows to take into account the natural temporal ordering of
data, and (2) it reduces the variance of the feature selection step. This is expected
to reduce the complexity of the resulting method with respect to static classifiers
since a time series model considers a few number of points (p — 1 points instead
of n) at a time. As a consequence the new approach has a lower variance and
leads to a more robust method against noise.

During the attacking phase of a target device, the main expensive step is
the computation of the fitting error of each regression model on a trace T'. Its
complexity is O(K x (n — p)) where K is the number of regression models. In
practice the proposed approache can be easily made parallel: each time series
model can be executed on different processors allowing to speed up the attacking
phase.

4 Experiments

In order to assess the quality of the time series approach, we benchmarked it
against template attacks and profiling attacks based on static classification mod-
els and three feature selection strategies. We used several datasets with different
signal-to-noise ratios. The parameters of each classification and time series mod-
els are estimated with a learning set made of 80% of the original dataset. For
each model we search the best number of inputs per clock cycle of the crypto
device (between 2 and 5 since additional points in the same clock cycle do not
provide additional information [35]) by using a validation set. Finally a test
set (independent of the learning and the validation set) is used to compare the
accuracy of each approach.
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4.1 Target Implementation

In order to easily reproduce the results, the experiments were carried out on
power leakages that are freely available on the DPAContest V1 website [38] where
the cryptographic device (a SecmatV1 SoC in ASIC) implements the unprotected
block-cipher DES. Note that the proposed profiling attack is generalizable to
other crypto algorithms.

The target value represents the Hamming distance between the left input
block and left output block of the last round. Since we have no control on the
crypto device (the keys/plaintexts was randomly chosen) we focused on the
target values of 7 to 25 in order to have at least several traces per class. However
since all the attacks are assessed on the same datasets, this should not have
any impact on the results. We choose this target value because (1) it is highl
correlated with the traces, (2) it allows to recover 48 bits of the secret ke
when a plaintext-ciphertext pair is known, and (3) it is good enough in order to
compare several approaches.

In the worst case we need (‘32) x 8 (less than 238) tests to find all the secret
key when the target value is known (in the best case we need only 8 tests to find
the secret key). In order to reduce the number of tests an attacker can target the
Hamming weight (or the Hamming distance) of a byte (which involves a worse
success rate due to a decreasing of the signal-to-noise ratio). Another solution is
to use this Hamming distance as an input to other attacks such as an Algebraic
Side-Channel Attack [32] or a classical DPA combined with a template attack
approach [33]. But the purpose of this section is essentially to compare several
approaches in several contexts with real datasets and, therefore, to validate the
theoretical presentation performed in previous sections.

4.2 Measurement Setup

In order to generate the traces of the DPAContest V1 an oscilloscope collected
81,089 traces (see a trace in Figure[Hl), each composed of 20,000 points. A more
detailed description of the attacked implementation and the measurement setup
can be found in [38]. A fairly standard way of applying power analysis is to focus
on one round of the crypto algorithm (where the trace and the target value are
dependent) [31]. As a result, we reduced the size of each trace by zooming on the
time interval when the target value is manipulated. For this we computed the
Pearson correlation between each time of 500 traces and their relatively target
values (see Figure[dl). We selected a time interval of 100 where the first significant
correlation is obtained (a trace in this time interval is plotted in Figure [7]).

As stated in the previous section, we focused on the target values (i.e. de HD)
between 7 and 25. We reduced the size of the dataset to 8095 by computing the
average of 10 traces (associated to the same target value) in order to reduce the

! The last 8 bits of the key are searched with a brute-force strategy that requires
plaintext-ciphertext pairs.
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noisdd. Table [[ shows the number of traces per target value. It is worth to note
that the number of traces per class is strongly imbalanced.

We added a Gaussian noise in order to analyze the signal-to-noise impact
on the prediction of each approaclﬁ. The Gaussian noise follows a Gaussian
distribution with a mean of 0 and a standard deviation varying by 0.001 between
0 and 0.005. It allows to confront several models against 6 different contexts.
Another approach would be to reduce the number of traces involved in the
average. We decided to use the first approach in order to have the same number
of traces in each dataset while controlling the noise level with a good precision.
The limit of 0.005 for the noise level was mainly based on the result of Figure §
which shows the impact of the added noise to two traces associated to two
different target values. In other words, the noise level was selected according to
the difficulty to distinguish traces associated to different target values. A higher
noise level does not allow to distinguish classes which include more than 70%
of traces of the dataset. This is corroborated in our experiments where several
profiling attacks behave as a random model with a noise level of 0.005.

