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PARTIAL IDENTIFIABILITY FOR NONNEGATIVE MATRIX
FACTORIZATION\ast 

NICOLAS GILLIS\dagger AND R\'OBERT RAJK\'O\ddagger 

Abstract. Given a nonnegative matrix factorization, R, and a factorization rank, r, exact
nonnegative matrix factorization (exact NMF) decomposes R as the product of two nonnegative
matrices, C and S with r columns, such as R=CS\top . A central research topic in the literature is the
conditions under which such a decomposition is unique/identifiable up to trivial ambiguities. In this
paper, we focus on partial identifiability, that is, the uniqueness of a subset of columns of C and S.
We start our investigations with the data-based uniqueness (DBU) theorem from the chemometrics
literature. The DBU theorem analyzes all feasible solutions of exact NMF and relies on sparsity
conditions on C and S. We provide a mathematically rigorous theorem of a recently published
restricted version of the DBU theorem, relying only on simple sparsity and algebraic conditions: it
applies to a particular solution of exact NMF (as opposed to all feasible solutions) and allows us
to guarantee the partial uniqueness of a single column of C or S. Second, based on a geometric
interpretation of the restricted DBU theorem, we obtain a new partial identifiability result. This
geometric interpretation also leads us to another partial identifiability result in the case r= 3. Third,
we show how partial identifiability results can be used sequentially to guarantee the identifiability of
more columns of C and S. We illustrate these results on several examples, including one from the
chemometrics literature.

Key words. nonnegative matrix factorization, uniqueness, identifiability, multivariate curve
resolution, window factor analysis, self-modeling curve resolution

MSC codes. 15A23

DOI. 10.1137/22M1507553

1. Introduction. Given a nonnegative matrix R \in \BbbR m\times n
+ and a factorization

rank r, nonnegative matrix factorization (NMF) requires computing two nonnega-
tive matrices, C \in \BbbR m\times r

+ and S \in \BbbR n\times r
+ , such that CS\top \approx R. NMF has become a

standard technique in unsupervised data analysis and has found numerous applica-
tions, e.g., in hyperspectral imaging, audio source separation, topic modeling, and
community detection, to cite a few; see, e.g., the books [8, 12] and the references
therein. An application where NMF has been particularly popular is multivariate
curve resolution (MCR) and self-modeling curve resolution, where the input matrix
R represents the total response values from some chemical measurements of mixed
samples. An example is when we consider the evolution of the spectral profile of
a chemical reaction over time. More precisely, the ith row of R is the cumulative
spectral content of the chemical reaction at the ith time step. An NMF of R, with
R(i, :)\approx C(i, :)S\top for all i, provides the spectral signature of the chemical compounds
in C, along with their proportion in the reaction over time in S. In general, the
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28 NICOLAS GILLIS AND R\'OBERT RAJK\'O

FIG. 1. A three-component consecutive reaction example with the original composition in time
and the signal in wavelength profiles.

matrix C can be considered as the composition profile-matrix (each column of matrix
C is a composition profile of a chemical, e.g., in a reaction in time), and the matrix
S is the signal profile-matrix (each column of S will be the spectrum of a chemical).
This model can cover most types of nonnegative measurement matrices and has been
used successfully in chemistry, physics, biology, engineering, and informatics [7, 8, 9,
12, 24, 27, 41]. We provide a consecutive reaction example in which the reactant X
forms an intermediate Y and the intermediate forms the product Z in two irreversible

first-order reactions: X
k1=20 - \rightarrow Y

k2=3 - \rightarrow Z, where k1 and k2 are the first and the second
reaction rate constants, respectively. Figure 1 depicts the data matrix curves and
the original composition and signal profiles for the three components, X in ``navy
blue,"" Y in ``chocolate,"" and Z in ``gold tips"" colors. See section 5.3 for another
example.

Uniqueness/Identifiability. A crucial question in many applications is the unique-
ness of a decomposition CS\top up to permutation and scaling, which is also known as
the identifiability of CS\top . In fact, uniqueness/identifiability (we will use both words
interchangeably without attributes) allow NMF to recover the groundtruth factors
that generated the data, such as the sources in audio source separation, the materials
in hyperspectral images, and the chemical components in a reaction; see the discus-
sions in [11] and [12, Chapter 4] and the references therein. To attack this question,
we focus in this paper on exact NMF (that is, an errorless reconstruction), defined as
follows.

Definition 1 (exact NMF of size r). Given a nonnegative matrix R \in \BbbR m\times n,
the decomposition CS\top , where C \in \BbbR m\times r

+ and S \in \BbbR n\times r
+ , is an exact NMF of R of

size r if R=CS\top .

Let us formally define the full uniqueness/identifiability of an exact NMF.

Definition 2 (full identifiability of exact NMF). The exact NMF of R= C \star S
\top 
 \star 

of size r is (fully) identifiable (also known as (a.k.a.) unique or essentially unique) if
and only if, for any other exact NMF of R=CS\top of size r, there exist a permutation
matrix \Pi \in \{ 0,1\} r\times r and a nonsingular diagonal scaling matrix D such that

C =C \star \Pi D and S\top =D - 1\Pi \top S\top 
 \star .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PARTIAL IDENTIFIABILITY FOR NMF 29

In other words, any other exact NMF of R=CS\top of size r has the form

(1) CS\top =

r\sum 
k=1

C(:, k)S(:, k)\top =

r\sum 
k=1

\alpha kC \star (:, \pi k)\underbrace{}  \underbrace{}  
C(:,k)

1

\alpha k
S \star (:, \pi k)

\top \underbrace{}  \underbrace{}  
S(:,k)\top 

for some permutation \pi of \{ 1,2, . . . , r\} and some positive scalars \alpha k (1\leq k\leq r).

In the NMF literature, all works we are aware of have focused on the full iden-
tifiability of exact NMF, and actually this is simply referred to as the identifiability
of exact NMF. The chemometrics literature has been interested in the question of
partial identifiability: when all the chemical components are not identifiable, it asks
whether a subset of the profiles of these chemical components is identifiable. In the
chemometrics literature that studies the MCR problem, the following definitions are
used [35]:

\bullet Full uniqueness: All profiles of all components are unique; that is, all columns
of C and S are identifiable. This coincides with Definition 2 above.

\bullet Partial uniqueness: Both profiles of one or more, but not all, components are
unique.

\bullet Fractional uniqueness: A single profile of a component is recovered uniquely,
while the others are not necessarily. This coincides with Definition 3 below.

\bullet Nonuniqueness: No profile is identifiable; that is, a unique solution does not
exist even for a single profile. This definition would be different from the
NMF literature, where nonuniqueness means that at least one profile is not
identifiable.

