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Simple Summary: Human walking exhibits properties of both stability and variability. On the one
hand, the variability of the interval of time between heel strikes is autocorrelated, i.e., not randomly
organized. On the other hand, walking is highly stereotyped and arguments from general mechanics
suggest that the stability of gait can be assessed according to invariant properties. This study aims
at proposing one of those invariants. Participants walked for 10 min at a natural pace, with and
without a metronome indicating participants’ preferred step frequency. In both cases, we use different
parameters to assess both the variability and stability of walking. We verify a known result: the
metronome strongly alters the variability of the motion. However, despite the large variability
changes, our proposed adiabatic invariant is preserved in both conditions, demonstrating the stability
of gait. It appears as though our model reveals dynamical constraints that are “hidden” beyond
apparent walking variability.

Abstract: Human walking exhibits properties of global stability, and local dynamic variability,
predictability, and complexity. Global stability is typically assessed by quantifying the whole-body
center-of-mass motion while local dynamic variability, predictability, and complexity are assessed
using the stride interval. Recent arguments from general mechanics suggest that the global stability
of gait can be assessed with adiabatic invariants, i.e., quantities that remain approximately constant,
even under slow external changes. Twenty-five young healthy participants walked for 10 min at a
comfortable pace, with and without a metronome indicating preferred step frequency. Stride interval
variability was assessed by computing the coefficient of variation, predictability using the Hurst
exponent, and complexity via the fractal dimension and sample entropy. Global stability of gait
was assessed using the adiabatic invariant computed from averaged kinetic energy value related
to whole-body center-of-mass vertical displacement. We show that the metronome alters the stride
interval variability and predictability, from autocorrelated dynamics to almost random dynamics.
However, despite these large local variability and predictability changes, the adiabatic invariant
is preserved in both conditions, showing the global stability of gait. Thus, the adiabatic invariant
theory reveals dynamical global stability constraints that are “hidden” behind apparent local walking
variability and predictability.
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1. Introduction

Human gait can be considered a quasiperiodic phenomenon. Despite the apparent
stability of walking at a constant speed, gait exhibits an inherent local variability that can
be observed at the level of basic parameters such as the stride-to-stride interval time, or
simply referred to as the stride interval (SI). The global stability during gait is typically
assessed by quantifying the whole-body center-of-mass (COM) motion. Local variability
can be modulated to maintain global stability [1].

It is well known that gait variability is a hallmark of healthy individuals and has
properties that are far more complex than stochastic variability. Since the seminal works of
Haussdorff et al. [2,3], it has been shown that the variability, more exactly the predictability,
of SI over a long period of time—typically several hundred gait cycles—is autocorrelated,
just as it is in chaotic systems. These autocorrelations can be assessed by computing the
Hurst exponent or H [4,5], which typically ranges from 0.7 to 0.9 in young healthy adults [6].
Note that H = 0.5 implies random variability. Although the physiological mechanism that
generates SI autocorrelations is still controversial, neurodegenerative diseases significantly
alter SI variability [7], and the use of indices other than H can help distinguish between
different pathologies [8,9]. Other disturbances during walking, such as the execution of a
cognitive task [10] or following a rhythmic auditory cue [11], also alter SI variability.

Realistic values for H can be obtained by resorting to simple mechanical models of
the inverted pendulum type, in which one or two parameters are randomly updated at
the beginning of each step [12,13]. Although mechanical approaches are used to model
gait variability, it is worth noting that developments in Mechanics, such as action-angle
variables in the Hamiltonian formalism, have proven to be remarkably successful in finding
conserved quantities for complex and even chaotic systems [14,15], i.e., quantities with
invariant value over time. Identifying such a conserved quantity for human gait would
be to find dynamical constraints “hiding” behind SI variability that could provide new
insights into how dynamical systems, in which behaviors evolve over time, maintain their
current state or stability while allowing for variability/predictability. Whereas energy is not
necessarily conserved over time with stochastic variation in system parameters, adiabatic
invariants are good candidates for (almost) conserved quantities. An adiabatic invariant,
I, is a quantity that remains approximately constant during the evolution of a dynamical
system even under slow external changes, i.e., an adiabatic transformation [14]. One way
to define an adiabatic invariant, I, relevant to the analysis of rhythmic human motion
for a given degree of freedom Q(t) for which the kinetic energy has the standard form
Ek =

m
2 Q̇2 [16], with m a mass scale, is through

Ek = π I f , (1)