Table 1. Number of traces per target value

Target value 7 8 9 10 11 12 13 14 15 16
Number of traces 6 21 51 122 245 435 666 880 1064 1128

Target value 17 8 19 20 21 22 23 24 25
Number of traces 1067 873 675 423 239 127 51 16 6

4.3 Model Selection

We tried several autoregressive models, classification models and feature selec-
tion algorithms. For the sake of conciseness we report only the most successful
models. We tested the RF, the SVM and the TA as static classification models
with the feature selection algorithms MAX, SOST and mRMR. For the time
series approach, we considered the Lazy Learning autoregressive model [1, 6, 19]
(LL) with the classifiers arg min (see Equation [[9)), RF and SVM.

The LL model proved to be a very effective technique in a number of academic
and industrial case studies [€] as it can be applied for a nonlinear regression case.
Each lazy model keeps in memory the learning set in order to predict the output
value by interpolating the samples in the neighborhood of the input value. The
rationale is that it is the neighbors of the input value that are the more relevant
for the interpolation problem and, more precisely, to build a regression model.

In order to search the neighbors of the input value we used the euclidean
metric. The final performance is extremely sensitive to the choice of the number

2 We used 6482 traces in the profiling phase and 1613 traces in the test set during the
attacking phase.

3 The Shapiro-Wilk test (with a significance level of 5%) corroborates that the noise
on the collected traces follows a univariate Gaussian distribution.
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of neighbors: a too small value allows to fit an eventual nonlinearity but at the
cost of a high variance; a too high value leads to a large modeling bias. The local
regression model tunes automatically the best number of neighbors on the basis
of a fast leave-one-out procedure.

4.4 Experimental Results

We first check the quality of the time series fit. Figure[llshows the fitting returned
by three LL modeldd associated to the 7-th, the 16-th and the 25-th HD and with
a p equal to 2 (see Equation[IH). As it can be seen, each time series model predicts
values close to the actual data.

Fitting: 7-th target value
=lActual data =IFitting

Fitting: 16-th target value
=Actual data = Fitting

0.075 0.075 0.075

= = =

©0.050 20.050 20.050

j=J j=J j=J

B £ £

S K K
0.025 0.025 0.025
0.000 0.000 0.000

0 10 2
Time [clock periods]

0 10 2
Time [clock periods]

Fitting: 25-th target value
=Actual data _HFitting

0 10 2
Time [clock periods]

Fig. 1. Fitting of three traces (associated with classes 7, 16 and 25) by three lazy
models (with a p equal to 2)

The second experiment compares the template attack against the time se-
ries approach. Clearly, from Figure[2 it can be observed that the success rates
are similar when the traces contain a high signal-to-noise ratio. Moreover, as
expected, the higher is the level of noise, the lower is the performances of both
approaches due to the fact that there are less information leakage available. How-
ever the time series approach outperforms the state-of-the-art approach when the
noise increases. Another important advantage of the time series approach over
TA is that the higher the noise the higher the difference between their success
rates. It confirms the robustness of the new approach against noise and therefore
the model parameters are expected to be more reliably estimated.

The third experiment assesses the time series approach vs. a static classifica-
tion strategy based on random forest. The results are shown in Figure[Bl Random
forest allows a higher success rate than template attack in high noise level while
their results are similar in the high signal-to-noise ratio context. It confirms the
results of previous research [3, [19-21, 126, 127, 29] that template attack is not
optimal on several contexts. Nevertheless the success rates of the random forest
is lower than the time series approach when the level of noise increases.

* We used the implementation available on CRAN |[5].
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| IE‘Lazy/MINIELazy/RFIE‘LaZy/SVMIE‘MAX/TAIESOST/TAIE‘mRMR/TA |

0.6

0.4

Success rate on test set

0.2

T T T T T T
0.000 0.001 0.002 0.003 0.004 0.005
Sigma (NOISE)

Fig. 2. Success rate per noise level on test set using time series approaches vs template
attacks. A/B symbolizes the use of the preprocessing method A with the classifier B.

The last experiment compares the time series approach to a classifier based on
support vector machine. The result is plotted in Figure @ It highlights a similar
performance between both approaches when we pick out the best feature selec-
tion method for each noise level. However our approach allows a higher success
rate (in a noisy context) without the drawback of selection of the best feature
selection for each noise level. Note that the selection step of the classification
model (both in the regression and in the classification approach) influences the
success rate.