In this paper, we will focus on full identifiability (Definition 2) and partial iden-
tifiability which we define as follows.

Definition 3 (partial identifiability in exact NMF). Let R= C \star S
\top 
 \star be an exact

NMF of R of size r. The kth column of C \star is identifiable if and only if, for any other
exact NMF of R= CS\top of size r, there exist an index set j and a scalar \alpha > 0 such
that

C(:, j) = \alpha C \star (:, k).

Similarly, we can define the identifiability of the kth column of S \star using symmetry,
which is referred to as the duality principle in the chemometrics literature [32], since
R = C \star S

\top 
 \star if and only if R\top = S \star C

\top 
 \star . We will focus in this paper on the partial

identifiability of the first factor, C \star , without loss of generality (w.l.o.g.) by symmetry
of the problem: any result that applies to C \star applies to S \star .

Most results on the identifiability of exact NMF focus on the case r = rank(R),
as it is the most reasonable in most applications. We will also focus on this case in
this paper.

Contribution and outline of the paper. Although partial identifiability has been
considered in the chemometrics literature, there does not exist, to the best of our
knowledge, a detailed formal description (that is, a formal mathematical theorem) of
the assumptions needed to obtain such results, nor do rigorous proofs exist. The main
contribution of this paper is to provide several new theorems regarding the partial
identifiability of exact NMF.

The paper is organized as follows: In section 2, we briefly recall the geometric
interpretation of exact NMF on which our results and many identifiability results in
the literature rely on. In section 3, we review important results on the identifiability

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/2

4/
23

 to
 1

93
.1

90
.2

08
.3

8 
by

 N
ic

ol
as

 G
ill

is
 (

ni
co

la
s.

gi
lli

s@
um

on
s.

ac
.b

e)
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



30 NICOLAS GILLIS AND R\'OBERT RAJK\'O

of exact NMF that will be useful in our discussions. Section 4 contains our main
contributions, namely,

\bullet the restricted data-based uniqueness (DBU) theorem (Theorem 6), a partial
identifiability theorem for exact NMF;

\bullet a geometric interpretation of the restricted DBU theorem (Lemma 1), which
will lead us to a new partial identifiability theorem for exact NMF
(Theorem 7);

\bullet a new theorem allowing us to use any partial identifiability theorem sequen-
tially to guarantee the uniqueness of several columns of C and S
(Theorem 8);

\bullet a new partial identifiability theorem for exact NMF in the special case r= 3
(Theorem 9).

Finally, in section 5, we discuss the practical implications of our result, provide
an algorithm to automatically check partial identifiability in an exact NMF which
is available at https://gitlab.com/ngillis/nmf-partial-identifiability along with all the
examples presented in the paper, and illustrate the algorithm in an example from the
chemometrics literature. Note that we also provide small examples throughout the
paper to illustrate our theoretical results.

2. Preliminary: Geometric interpretation of exact NMF. Most results
on the identifiability of exact NMF rely on its geometric interpretation, including the
results of this paper. We therefore briefly recall it here for completeness.

For an exact NMF R = CS\top , we can assume w.l.o.g. that R, C, and S\top are
column stochastic; that is, the entries in each column sum to one. Hence each column
of R, C, and S\top has unit \ell 1-norm (a.k.a. absolute sum norm, area norm, grid norm,
taxi cabnorm, Manhattan norm). The \ell 1-norm coincides with the so-called Borgen
norm with z = e in the chemometrics literature, where e is the vector of all ones of
appropriate dimension [16, 33]. In fact, one can first remove zero columns and rows of
R and remove the corresponding columns and rows of S\top and C, respectively, which
do not bring any useful information, while it may lead to numerical problems [31].
Then one can normalize R=CS\top as follows:

(2) Rn(:, j) :=
R(:, j)

R(:, j)\top e
=

r\sum 
k=1

C(:, k)

C(:, k)\top e\underbrace{}  \underbrace{}  
:=Cn(:,k)

C(:, k)\top e

R(:, j)\top e
S(j, k)\underbrace{}  \underbrace{}  

:=Sn(j,k)

=

r\sum 
k=1

Cn(:, k)Sn(j, k).

Hence Rn =CnS
\top 
n , where Rn and Cn are column stochastic (that is, e\top = e\top Rn and

e\top Cn = e\top ) by construction, while S\top 
n is because

(3) e\top = e\top Rn = e\top CnS
\top 
n = e\top S\top 

n .

Let us therefore assume, w.l.o.g., that R, C, and S\top are column stochastic. See the
chemometrics analogue using Borgen norms and closure in [30, 33]. This means that,
after normalization, the columns of R belong the convex hull of the columns of C that
are column stochastic since, for all j,

R(:, j) =

r\sum 
k=1

C(:, k)S(j, k) =CS(j, :)\top ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PARTIAL IDENTIFIABILITY FOR NMF 31

where S(j, :)\top \in \Delta = \{ x | x \geq 0, e\top x = 1\} , with \Delta being the probability simplex of
appropriate dimension. In the case r = rank(R), we must have col(R) = col(C), and
therefore

conv(R) \subseteq conv(C) \subseteq \Delta \cap col(R),

where conv(R) = \{ x | x = Ry,y \in \Delta \} ; see, e.g., [12, Chapter 2]. Hence exact
NMF reduces to finding a polytope (that is, a bounded polyhedron), conv(C) with
r vertices (the columns of C), nested between conv(R) and \Delta \cap col(R). This is the
so-called nested polytope problem (NPP) in computational geometry which is defined
as follows.

Definition 4 (NPP). Given a full-dimensional inner polytope defined by its ver-
tices \{ v1, v2, . . . , vn\} , that is,

\scrP inn = conv([v1, v2, . . . , vn])\subseteq \BbbR d,

a full-dimensional outer polytope defined by its facets1

\scrP out = \{ x\in \BbbR d | Fx+ g\geq 0\} , where F \in \BbbR m\times r and g \in \BbbR m,

such that \scrP inn \subseteq \scrP out, and an integer p\geq d+ 1, find a polytope, \scrP bet, with p vertices
nested between \scrP inn and \scrP out, that is, \scrP inn \subseteq \scrP bet \subseteq \scrP out.

The polytope conv(R) is typically not full-dimensional since m> r in most cases.
In fact, conv(R) has dimension rank(R) - 1, and the NPP corresponding to the exact
NMF of R satisfies d= rank(R) - 1. However, up to restricting the solution space to
the affine hull of R, the set conv(R) plays the role of \scrP inn in the NPP and \Delta \cap col(R)
the role of \scrP out.