where π = 3.1415 . . ., f is a given cycle frequency (the inverse of its duration) and Ek is the
averaged kinetic energy on the cycle under consideration. In the model (Equation (1)), Ek
and f are assumed to change significantly over time, but their ratio, which is proportional
to I, should remain invariant. Here, Ek during each gait cycle will be computed from the
whole-body COM vertical displacement. The term “adiabatic invariant” will therefore
refer to the quantity (1) computed from the vertical displacement of the COM. It is an
important restriction, since in principle, adiabatic invariants may be found in the other
directions and for other degrees of freedom while walking. Another important remark is
the following. The term “invariant” will be used to denote a function of the dynamical
variables whose value does not change over time during the evolution of a dynamical
system, while the word “constant” will be used for a parameter whose value is not modified
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by the experimental condition. A textbook example is that of a simple pendulum without
friction: Total energy is invariant but not constant, since it depends on the amplitude.

Biological systems are the most noteworthy nonconservative systems that derive forces
from internal energy reservoirs [17]. In previous work, the adiabatic invariant has been
successfully applied to human movement [17]. In biological systems, it is also important
to note that adiabatic invariants can be considered only as an approximation and are not
rigorously but rather approximately invariant.

Previous work has shown that the relations (1) holds for rhythmic arm movements [17,18]
and for walking [19]. In the latter work, participants walked for 3 min, and SI variability was
not examined. More, limit cycle attractors in phase space (Q, Q̇), i.e., the average gait cycle of
a participant, were not drawn while they can also be used as a visual representation of gait
pattern. Human motion, and particularly walking, is indeed highly stereotyped, though noisy,
and gait patterns are highly consistent for an individual over time [20]. The attractors may also
distinguish between walking and running, as the transition from walking to running can be
viewed as a change from one stable attractor to another [21]. Therefore, these attractors could
help distinguish between participants and conditions. The area enclosed by the phase-space
trajectory of system over one cycle is the adiabatic invariant I.

From the perspective of understanding the role played by the neuro-musculoskeletal
system in constraining coordination and reducing the degrees of freedom [22], adiabatic
invariants of motion are relevant quantities, since two or more variables are linked by a
single invariant. Therefore, the primary objective of this study is to investigate whether
the adiabatic invariant model (1) holds in a population of healthy young adults walking at
spontaneous speed on a motorized treadmill during a sufficient number (typically more
than 500) of cycles to also assess SI variability, predictability, and complexity. The secondary
objective is to understand how a constraint applied on the system, in our case, a rhythmic
auditory cue (metronome) indicating preferred step frequency, impact global stability
(assessed using the adiabatic invariant I) and SI variables. Our hypotheses were that
Equation (1) holds during walking on a treadmill, regardless of the metronome constraint,
and that the latter constraint exhibits significant variability and predictability indices, as
shown in [11].

2. Materials and Methods
2.1. Protocol

The protocol was performed in a session of approximately 60 min. It was validated
by the Academic Ethical Committee Brussels Alliance for Research and Higher Education
(protocol B200-2021-123). Participants were healthy students recruited in the Department of
Physiotherapy of the Haute Ecole Louvain en Hainaut (Montignies-sur-Sambre, Belgium).
After being informed of the study, each participant signed an informed consent. The same
experimenters (F.P. and G.H.) were responsible for the measurements.

First, participants’ age and biometric data (mass and height) were collected. Partic-
ipants were asked to wear a tight outfit. Participants’ pelvic movements were recorded
using a Vicon opto-electronic system (Vicon Motion Systems Ltd, Oxford Metrics, Oxford,
UK) composed of 8 cameras (Vero v.2.2) with a sampling frequency of 120 Hz. Four 14
mm diameter reflective markers were placed on the pelvis of the participants following the
Plug-In-Gait model (Oxford Metrics, Oxford, UK): Left Anterior Superior Iliac Spine (LASI),
Right Anterior Superior Iliac Spine (RASI), Left Posterior Superior Iliac Spine (LPSI), and
Left Posterior Superior Iliac Spine (RPSI).

