

Thermodynamic and mechanical investigations of novel binders for cemented carbides

Alexandre Mégret^{1*}, Arnaud Leclef¹, Véronique Vitry¹, Fabienne Delaunois¹ ¹ Metallurgy Lab, University of Mons, 20 Place du Parc, 7000 Mons, Belgium

Context

Resources High price of raw Co Co: Africa (65 %) and WC powders W: China (70%) Co and W Critical raw materials Huge consumption of Health and ethical Co in batteries of issues electrical vehicles

Method

- 1. Thermodynamic approach
 - Non critical raw materials.
 - Compatible materials with WC phase.
 - Carbon window important.

- 2. Mechanical approach
 - Assessment of the microstructures.
 - Assessment of the mechanical properties.

Microstructures Hardness/Toughness

Results

- 1. Choice of the potential elements
 - Fe, Ni, Mn, Cr
 - Mg, Al, Si, Cu, Zn...×
- 2. Technical issues
 - Chromium cannot be processed in the lab: Cr ×
- 3. Evaluation of the carbon window
 - No single element fulfills the conditions!
 - Alloying is necessary: Fe-Mn, Fe-Ni, Fe-Ni-Mn.

Microstructures

2. Mechanical properties

Samples	K _{1c} (MPa m ^{1/2})	Hardness HV30
WC – 10 Co	11.31 ± 0.61	1618 ± 81
WC - 15 Co	23.27 ± 9.41	1313 ± 64
WC – 10 FeMn	7.61 ± 0.35	1760 ± 75
WC – 15 FeMn	8.15 ± 0.21	1855 ± 80
WC – 10 FeNi	8.55 ± 0.53	1214 ± 222
WC - 10 FeNiMn	Not sinterable	

Conclusion

- WC-10 FeMn binders can keep hardness, and even be harder than Co, but at the cost of toughness.
- WC-10 FeNi has the best structure, in comparison with WC-10 Co.
- FeMn binder seems to be the best alternative, with the best properties, adequate phases, non-toxicity and lower cost.