Theorem 1 ([39]). The exact NMF problem with r = rank(R) is equivalent to
an NPP with d= rank(R) - 1 and p= d+ 1 and vice versa.

The equivalence between exact NMF and the NPP can be used to study the
identifiability of exact NMF. For example, for rank(R) = r = 2, the NPP is trivial
since \scrP inn and \scrP out are one-dimensional polytopes, that is, segments [23]; see also,
e.g., [34]. The exact NMF of R when r = 2 is unique if and only if \scrP inn = \scrP out in
the corresponding NPP, which leads to necessary and sufficient conditions of R; see
section 3.

For r= 3, the NPP has dimension two and has been used extensively in the MCR
literature to study the identifiability of exact NMF; see, e.g., [6, 13, 36]. They refer
to the NPPs with feasible regions as Borgen--Rajk\'o plots; see below for an example
of NPPs and also section 4. In this case, it is particularly useful to know how to
reduce an instance of exact NMF to the NPP and vice versa. Let us briefly recall
these reductions which we will use later in the paper.

From exact NMF to the NPP. Let R be an instance of exact NMF with r =
rank(R). First remove zero columns and rows of R, and normalize R to become
column stochastic. Let \scrL be the index set of r linearly independent columns of R so
that R = R(:,\scrL )V \geq 0 for some V . Since R and U = R(:,\scrL ) are column stochastic,

1A facet of a d-dimensional polytope is a (d - 1)-dimensional face. The face of a polytope is the
intersection of that polytope with any closed half space whose boundary is disjoint from the interior
of the polytope. For the polytope \scrP out, each facet will have the form \{ x \in \scrP out | F (i, :)x+ gi = 0\} 
for some i.
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32 NICOLAS GILLIS AND R\'OBERT RAJK\'O

the entries in each column of V sum to one by the same argument as in (3). We define
vj = V (1 : r - 1, j) for j = 1,2, . . . , n whose convex hull forms \scrP inn, while

\scrP out = \{ x\in \BbbR r - 1 | U(:,1 : r - 1)x+U(:, r)(1 - e\top x)\geq 0\} .

This NPP instance has a solution with r vertices if and only if R admits an exact
NMF of size r [39].

From NPP to exact NMF. This reduction is particularly useful to construct ma-
trices coming from NPP problems in two dimensions. Given an NPP instance, the
matrix R is constructed as follows: for all j = 1,2, . . . , n

R(:, j) = Fvj + g, where R(:, j)\geq 0 since vj \in \scrP inn \subseteq \scrP out.

The matrix R admits an exact NMF of size r if and only if the NPP instance has a
solution with r vertices [39]. Observe that each row of R corresponds to a facet of
\scrP out and each column to a vertex of \scrP inn, while R(i, j) is the so-called slack of the
jth vertex with respect to the ith facet, namely, R(i, j) = F (i, :)vj + gi.

Example 1. Let us consider the NPP where \scrP out is the unit square [0,1]2 defined
with the inequalities Fx+ g\geq 0, where

F =

\biggl( 
0 0 1  - 1
1  - 1 0 0

\biggr) \top 

, g=
\bigl( 
0 1 0 1

\bigr) \top 
,

while \scrP inn is the quadrilateral with the four vertices v1 = (0.5,0), v2 = (0,0.5),
v3 = (0.25,0.75), and v4 = (0.75,0.25); see Figure 2 for an illustration.

The matrix R of the corresponding exact NMF problem is given by R(:, j) =
Fvj + g for all j, that is,

R=
1

4

\left(    
0 2 3 1
4 2 1 3
2 0 1 3
2 4 3 1

\right)    .

Looking at Figure 2, we observe that the unique nested triangle between \scrP inn and
\scrP out has the vertices s1 = (0,0), s2 = (1,0), and s3 = (0,1), implying that R has a
unique exact NMF of size 3, given by

FIG. 2. Illustration of the NPP instance described in Example 1.
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PARTIAL IDENTIFIABILITY FOR NMF 33

R=
1

4

\left(    
0 2 3 1
4 2 1 3
2 0 1 3
2 4 3 1

\right)    =
1

4

\left(    
0 0 1
1 1 0
0 1 0
1 0 1

\right)    
\left(  2 2 0 0

2 0 1 3
0 2 3 1

\right)  .

The first factor, C, in the above decomposition is obtained using C(:, j) = Fsj + g for
j = 1,2,3.

3. Previous works on the identifiability of exact NMF. The conditions
that makes exact NMF identifiable have been studied extensively in the literature. In
this section, we briefly review some of the important works on the identifiability of
exact NMF.

3.1. Full identifiability. Let us first discuss some conditions under which exact
NMF is fully identifiable, as in Definition 2.

Necessary condition. Let us state a necessary condition for exact NMF to be fully
identifiable. The condition has been rediscovered several times and is relatively easy
to prove. It is based on the support of the columns of C \star and S \star , the support being
the set of indices containing the nonzero entries.

Theorem 2. Let R = C \star S
\top 
 \star be a fully identifiable exact NMF of R of size r.

Then, the support of any column of C \star (resp., S \star ) does not contain the support of any
other column of C \star (resp., S \star ).

Proof. If a column of C \star , say C \star (:,1), contains the support of another column, say
C \star (:,2), then C\epsilon (:,1) =C \star (:,1) - \epsilon C \star (:,2)\geq 0 for \epsilon > 0 sufficiently small, which allows
us to construct another exact NMF. In fact, taking S\epsilon (:,2) = S \star (:,2) + \epsilon S \star (:,1) \geq 0
and keeping the other columns untouched, that is, C\epsilon (:, k) = C \star (:, k) for all k \not = 1
and S\epsilon (:, k) = S \star (:, k) for all k \not = 2, we obtain an exact NMF C\epsilon S

\top 
\epsilon which is not a

permutation and scaling of C \star S
\top 
 \star .

Interestingly, this condition is also sufficient when r= 2, which is the only case for
which we have a necessary and sufficient condition for exact NMF to be identifiable.
For r= 2, this means that exact NMF is identifiable if and only if C \star and S \star contain
a 2-by-2 diagonal submatrix: each of the two columns of C \star (resp., S \star ) must contain
a positive entry where the other column has a zero entry.

Sufficient condition based on separability. Several identifiability results for exact
NMF are based on the separability condition, defined as follows.

Definition 5 (separability). The matrix C \in \BbbR m\times r with m \geq r is separable if
there exists an index set \scrK of size r such that C(\scrK , :)\in \BbbR r\times r is a nonsingular diagonal
matrix.