Then, participants took place on the belt of an instrumented motorized treadmill
(N-Mill, Motekforce Link, The Netherlands). The vertical ground reaction force and center
of pressure of each foot was recorded at a sampling rate of 500 Hz using the manufacturer’s
software (CueFors 2, Motekforce Link, The Netherlands). Spontaneous walking speed was
determined and recorded during a 3-minute habituation period. After a 1-minute rest, the
participant walked at a spontaneous speed on the treadmill for 10 min (control condition,
CTRL). The average step frequency, f , was automatically computed by the CueFors 2
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software. The positions of the 4 markers, ~xa, were recorded with the Vicon system via the
Vicon Nexus software (v.2.7.1, Oxford Metrics, Oxford, UK). After a short break of 3 min,
the participant walked on the treadmill at a spontaneous speed for 10 min with instructions
to synchronize his or her steps with the clicks of a metronome whose tempo corresponded
to the number of steps per minute calculated in the CTRL condition (metronome condition,
METRO). This allowed the participants to adjust their gait tempo on a step basis whilst
ensuring they adopted their own comfortable pace. The duration of the successive gait
cycles and the positions of the 4 markers were recorded in the METRO condition.

To estimate the whole-body COM vertical trajectory, Q(t), the mean vertical position of
all pelvic markers (RASI, LASI, LPSI, and RPSI) was taken at each time step. Furthermore, to
reduce measurement artefacts, Q(t) was filtered using a low-pass fourth-order Butterworth
filter adjusted to each time series so that it kept 99.99% of the signal’s power. In order to
alleviate the low sampling rate of the measurement system, a cubic spline interpolation
was conducted on the data, multiplying the frequency by 10 to 1200 Hz. The speed and
acceleration were then obtained through a finite difference scheme. The data was processed
using R software (v. 4.1.0) [23]. Typical phase-space trajectories are shown in Figure 1.

CTRL

METRO
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0.0

0.1

0.2

0.3

−0.03 −0.02 −0.01 0.00 0.01 0.02
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/s
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Figure 1. Two typical plots of whole-body COM vertical trajectories in phase space (Q, P) in the two
studied conditions: CTRL (green) and METRO (blue). Attractors, computed as the mean cycle in
phase space, are also displayed in the two studied conditions: CTRL (dark green line) and METRO
(dark blue line). The same subject has been chosen in both conditions.

2.2. Adiabatic Invariant I (Global Stability)

We assume that the vertical motion of the whole-body COM during walking is gov-
erned by the Hamiltonian H = 1

2 (P2 + Q2)(ω + ε ξ(t)), with 0 < ε � 1 and ξ(t) a
stochastic noise. This model is based on a forced harmonic oscillator with a frequency
that fluctuates randomly around a mean ω . The noise accounts for physiological noise
(i.e., the impossibility for the human locomotor system to be steadily in the same state)
and should be low in healthy individuals. The momentum P is defined as P = Q̇, as in
standard Hamiltonian mechanics. This general class of Hamiltonians fits the form consid-
ered in the Appendix A, where the computational details are given. As developed in this
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Appendix A, the action variable (1) is an adiabatic invariant of the system: its value does
not change over time except for small random fluctuations around the mean. In summary,
the linear relationship (1) is to be expected in the analysis of the vertical motion of COM in
healthy walking individuals.

A step is defined by the collection of data points between two maxima in Q(t). A
gait cycle consists of two consecutive steps. For each gait cycle identified, denoted Ci,
the frequencies fi and the average kinetic energy Eki were computed. Recall that i typ-
ically ranges from 1 to 500. For a given participant in a given condition, we computed
Ekm = E(Eki), fm = E( fi), and I = Ekm

π fm
, where E(xi) denotes the arithmetic mean of an

arbitrary set of values xi. Equation (1) is valid for all values of ( fi, Eki), and we assume that
I is constant according to adiabatic invariant theory [14]. Taking into account Equation (1)
together with Ekm = π I fm leads to

Eki
Ekm

=
fi
fm

. (2)

Therefore, a prediction of our model is that Eki
Ekm

versus fi
fm

should behave as a straight
line with slope 1 and a zero intercept.

After each gait cycle was identified, an average cycle was computed. To do this, each
cycle was normalized to a unit duration and a spline of 1200 equally spaced points was
computed for each cycle. Then, 1200 bins—one for each frame—were created and filled
with the data from the splines of all cycles of a given participant in a given condition. The
mean and standard deviation were computed for each bin.

2.3. SI Variability, Predictability, and Complexity

Time series T with durations Ti of successive gait cycles were computed from heel
strikes of the right foot identified by CueFors 2 software. At the end of the session, two
time series were generated for each subject in the CTRL and METRO conditions. Typical
plots are shown in Figure 2.