4.5 Discussion and Open Questions

The experimental results of the previous sections suggest some considerations.
The first one concerns accuracy. We show that for several datasets our approach
improves the accuracy of the power analysis attack with respect to conventional
template attack as well as to static classification model approach in low signal-
to-noise ratio settings.



88 L. Lerman et al.
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Fig. 3. Success rate per noise level on test set using time series approaches vs random
forest. A/B symbolizes the use of the preprocessing method A with the classifier B.

The time series models and the feature selection methods can be seen as a pre-
processing step where traces are projected in new dimensions. Their influences
in the success rate can be described in terms of the Bias-Variance trade-off HE]
An increase in the complexity of the model leads to an increase of its variance
which in turns induces a high sensitivity to noise. On the other hand, in a low
noise context where the variance of models does not influence its success rate a
more complex model is advantageous due to the fact that its low bias improves
its success rate. As a result, a low (resp. high) complex model is favorable in the
case of a low (resp. high) signal-to noise context. This reasoning is supported by
our experiments: the pre-processing model with the lowest complex outperforms
the others in the noisy case. More precisely, the MAX function as well as the time
series models lead to higher success rates when we use a RF or a SVM for the
classification step. In contrast the SOST and the mRMR seem to outperform the
MAX function when the noise is low. As a result the choice of a feature selection
should be related to the level of noise on the collected traces. Surprisingly the
lazy models combined with the RF or the SVM have a high success rate compared
to the presented methods in low and high signal-to-noise case. This is motivated
by its low bias rate and its low variance rate.
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Sigma (NOISE)

0.000 0.001
Fig. 4. Success rate per noise level on test set using time series approaches vs sup-
port vector machine. A/B symbolizes the use of the preprocessing method A with the
classifier B.

An interesting open problem concerns the selection of the classification model
in the time series approach. Our results suggest that a random forest or a support
vector machine allow to improve the accuracy compared to a MIN function. We
could guess that the reason is related to the estimation’s accuracy of the error
of fitting of each time series model. This estimation is linked to the number of
traces used in the learning set of each time series model. A higher number of
trace leads to a better estimation of each parameter @] As the number of traces
in each class is not uniformly distributed (i.e. the number of traces in each class
is imbalanced), some time series models estimate better their error of fitting
compared to other. As a result, the error of fitting of each time series model
should be weighted with the accuracy of their model. We speculate that the RF
and the SVM estimate these weight values which allow them to outperform the
MIN function. Another issue is that there are some classes that are more difficult
to fit than other. Indeed Figure[@shows that the distribution of the fitting’s errors
is different for each class. As a result an important question for further research
is to determine whether we can improve the success rate by varying the p value
for each time series model or at least to rebalance the learning set.
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5 Conclusion

Profiling attacks are useful tools in the evolution of leaking cryptographic de-
vices in a worst case scenario. In this paper, we first proposed a new and effi-
cient profiling attack in a multi-class problem. More precisely we introduced a
transformation of traces to new dimensions by taking into account the temporal
dependence of traces. This new approach offers several starting points for further
work with other time series models in the profiling attacks.

We showed that the choice of a feature selection should be related to the
level of noise in the collected traces. It led to discuss the advantage of our new
proposed technique from a theoretical point of view based on the bias-variance
trade-off [18]. We put forward that such profiling attack is less sensitive to noise
thanks to its lower variance compared to the presented attacks. Therefore, our
method can be carried out in all scenarios where the previously profiling attacks
are relevant.

The theoretical point of view is confirmed with several experiments where
the new approach allows to improve (significantly) the success rate in several
contexts (with several levels of noise). Eventually we discussed the results that
lead to interesting open questions such that the impact of differences between
the distributions, for each class, of fitting errors in the time series approach.
Another interesting question concerns the effect of the number of traces in the
learning set for each approach. A more robust model against noise needs less
traces in the learning set. As a result, future works will verify whether our
proposal outperforms the previous models in a high dimensionality context where
the number of traces is less than the number of components in each trace.

In summary this paper confirms that template attack can be improved with
machine learning models by designing automatically models from data. More
precisely a more powerful adversary is obtained by taking into account the tem-
poral dependence of traces. Hence, practically secure crypto implementations
would clearly require to be analyzed with the time series approach. In order to
make the time series approach easier to reproduce, an open-source program has
been made publicly available [28].
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Appendix
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Fig.5. A trace from the DPAContest V1 where the blue lines represent the time
interval where the target value is manipulated
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Fig. 8. Each figure shows two traces associated to two different target values (i.e. 14-th
and 19-th HD) with a different noise level
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