Equivalently, the separable conditions requires that, for each k= 1,2, . . . , r, there
exists an index j such that C(j, :) = \alpha e\top (k) for some \alpha > 0, where e(k) is the kth
unit vector (that is, the kth column of the identity matrix; recall that the notation
e without the subscript (k) is for the all-one vector, that is, the vector of all ones
of appropriate dimension). The separability condition was introduced in the NMF
literature by Donoho and Stodden [10]. We have the following result.

Theorem 3. Let R= C \star S
\top 
 \star be an exact NMF of R of size r. If C \star and S\top 

 \star are
separable, then R=C \star S

\top 
 \star is fully identifiable.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/2

4/
23

 to
 1

93
.1

90
.2

08
.3

8 
by

 N
ic

ol
as

 G
ill

is
 (

ni
co

la
s.

gi
lli

s@
um

on
s.

ac
.b

e)
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



34 NICOLAS GILLIS AND R\'OBERT RAJK\'O

It is difficult to trace back the origin of Theorem 3, and it does explicitly appear in
[10], although it can be derived from their result, where they relax the condition on C \star .
Other sufficient conditions based on separability have been proposed in the literature,
where S \star is required to be separable, while there are some sparsity conditions on
C \star [21]. The results of this paper will be of this flavor but will focus on partial
identifiability.

Sufficiently scattered condition. The separability condition for both factors, C
and S\top , is rather strong and not satisfied by most data sets; see, e.g., the discussion
in [12, Chapter 4]. It can be relaxed to the following condition while retaining the
full identifiability.

Definition 6 (sufficiently scattered condition). The matrix C \in \BbbR m\times r with
m\geq r satisfies the sufficiently scattered condition (SSC) if there is the following:

1. \{ x\in \BbbR r
+ | e\top x\geq 

\surd 
r - 1\| x\| 2\} \subseteq cone(C\top ) = \{ x | x=C\top h for h\geq 0\} .

2. There does not exist any orthogonal matrix Q such that cone(C\top )\subseteq cone(Q),
except for permutation matrices. (An orthogonal matrix Q is a square matrix
such that Q\top Q= I.)

Geometrically, separability requires that cone(C\top ) is the nonnegative orthant,
while the SSC only requires cone(C\top ) to contain the second-order (ice-cream) cone
tangent to every facet of the nonnegative orthant.

Theorem 4 ([17]). Let R = C \star S
\top 
 \star be an exact NMF of R of size r. If C \star and

S\top 
 \star satisfy the SSC, then R=C \star S

\top 
 \star is fully identifiable.

It is out of the scope of this paper to discuss in detail the geometric interpretation
of the SSC. An important issue with the SSC is that it is NP-hard to check in general
[17]. We refer the reader to [17], [11], and [12, Chapter 4] for more details. We will
briefly compare the SSC with our conditions in Remark 3.

Other full identifiability results for NMF are based on sparsity conditions; see the
recent paper [1] and the references therein.

3.2. Partial identifiability. In the MCR literature, the set of feasible solutions
(SFS) of exact NMF, a.k.a. the feasible regions (FRs), has been extensively studied,
especially in small dimensions (r= 3,4) [13]. Several algorithms exist; the best-known
one is the first developed for r= 2 by Lawton and Sylvestre [23] who introduced and
coined the special term self-modeling curve resolution (SMCR) for finding all feasible
solutions for a matrix decomposition with the nonnegativity constraint. In general, the
goal of MCR (and NMF) algorithms is to compute one set of particular profiles (that
is, generate one solution) without considering the fact that other profiles (solutions)
may exist with the same properties (namely, satisfying the same constraints and hav-
ing the same objective function value). Rerunning several times these algorithms with
different initializations can help to detect the nonuniqueness; however, in general, this
process cannot generate the SFS. For r = 3, after several randomized/approximate
trials, Borgen and Kowalski [6] published an analytical solution using the tangent and
the simplex rotation algorithms. These algorithms were found mathematically hard
to understand and implement for nonmathematicians, e.g., chemists; thus it was not
developed further, although being cited in the chemometrics literature for 20 years.
Rajk\'o and Istv\'an [36] revised Borgen's study and could enlighten the concepts based
on the geometry of the abstract space. Computational geometry tools (including
convex hulls, Fourier--Motzkin elimination, double-description) were used for devel-
oping the algorithm to draw Borgen--Rajk\'o plots. The systematic grid search method
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PARTIAL IDENTIFIABILITY FOR NMF 35

was introduced to approximate the SFS/FRs numerically first for two-component
systems [40], and subsequently it was extended for three-component systems as well
[14]. Sawall et al. [38] developed the polygon inflation algorithm for three-component
systems as a faster and more accurate alternative to the grid search. The duality
concept was first used for calculating SFS/FRs for SMCR by Beyramysoltan, Ab-
dollahi, and Rajk\'o [5]. For r = 4, the first attempt appeared in 2013 [15] using the
triangle enclosure method to approximate the boundary of the two-dimensional slices.
Later in 2016, Sawall et al. [37] introduced the polyhedron inflation method as the
generalization of the polygon inflation one. The chapter [37], and a subsequent paper
[29] from the same research group, provided the most comprehensive summary for
the SFS/FRs and related concepts up to now. See also [22] for a recent sampling
algorithm for larger values of r and [2] for an improved algorithm for the boundary
curve construction along with an implementation.

Necessary condition for partial identifiability. Interestingly, the necessary condi-
tion for the identifiability for exact NMF based on the supports of the columns of C
can be extended to the partial identifiability case. Note that this result is, to the best
of our knowledge, not present in the literature, although it follows directly from the
proof of Theorem 2.

Theorem 5. Let R= C \star S
\top 
 \star be an exact NMF of R of size r. If the kth column

of C \star (resp., S \star ) is identifiable, then the support of the kth column of C \star (resp., S \star )
does not contain the support of any other column of C \star (resp., S \star ).

Proof. This proof is similar to that of Theorem 2.

Sufficient conditions for partial identifiability: DBU and restricted DBU theorems.
In the paper [35], a partial identifiability result for NMF is presented and discussed;
it is called the DBU concept. Data-based means there that it does not only use the
estimated profiles but also the data generated by them and all feasible profiles. It
was formulated based on band solutions, that is, using not just a particular set of
estimated profiles (that is, a particular exact NMF solution) but all feasible solutions
based on SMCR (that is, the corresponding NPP with FRs a.k.a. Borgen--Rajk\'o plots
[13]). Thus the SFS/FRs are needed to use the original DBU concept [35]. However,
as explained in section 3.2, there are working algorithms to get SFS/FRs only for up to
four-component systems. This fact inspired the development of the particular-profile
DBU or restricted DBU [20] that uses a particular solution. It was a step back to the
profile-based concept, which is also used in different ways by Maeder [25], Malinowski
[26], and Manne [28]. The concept was intended for practitioners (such as analytical
chemists) which is why both papers [20, 35] were published in Analytica Chimica
Acta; thus the rigorous mathematical descriptions are missing. In the following, the
lack of the formal descriptions and proofs will be remedied.