CTRL

METRO

1.00
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Cycle 

S
I (

s)

Figure 2. Typical plots of the SI time series obtained in the two studied conditions: CTRL (green) and
METRO (blue). Parameters in the CTRL condition are: SI = 1.12 s, CV = 0.0282, H = 0.988, S = 1.59,
and D = 1.35. Parameters in METRO condition are: SI = 1.12 s, CV = 0.0132, H = 0.383, S = 2.20, and
D = 1.51.

First, the average SI was computed, as well as the coefficient of variation, CV = SD(T)/SI,
estimating the magnitude of SI fluctuations. The Hurst exponent, H, was then computed by
resorting to Detrended Fluctuation Analysis following the guidelines in [6]; more technical
details about the algorithm we used can be found in [24]. By definition, H is mainly a measure
of the time series’ predictability [4,5]. Therefore, it is relevant to complement it with other
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variability indices [8,9,25], of which we have chosen the Minkowski fractal dimension, D, [24],
and the sample entropy, S, both as measures of complexity [1]. Computational details for D
can be found in [24], while S was computed using the method described in [26]. All SI data
analysis was performed with R (v. 4.1.0).

Figure 2 gives a first hint of SI variability, predictability, and complexity. Fluctuations
around the mean value have a smaller magnitude in the METRO condition (smaller CV), but
a simpler temporal structure. Indeed, the latter fluctuations show increasing or decreasing
trends during several tenths of cycles in CTRL conditions, resulting in a larger predictability
(larger H). The lower predictability in the METRO condition also results in a larger sample
entropy, meaning that the fluctuations are closer to a random process in the METRO
condition. Indeed, S is maximal for a random process.

As discussed in Appendix A, CV provides an estimate of ε, the magnitude of the time-
dependent noise modeling the quasiperiodic nature of human motion. As our approach is
only valid for ε well smaller than 1, the measured values of CV must be well smaller than 1
too, for our approach to be consistent.

2.4. Statistical Analysis

Data assessing SI variability, predictability, and complexity were tested for normality
(Shapiro–Wilk) and equality of variance test. A paired t-test was performed and used to
examine the effects of condition (CTRL or METRO) on SI, CV, H, D, and S. The significance
level was set at p = 0.05. In the case of a failed normality test, a Wilcoxon signed rank
test was performed. The adiabatic invariant I was compared in the CTRL and METRO
conditions using the same methodology. All these statistical procedures were performed
with SigmaPlot software version 11.0 (Systat Software, San Jose, CA, USA).

An ANCOVA with zero intercept and significance level p = 0.05 was performed to

compare the linear trends of Ek
Ekm

versus f
fm

in conditions CTRL and METRO, i.e., according
to model

Ek
Ekm

= k
f

fm
, (3)

where k is the experimentally observed slope. A linear regression with zero intercept of
Ek

Ekm
versus f

fm
was also performed independently of the condition, and the 95% confidence

interval of the slope was computed. ANCOVA was performed with R software (v. 4.1.0).
Dynamic Time Warping (DTW), an algorithm developed to measure “distances” be-

tween similarly patterned time series, was then run to compare the distance between CTRL
and METRO conditions for each participant whole-body COM vertical position (Q) and
speed (P) as a function of time. The distances were computed for Q and compared to that
computed for P using a paired t-test. The ‘dtw’ package in R was used, and the time series
were z-normalized before comparison between the time series.

3. Results
3.1. Population

The general characteristics of our participants can be found in Table 1.

Table 1. General characteristics of our population. Results are reported in the form mean ± SD. The
number of gait cycles performed by the participants in 10 min is reported in the form median [q1–q3],
regardless of the condition.

N 25

Age (years) 22.8 ± 5.2
Mass (kg) 68.1 ± 13.6

Height (m) 1.65 ± 0.32
Sex (M/F) 9/16
Gait cycles 532 [513–552]

M: male; F: female.
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3.2. SI Variability, Predictability, and Complexity

A comparison of the results obtained in the CTRL and METRO conditions in the
analysis of the SI time series is shown in Table 2. SI and D are not significantly changed. CV
and H significantly decreased in the METRO condition, with H > 0.5 in the CTRL condition
and <0.5 in the METRO condition. S marginally increased in the METRO condition. The
significant differences are shown in Figure 3 graphically.