The idea [20] was restricted to analyze a particular solution relying on the fol-
lowing two conditions: Given R = C \star S

\top 
 \star , where C \star \in \BbbR m\times r

+ and S \star \in \BbbR n\times r
+ with

rank(R) = r,
\bullet (zero-region window) there exists a row of C \star , say the ith, such that C \star (i, k) =

0 and all feasible profiles C(i, p)> 0 for all p \not = k;
\bullet (selective window) there exists a row of S \star , say the jth, such that S \star (j, :) =

\alpha e\top (k) for some \alpha > 0, that is, S \star (j, k)> 0 and all feasible profiles S(j, p) = 0
for all p \not = k.

Let us comment on the two conditions above:

1. Zero-region window: This condition means that C \star (:, k) contains an entry
equal to zero, where all other entries of C \star in the same row are positive.
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36 NICOLAS GILLIS AND R\'OBERT RAJK\'O

Geometrically, this means that C \star (:, k) is the only column of C \star on some
facet of the nonnegative orthant.

2. Selective window: This condition means that there exists a column of R, say
the jth, such that R(:, j) = \gamma C(:, k) for some \gamma > 0. In other words, it means
that the kth column of C appears, up to scaling, in the data set. This is
closely related to the separability condition in the NMF literature; see the
previous section 3.1. In fact, all columns of C \star satisfy the selective window
condition if and only if S\top 

 \star is separable.
As was mentioned above, the restricted DBU concept in [20] does not have a

formal statement, nor a formal proof. Authors provide an informal one with expla-
nations, focusing on the intuitions behind their result, which is more suitable for
non--mathematically trained practitioners.

4. Partial identifiability theorems for exact NMF. In this section, we
propose a rigorous statement and proof for the restricted DBU concept from [20];
see Theorem 6 (section 4.1). In section 4.2, we provide a geometric interpretation
of Theorem 6. This leads us to a new partial identifiability result for exact NMF,
Theorem 7, in section 4.3. In section 4.4, we show how to apply Theorems 6 and 7
to allow the identifiability of more than one column of C \star ; see Theorem 8. Finally, in
section 4.5, we use the geometric interpretation of Theorem 7 to obtain a new partial
identifiability result for the special case r= 3; see Theorem 9.

4.1. Restricted DBU theorem. Let us state and prove the restricted DBU
theorem.

Theorem 6 (restricted DBU theorem). Let R = C \star S
\top 
 \star , where C \star \in \BbbR m\times r

+ and
S \star \in \BbbR n\times r

+ with rank(R) = r. The kth column of C \star is identifiable if the following two
conditions hold:

\bullet (Full-rank zero-region window (FRZRW)) Let \scrI = \{ i | C \star (i, k) = 0\} be the
complement of the support of the kth column of C \star . The submatrix of C \star 

formed by the rows indexed by \scrI has rank r - 1, that is, rank(C \star (\scrI , :)) = r - 1.
\bullet (Selective window) There exists a row of S \star , say the jth, such that S \star (j, :) =

\alpha e\top (k) for \alpha > 0.

Proof. Let R = CS\top be an exact NMF of R of size r, that is, C \in \BbbR m\times r
+ and

S \in \BbbR n\times r
+ . We need to show that C(:, \ell ) = \beta C \star (:, k) for some \ell and some \beta > 0.

Since R = CS\top = C \star S
\top 
 \star and since S \star (j, :) = \alpha e\top (k) for some \alpha > 0 (selective window

condition), we have

(4) R(:, j) =C \star S \star (j, :)
\top = \alpha C \star (:, k) =CS(j, :)\top =

r\sum 
p=1

C(:, p)S(j, p).

Let us denote the set of indices corresponding to columns of C that have zero elements
in \scrI as

\scrP = \{ p | C(\scrI , p) = 0\} \subseteq \{ 1,2, . . . , r\} 

and \scrP = \{ 1,2, . . . , r\} \setminus \scrP as its complement. By nonnegativity of all the terms in (4),
S(j, p) = 0 for all p \in \scrP ; otherwise a zero entry of C \star (:, k) is approximated by a
positive one since C(\scrI , p) \not = 0 for p \in \scrP . Note that | \scrP | \geq 1; otherwise C \star (:, k) cannot
be reconstructed since C \star (:, k) \not = 0 as rank(C \star ) = r. Below, we prove that | \scrP | \geq r - 1,
and hence | \scrP | \leq 1. This will imply that | \scrP | = 1, that is, \scrP = \{ \ell \} for some \ell . Putting
this back into (4), this gives
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PARTIAL IDENTIFIABILITY FOR NMF 37

\alpha C \star (:, k) =
\sum 

p\in \scrP =\{ \ell \} 

C(:, p)S(j, p) +
\sum 
p\in \scrP 

C(:, p)S(j, p)\underbrace{}  \underbrace{}  
=0

=C(:, \ell )S(j, \ell ),

where S(j, \ell ) > 0 since C \star (:, k) \not = 0 and \alpha > 0. Finally, C(:, \ell ) = \alpha 
S(j,\ell )C \star (:, k) which

completes the proof.
It remains to show that | \scrP | \geq r - 1. For this, let us show that the rank of R(\scrI , :)

is r  - 1. First, note that rank(R) = rank(C \star S \star ) = rank(C \star ) = rank(S \star ) = r by the
conditions that rank(R) = r, R=C \star S

\top 
 \star ; both C \star and S \star have r columns. Then,

R(\scrI , :) =C \star (\scrI , :)S\top 
 \star =

\sum 
p \not =k

C \star (\scrI , p)S \star (:, p)
\top =C \star (\scrI ,\scrK )S \star (:,\scrK )\top ,

where \scrK = \{ 1,2, . . . , r\} \setminus \{ k\} . By the FRZRW condition, rank(C \star (\scrI ,\scrK )) = r - 1, while
we have rank(S \star (:,\scrK )) = r - 1 since it is made of r - 1 columns of S \star that have rank
r. Since both factors in the decomposition R(\scrI , :) =C \star (\scrI ,\scrK )S \star (:,\scrK )\top have full rank
r - 1, rank(R(\scrI , :)) = r - 1. Now, since R=CS\top , we also have

R(\scrI , :) =C(\scrI , :)S\top =C(\scrI ,\scrP )S(:,\scrP )\top +C(\scrI ,\scrP )S(:,\scrP )\top =C(\scrI ,\scrP )S(:,\scrP )\top 

since C(\scrI ,\scrP ) = 0 by definition. As shown above, rank(R(\scrI , :)) = r  - 1. This implies
that C(\scrI ,\scrP ) has at least r - 1 columns, that is, | \scrP | \geq r - 1.

Let us illustrate Theorem 6 in a simple example.

Example 2. Let us consider

R=

\left(      
2 2 2
1 3 1
1 1 3
0 2 2
0 1 2

\right)      
\underbrace{}  \underbrace{}  

C \star 

\left(  1 0 0
0 1 0
0 0 1

\right)  
\underbrace{}  \underbrace{}  

S\top 
 \star 

.

By Theorem 6, the first column of C \star is uniquely identifiable since the two conditions
of Theorem 6 are satisfied.

1. (FRZRW) C \star (\scrI ,1) = 0 for \scrI = \{ 4,5\} , while

rank
\bigl( 
C \star (\scrI ,\scrK )

\bigr) 
= rank

\biggl( 
2 2
1 2

\biggr) 
= 2, where \scrK = \{ 2,3\} .

2. (Selective window) S(1, :) = e\top (1) so that R(:,1) =C \star (:,1).

Remark 1. In the example above, S \star is the identity matrix with n = r, which is
not realistic, is not a very interesting NMF decomposition (it is the trivial decompo-
sition, R = RI), and would be useless in practice. However, for our purpose, such
examples are enough. One could add any number of rows to S \star and replace the iden-
tity matrix by a diagonal matrix to make it more realistic, but it would not change
our observations and discussions about the identifiability.

Remark 2. The strengthened FRZRW condition compared to the zero-region
window condition used in [20] comes from the fact that Theorem 6 provides a global
uniqueness result. The result in [20] implicitly focuses on locally unique (a.k.a. locally
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38 NICOLAS GILLIS AND R\'OBERT RAJK\'O

FIG. 3. Illustration of the NPP instance corresponding to the matrix R in (5). The nested
polygon corresponding to the trivial factorization in (5), R = R I, is \scrP inn itself, while the nested
polygon corresponding to the factorization in (6) is denoted \scrP bet.

rigid) solutions; see [19] for more details on local uniqueness and rigidity of exact NMF
solutions. For example,

(5) R=

\left(    
2 2 2
1 3 1
1 1 3
0 2 2

\right)    
\underbrace{}  \underbrace{}  

=C \star 

\left(  1 0 0
0 1 0
0 0 1

\right)  
\underbrace{}  \underbrace{}  

=S\top 
 \star 

satisfies the zero-region window and selective window conditions for the first column
of C \star : the last row, [0,2,2], is a zero-region window, while the first row of S \star is
e(1)\top and hence is a selective window. However, this first column is not uniquely
identifiable, up to scaling, as there exists another decomposition where that column
does not appear (up to scaling):

(6) R=

\left(    
2 2 2
1 3 1
1 1 3
0 2 2

\right)    =

\left(    
1 1 0
1 0 1
0 1 1
0 0 2

\right)    
\left(  1 2 0

1 0 2
0 1 1

\right)  .

However, in the first factorization, in (5), the first column of R is actually locally
unique: any nearby exact NMF factorization must contain R(:,1) as a column up
to scaling. Note that, in the second factorization above, in (6), all columns of the
first factor are locally partially identifiable; see Figure 3 for the corresponding NPP
instance.

An interesting direction of research would be to analyze conditions under which
solutions are partially locally unique.

Remark 3(FRZRW and SSC). It turns out that the FRZRW condition for each
column of C is a necessary condition for the SSC. In fact, the SSC requires that
C has at least r  - 1 zero per column, while the submatrix C(\scrI ,\scrK ) (using the same
notation as in the proof of Theorem 6) needs to contain the all-one vector in its
relative interior [12, Theorem 4.28] which requires that the rank of C(\scrI ,\scrK ) is equal to
r - 1.
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PARTIAL IDENTIFIABILITY FOR NMF 39

Hence the SSC is stronger than the FRZRW condition. However, if both C \star and
S\top satisfy the SSC, the exact NMF of R= CS\top is unique, which is not the case for
the FRZRW condition. For example, the following matrix

C\top 
 \star =

\left(    
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
1 1 1 0 0 0

\right)    
satisfies the FRZRW condition, but CC\top does not admit a unique NMF, e.g., C \star C

\top 
 \star =

CC\top , where

C\top =

\left(    
1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1

\right)    ;

see [12, Example 4.29].

In the next section, section 4.2, we show that Theorem 6 has a simple geomet-
ric interpretation in terms of the NPP. This will be used to obtain a new partial
identifiability result for exact NMF in section 4.3 (Theorem 7).

4.2. Geometric interpretation of the restricted DBU theorem (Theo-
rem 6). Let us consider an NPP with \scrP inn \subseteq \scrP out, and make the following simple
observation. If a vertex, v, of the inner polytope, \scrP inn, coincides with a vertex of
the outer polytope, \scrP out, then it has to belong to any nested polytope, \scrP bet. In fact,
since \scrP inn \subseteq \scrP bet \subseteq \scrP out and v \in \scrP inn \cap \scrP out, we must have v \in \scrP bet.

It turns out the conditions of Theorem 6 (namely, the selective window and
FRZRW conditions) are equivalent to the condition that the inner and outer poly-
topes in the corresponding NPP share a vertex but written in algebraic terms. Let
us prove this equivalence. We will then use this geometric insight to provide a new
partial identifiability result in section 4.3.

In this section, we work on the outer polytope directly obtained from the reduction
from exact NMF to the NPP; see section 2. It is given by

\scrC = col(C)\cap \Delta = \{ x | x=Cz \geq 0, e\top x= 1\} = \{ Cz | Cz \geq 0, e\top z = 1\} ,

where C is normalized to be column stochastic, so that x=Cz is column stochastic if
and only if e\top z = 1 since e\top x= e\top Cz = e\top z. It will be useful to note that the facets
of \scrC have the form \{ Cz \in \scrC | (Cz)i =C(i, :)z = 0\} for some i.

Let us define the smallest dimensional face of the outer polytope, \scrC , containing a
given point.