Table 2. Comparison between results in conditions CTRL and METRO for the SI analysis. Results are
reported in the form mean±SD if a paired t-test was performed, or median and first-third quartiles
[q1–q3] if a Wilcoxon signed rank test was performed. Significant p-values are in bold.

Condition SI (s) CV H D S

CTRL 1.184 [1.126–1.269] 0.0261 ± 0.0071 0.848 [0.781–0.951] 1.633 ± 0.116 1.759 ± 0.228
METRO 1.187 [1.119–1.273] 0.0193 ± 0.0060 0.373 [0.265–0.560] 1.667 ± 0.129 1.891 ± 0.249

p 0.258 0.001 <0.001 0.282 0.063

SI: stride interval; CV: coefficient of variation; H: Hurst exponent; D: Minkowski fractal dimension; S: sample entropy.

*
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Figure 3. (A) Comparison of the mean values of CV in CTRL and METRO conditions. The error
bar is equal to 1 SD. (B) Boxplots comparing the distribution of H in CTRL and METRO conditions.
(C) Same graphical representation as in (A) for π I. The stars (*) denote significant differences between
the means or medians between the two conditions.

3.3. Phase-Space Dynamics

The adiabatic invariant is significantly increased in METRO condition:
π I = 0.0149± 0.0063 J·s/kg against π I = 0.0143± 0.0058 J·s/kg (p = 0.009). The difference
is displayed in Figure 3.

The linear trend (Equation (3)) is confirmed by the ANCOVA (p < 0.001), and the slope
does not depend on the condition (p = 0.700). The observed slope has a 95% confidence
interval of [0.998, 1.002]: k = 1 is compatible with the latter interval. The quality of the
linear regression can be graphically appraised in Figure 4A. Figure 4B shows the dispersion

of the data around the linear relation (2). It can be seen that the values of Ek
Ekm
− f

fm
are well

peaked around the zero value, which is related to the high value reached for R2.
The average DTW distance between the CTRL and METRO conditions was 10.3± 3.8

for Q and 12.9± 7.4 for P. A paired t-test finds these values not statistically different with
p = 0.099.
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Figure 4. (A) Computed pairs
(

f
fm

, Ek
Ekm

)
(points) compared to a global regression of the form

(Equation (3)) (black line and gray band indicating the 95% confidence interval). The coefficient of
determination R2 of the regression is indicated. The model (Equation (2)) is also shown (dashed red

line). (B) Computed pairs with the linear trend (2) removed
(

f
fm
− 1, Ek

Ekm
− f

fm

)
. The densities of the

points along the two axes are shown above (density of f
fm

) and to the right side of the plot (density of
Ek

Ekm
− f

fm
).

4. Discussion

The objectives of this study were twofold: (1) to investigate whether the adiabatic
invariant model (Equation (1)) holds in a population of healthy young adults walking
at spontaneous speed on a motorized treadmill, and (2) to understand how a constraint
applies on the system with a metronome impact global stability and SI variables. The major
findings were that: (1) the invariant model was verified, and (2) SI variabilty (CV) and
predictability (H) significantly decreased in the METRO condition, and global stability (I)
significantly increased in the METRO condition.

The originality of this work is that it simultaneously measured the global stability,
and local variability, predictability, and complexity of motorized-treadmill walking in
two conditions. In the first, CTRL, participants walked at spontaneous speed. In the
second, METRO, participants adjusted heel strikes to a tone emitted by a metronome whose
frequency matched each participant’s preferred frequency. The latter condition is known to
induce significant changes in step-to-step variation [11], and this was also the case in our
study. We first comment on the SI variability, predictability, and complexity results. The
values we found are typical of the long-range variability observed in healthy young adults;
see, e.g., [9,24] for CV, H, and D, and [25] for S. A salient feature of our results is the decrease
in H from correlated (H = 0.848) to anti-correlated (H = 0.373) values. This phenomenon
was previously observed in [11]. The metronome that clicks at the spontaneous frequency of
a participant “destroys” the normal SI autocorrelation pattern [11]. This can be interpreted
by the additional constraint that the metronome imposes. Here, the participant is not
free to adapt his/her variability, as would be the case with an optimal motor strategy,
but must inhibit any change in SI variability to remain synchronous with the metronome.
This blocking mechanism leads to anti-correlation, and also to a much smaller CV in the
METRO condition. Note that CV is much smaller than 1 in both conditions, and so it is
consistent with our mechanical approach, where the magnitude of the time-dependent
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noise is assumed to be small. S is almost significantly higher in the METRO condition. This
could be related to the fact that the q3 value of H in METRO condition is equal to 0.56: a
non-negligible fraction of our participants has H around 0.5, and random variability has
maximum entropy.

Our major observation is that the model (3) holds in both the CTRL and METRO
conditions. Although the participants change their SI variability and predictability, the
dynamical stability constraint induced by the adiabatic invariance is verified: Ek of the
whole-body COM and f of a given cycle are linearly correlated. Note that the model (3)
does not forbid changing the value of I in the different conditions. By the way, the adiabatic

invariant I is significantly higher in the condition METRO. On the one hand, I = Ek
π f . On

the other hand, f does not change significantly in the METRO condition because T does
not change. Thus, the increase in I is associated with a higher Ek per gait cycle. Regarding
phase-space dynamics, the DTW distance for P is not significantly different from that for
Q. This result does not allow us to infer that the change in I is mostly due to a change of
behavior in one of the variables P or Q. Instead, it shows that the change in I is due to a
simultaneous change of both P and Q behaviors.

Strategies for human locomotion based on adiabatic invariance have already been
developed and computed from the total (translational and rotational) body’s kinetic energy
per stride [19]. In this study, a multi-segmental model was used, in which the body
segments were treated as an ensemble of systems in motion, each characterized within a
stride by the summed changes in kinetic energies from and about their respective centers-
of-mass. In this model, walking is viewed as a sequence of joint rotations, and is referred
to as a “segmental” approach [27]. Here, we extend the results of this previous work, as
we were able to show the validity of the theory of adiabatic invariance in walking using a
single-point kinematic model represented by the vertical component of the whole-body
COM. The latter is known to provide summarized information about all body segments
during walking. In contrast to the previous model, walking is considered as achieving a
forward motion of the whole-body system [27]. Even more interesting is that the vertical
displacement of the whole-body COM is related to the metabolic cost [28]. Therefore, we
hypothesize that I is related to the metabolic cost of walking, and that participants are
able to follow the metronome constraint at the expense of a larger oxygen consumption
(V̇O2). This picture is coherent with [29], in which it is shown that an altered SI variability
correlates with higher V̇O2. However, the changes in variability in the latter study were
due to different walking speeds, which are not comparable with our protocol. It has also
been shown that the nervous system uses predictions of the optimal gait to optimize the
energetic cost of each new step [30]. This has also been demonstrated in other activities
such as pedalling [31]. We think that keeping a constant value for I during walk with a
given set of external conditions is one of the constraints involved in the prediction of the
nervous system. The presence of such a constraint may actually improve the efficiency of
prediction by excluding irrelevant motor strategies and reducing the degrees of freedom of
the neuro-musculoskeletal system [22].

From a methodological viewpoint, we choose to compute Ek of the whole-body COM
only in the vertical direction (sagittal plane motion), and not in the anteroposterior and
mediolateral directions (horizontal and transverse plane motion). This choice could be
justified by the methodology implemented for SI variables assessment requiring numerous
gait cycles. Walking on a motorized treadmill is not similar to walking on the ground, and
station-keeping on the belt is impossible and surely less important than not falling [32].
Displacement of the whole-body COM in the horizontal and transverse planes is mainly
related to foot placement dynamics on the belt that may be affected to the motion strat-
egy adopted by the participants; for example, if they want to avoid the belt’s edge [32].
Therefore, the displacement of the COM in horizontal and transverse planes was excluded
from our analyses, since the motion in this plane is not representative of a spontaneous
motion from a walk on the ground. Moreover, a drift correction method should have been
considered before calculating the adiabatic invariants, which is out of the scope of our
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paper. As a consequence, only one adiabatic invariant has been computed, while from the
separability hypothesis, three adiabatic invariants should be possibly computed from the
COM motion during walk, one per direction. Further studies are now necessary to explore
this statement.