Definition 7 (minimal face of \scrC containing y). Given a column stochastic ma-
trix, C \in \BbbR m\times r

+ , and the vector y \in \scrC = col(C)\cap \Delta , we define

\scrF C(y) = \{ x\in \scrC | supp(x)\subseteq supp(y)\} .(7)

The set \scrF C(y) can be characterized as follows:

\scrF C(y) = \{ Cz | z \in \BbbR r,Cz \geq 0, (Cz)i = 0 when yi = 0, z\top e= 1\} .

This means that all the points in \scrF C(y) have to belong to the same facets of \scrC as
y. Hence \scrF C(y) is the face of \scrC of minimal dimension containing y because a face
of a polytope is obtained by intersecting a subset of its facets. Note that a vertex
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40 NICOLAS GILLIS AND R\'OBERT RAJK\'O

of a poltyope is a zero-dimensional face, and hence y is a vertex of \scrC if and only if
\scrF C(y) = \{ y\} .

Let us now prove that the FRZRW condition of Theorem 6 is equivalent to the fact
that C(:, k) is a vertex of \scrC = col(C) \cap \Delta , that is, \scrF C(C(:, k)) = \{ C(:, k)\} . Note that
the selective window assumption of Theorem 6 will require that the inner polytope
has a vertex corresponding to C(:, k).

Lemma 1. Given a nonsingular column stochastic matrix, C \in \BbbR m\times r
+ , the FRZRW

condition on the kth column of C is equivalent to the following geometric condition:

(8) \scrF C

\bigl( 
C(:, k)

\bigr) 
=

\bigl\{ 
C(:, k)

\bigr\} 
.

Proof. Recall that \scrI denotes the set of indices corresponding to the zero entries
in C(:, k), and let us denote \scrI its complement which is the support of C(:, k).

\Rightarrow Assume the FRZRW condition holds. Let x = Cz \in \scrF C(C(:, k)), that is,
Cz \geq 0, (Cz)i = 0 for i\in \scrI , z\top e= 1. The condition (Cz)i = 0 for i\in \scrI can be written
as C(\scrI , :)z = 0. Since C(\scrI , k) = 0, by definition, this requires C(\scrI ,\scrK )z(\scrK ) = 0, where
\scrK = \{ 1,2, . . . , r\} \setminus \{ k\} and the rank of C(\scrI ,\scrK ) is r - 1, by the FRZRW condition, and
hence z(\scrK ) = 0. This implies that z = e(k) since z\top e= 1, and therefore (8) holds.

\Leftarrow Assume (8) holds. Since C is nonsingular, (8) is equivalent to assuming that
the solution to the system

Cz \geq 0,C(\scrI , :)z = 0, e\top z = 1,

is unique and given by z = e(k). The SFS of the above system can be written as

\scrZ = \{ z | C(\scrI , :)z \geq 0,C(\scrI ,\scrK )z(\scrK ) = 0, e\top z = 1\} .

Because of (8) and C being nonsingular, \scrZ = \{ e(k)\} . Since C(\scrI , k)> 0, by definition,
z = e(k) belongs to the relative interior of \scrZ . Let us show that rank(C(\scrI ,\scrK ))< r - 1
implies that the relative interior of \scrZ is made of more than one point, leading to a
contradiction, and hence rank(C(\scrI ,\scrK )) = r - 1 since | \scrK | = r - 1. Let y \not = 0 belong to
the kernel of C(\scrI ,\scrK ), that is, C(\scrI ,\scrK )y = 0, with e\top y = \beta \in \BbbR . Let us define z\prime \in \BbbR r

as follows: z\prime (\scrK ) = \alpha y and z\prime (k) = 1 - \alpha \beta so that e\top z\prime = 1. For \alpha sufficiently small,
we have C(\scrI , :)z\prime > 0 since

C(\scrI , :)z\prime = \alpha C(\scrI ,\scrK )y+C(\scrI , k)\underbrace{}  \underbrace{}  
>0

(1 - \alpha \beta ),

and hence z\prime \in \scrZ while z\prime \not = e(k).

Lemma 1 implies that, for r = 2, the conditions of Theorem 6 are necessary
and sufficient since the condition that \scrP inn and \scrP out have a vertex that coincides is
necessary and sufficient; see section 3.

4.3. New partial identifiability theorem for exact NMF. By Theorem 2,
for a column of C to be identifiable, it has to belong to at least one facet of \scrC where the
other columns of C are not located. In fact, its support cannot contain the support of
any other column of C. Geometrically, this means that, for C(:, k) to be identifiable,
a necessary condition is that \scrF C(C(:, k)) is a face of dimension smaller than or equal
to r  - 2 (recall that \scrC has dimension r  - 1), where no other column of C is located,
that is,

C(:, j) /\in \scrF C

\bigl( 
C(:, k)

\bigr) 
for all j \not = k.
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PARTIAL IDENTIFIABILITY FOR NMF 41

Inspired by this observation, we obtain a new sufficient condition for partial iden-
tifiability in the following theorem.

Theorem 7. Let R=C \star S
\top 
 \star , where C \star \in \BbbR m\times r

+ and S \star \in \BbbR r\times n
+ with rank(R) = r.

W.l.o.g., assume R,C \star and S\top 
 \star are column stochastic; see (3) and (2). The kth column

of C \star is identifiable if it satisfies the selective window condition, and there exists a
subset, \scrJ , of r  - 1 columns of R, namely, R(:,\scrJ ), such that rank(R(:,\scrJ )) = r  - 1
and, for all j \in \scrJ ,

(9) \scrF C \star 

\bigl( 
C \star (:, k)

\bigr) 
\cap \scrF C \star 

\bigl( 
R(:, j)

\bigr) 
= \emptyset ;

that is, the minimal face on which the kth columns of C \star lie on does not intersect the
minimal faces on which the columns of R(:,\scrJ ) lie on.

Proof. Let R = CS\top be another exact NMF of R of size r, where, w.l.o.g., we
assume C and S are column stochastic. Let \scrK = \{ 1,2, . . . , r\} \setminus \{ k\} . We have

R=C \star (:, k)S \star (:, k)
\top +C \star (:,\scrK )S \star (:,\scrK )\top =

r\sum 
j=1

C(:, j)S(:, j)\top .