The present study has some limitations that should be addressed. First, we considered
the CTRL condition as a reference to compare the effects of the metronome. However,
walking on a motorized treadmill results in an anti-correlated pattern in the stride speed
fluctuations [11]. Therefore, the best reference condition is walking on the ground, but
recording the kinematics of the pelvis during a large number of cycles is not possible
without moving to half-turns in the calibrated volume, which would lead to a disturbance
of the locomotor rhythm. Second, V̇O2 was not measured during walking. However, a
direct relationship between total body kinetic energy and V̇O2 was previously observed
at various constant walking speeds [19]. The measurement of V̇O2 would have allowed
us to test our hypothesis formulated above regarding the relationship between I and the
metabolic cost of walking. Third, we use a reduced kinematic pelvic model with four
markers to estimate the whole-body COM position instead of a whole-body kinematic
model. However, we believe that our pelvic model is more robust than the single sacral
marker method, which is a too rough approximation of COM, given that the latter can
move with respect to the sacrum [27]. The pelvic model is also theoretically controlled for
pelvic tilt motion [33], and assumes that the pelvis position could be an approximation of
the whole-body COM position [32]. More, the pelvic model is favored by clinicians during
routine gait analysis to reduce the experimental and postprocessing times. Therefore, we
hope that the reduced kinematic pelvic model used here will be an incentive to test the
existence of global stability of the whole-body COM in pathological populations.

In summary, we have shown for the first time that an adiabatic invariant, I (see
Equation (1)), is a robust dynamical stability constraint on SI variability and predictability.
In other words, the vertical speeds and positions of one individual’s COM during successive
walking cycles are not arbitrary, but such that I is invariant. The value of the adiabatic
invariant does not change during walking, as expected from a mechanical model, although
external perturbations (here, rhythmic auditory cues from a metronome + physiological
noise) may change the latter value, arguably because a larger I is related to a larger energy
expenditure in response to external perturbation. To what extent this constraint still holds
in patients with motor disorders—e.g., Parkinson’s disease—and unveiling its relationship
with physiological mechanisms are open problems that we hope to address in future work.
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Appendix A. Adiabatic Invariants and Random Noise

The dynamical state of a system coordinatized by configuration space variables Qα,
α = 1, . . . , n can be summarized by its trajectory in 2n-dimensional phase space (Qα, Pα),
where Pα are the momentum degrees of freedom. In standard dynamics, Pα = m Q̇α with m
a mass scale, although Hamiltonian dynamics can be formulated for more general systems.

https://osf.io/uxbdf
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The trajectory is generated by a set of initial conditions (Qα
0 , P0α) and an evolution operator

called a Hamiltonian, H(Qα, Pα), which leads to the equations of motion (Ch. 45) [14].

Q̇α =
∂H
∂Pα

, Ṗα = − ∂H
∂Qα

. (A1)

If the Hamiltonian has a standard, separable, time-independent form, H = ∑n
β=1[

1
2 P2

β + Vβ(Qβ)
]
, then Q̇α = Pα and the momentum can be interpreted as the body velocity.

Separability allows a focus on a Hamiltonian system with n = 1, knowing that the results
can be straightforwardly extended. Let us consider the Hamiltonian H = P2

2 + V(Q). If
the potential V allows for bounded trajectories in phase space, the action variable can be
defined as

I =
1

2π

∮
Γ

P dQ , (A2)

where Γ is the bounded trajectory in the plane (Q, P). The relation (Equation (1)) is
equivalent to (Equation (A2)) in our case. Then, the Hamiltonian can be reformulated as a
function of only the action variables: H = H0(I) , which is always true for an integrable
system. The equations of motion for the integrable system now reads (Ch. 45) [14]

İ = −∂H0

∂θ
= 0, θ̇ =

∂H0

∂I
= ω(I), (A3)

where θ is the angle variable. The action variables are therefore invariant and θ = ω(I) t + θ0.
In attempting to model the quasiperiodic nature of human motion, it is of interest to

assume that
H = H0(I) + ε ξ(t) V(I, θ), (A4)

where 0 < ε � 1, and where ξ(t) is a stochastic noise with vanishing mean value. It
is also assumed that H0(I) must satisfy the assumptions underlying the Nekhoroshev
theorem [34,35]. According to (theorems 1.1 and 3.1) [36], the action variable becomes time-
dependent because of the random noise (I becomes Iε(t)), but the deviation from the value
I (which can be taken as the initial value) remains small, of order

√
ε , up to a time of order

1/ε or even better [37], up to time of order 1/ε2 . More precisely, |Iε(t)− I| =
√

ε Y(t)
with Y(t) being a Gaussian Markov process.

Assuming that deviations from the time-independent dynamics are of order ε, a given
observable Λ should behave approximately as Λ(t) = Λ(1 + ε f (t)). Hence, the coefficient
of variation of Λ, CVΛ, defined as the ratio between its standard deviation and its mean
value Λ, is of order ε: CVΛ ∼ ε.
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