Let us introduce the following terminology: given two nonnegative matrices, A and
B, of the same dimension, we say that A touches B if there exists (i, j) such that
A(i, j) > 0 and B(i, j) > 0. Below, we show that (9) implies that, for j = 1,2, . . . , r,
it is not possible that C(:, j)S(:, j)\top touches C \star (:, k)S \star (:, k)

\top while C(:, j)S(\scrJ , j)\top 
touches R(:,\scrJ ). Since R(:,\scrJ ) has rank r - 1, by the exclusion principle, exactly one
rank-one factor touches C \star (:, k)S \star (:, k)

\top , and hence it has to coincide with it.
Assume C(:, p)S(:, p)\top touches C \star (:, k)S \star (:, k)

\top and C(:, p)S(\scrJ , p)\top touches R(:
,\scrJ ) for some p. As rank(R(:,\scrJ )) = r - 1, R(:, j) \not = 0 for all j \in \scrJ . Since C(:, p)S(:, p)\top 

touches C \star (:, k)S \star (:, k)
\top , the support of C(:, p) is contained in the support of C \star (:, k),

and hence C(:, p) \in \scrF C \star (C \star (:, k)). By (9), C(:, p) /\in \scrF C \star (R(:, j)) for all j \in \scrJ ; that
is, the support of C(:, p) is not contained in the support of any column of R(:,\scrJ )
implying that it cannot touch any column of R(:,\scrJ ), a contradiction.

The condition in Theorem 7 implies that the kth column of S \star contains at least
r  - 1 entries equal to zero, namely, S \star (\scrJ , k) = 0, since (9) requires that the support
of R(:, j) for j \in \scrJ does not contain the support of C \star (:, k).

Example 3. Let us consider the NPP where \scrP out is the unit square [0,1]2 as in
Example 1, while \scrP inn is the triangle with the vertices v1 = (0.5,0), v2 = (0.2,1), and
v3 = (0.8,1); see Figure 4 for an illustration.

The matrix R of the corresponding exact NMF problem is given by R(:, j) =
Fvj + g for all j, that is,

R=

\left(    
0 1 1
1 0 0
0.5 0.2 0.8
0.5 0.8 0.2

\right)    =

\left(    
0 1 1
1 0 0
0.5 0 1
0.5 1 0

\right)    
\left(  1 0 0

0 0.8 0.2
0 0.2 0.8

\right)  .

The first column of C satisfies the selective window assumption, while we observe
in Figure 4 that Theorem 7 applies using R(:, [2,3]) whose minimal faces do not
intersect with that of C \star (:,1) which is therefore identifiable. Note that the restricted
DBU Theorem 6 is not applicable to C \star (:,1) since it does not correspond to a vertex
of \scrP out.
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42 NICOLAS GILLIS AND R\'OBERT RAJK\'O

FIG. 4. Illustration of the NPP instance described in Example 3.

It is important to note the following:
\bullet Theorem 7 does not subsume Theorem 6 which applies to a column of C

which is a vertex of \scrP out in which case the existence of a subset of col-
umns of R satisfying (9) is not necessary. For example, taking \scrP out as
the square in two dimensions, as above, and taking the vertices of \scrP inn as
v1 = (0,0) (bottom left corner), v2 = (0,0.5), and v3 = (0.5,0), the conditions
of Theorem 7 do not apply to the first column of C (corresponding to v1
since the minimal faces of v2 and of v3 contain v1), while Theorem 6 does
apply.

\bullet For condition (9) to be satisfied, a necessary, but not sufficient, condition is
that the supports of C \star (:, k) and R(:, j) are not contained in one another. In
fact, this support condition implies that \scrF C \star 

(C \star (:, k)) and \scrF C \star 
(R(:, j)) are

distinct faces but not that their intersection is empty.
Theorem 7 can be directly used to obtain a full identifiability result.

Corollary 1. Let R=C \star S
\top 
 \star , where C \star \in \BbbR m\times r

+ and S \star \in \BbbR r\times n
+ with rank(R) = r.

W.l.o.g., assume R,C \star and S\top 
 \star are column stochastic. If

1. every column of C \star satisfies the selective window assumption, that is, S\top 
 \star is

separable, and
2. the following holds for all k \not = j,

\scrF C \star 

\bigl( 
C \star (:, k)

\bigr) 
\cap \scrF C \star 

\bigl( 
C \star (:, j)

\bigr) 
= \emptyset ,

then (C \star , S \star ) is (fully) identifiable.

Proof. On one hand, Theorem 7 applies to all columns of C \star , taking R(:,\scrJ ) =
C(:,\{ 1 . . . , r\} \setminus \{ k\} ) for all k= 1,2, . . . , r, since S\top 

 \star is separable. On the other hand S \star 

is identifiable since C \star is identifiable and rank(C \star ) = r.

For example, in two dimensions, when r= 3, full identifiability based on Corollary
1 requires that, in the NPP, the three vertices of \scrP inn corresponding to the three
columns of C \star are located on three nonadjacent edges of the polygon \scrP out. Note that
this requires \scrP out to have at least six edges, that is, to be an n-gon with n\geq 6. This
implies that R needs to have at least 6 rows.

Example 4. Let us take an example with r= 4, for which the NPP has dimension
three. Consider the outer polytope as the unit cube in dimension three, with \scrP out =

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/2

4/
23

 to
 1

93
.1

90
.2

08
.3

8 
by

 N
ic

ol
as

 G
ill

is
 (

ni
co

la
s.

gi
lli

s@
um

on
s.

ac
.b

e)
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



PARTIAL IDENTIFIABILITY FOR NMF 43

FIG. 5. Geometric interpretation of Example 4 that satisfies the conditions of Theorem 7.

[0,1]3, and take the vertices of \scrP inn as (0,0,0.75), (1, 0, 0.25), (0, 1, 0.25), and (1,
1, 0.75). This construction satisfies the conditions of Theorem 7 for all k since the
vertices of \scrP inn are on (minimal) faces (namely, edges) that do not intersect; see
Figure 5 for an illustration.

The corresponding R is given by

(0,0,0.75) (1,0,0.25) (0,1,0.25) (1,1,0.75)
x1 \geq 0 0 1 0 1
x2 \geq 0 0 0 1 1
x3 \geq 0 0.75 0.25 0.25 0.75
x1 \leq 1 1 0 1 0
x2 \leq 1 1 1 0 0
x3 \leq 1 0.25 0.75 0.75 0.25

and therefore has a unique exact NMF, R = RI. Note that no column of R satisfies
the FRZRW condition of Theorem 6 since R has only two zero entries per column:
Geometrically, no vertices of \scrP inn are a vertex of \scrP out.

4.3.1. Is it easy to check the conditions of Theorem 7?. Let R=CS\top be
an exact NMF of size r = rank(R), where R and C are column stochastic (w.l.o.g.).
A column of R, say the jth, fails to satisfy condition (9) if and only if there exists x
such that

x \in \scrF C \star 

\bigl( 
C \star (:, k)

\bigr) 
\cap \scrF C \star 

\bigl( 
R(:, j)

\bigr) 
.

Such an x exists if the following linear system in variable z \in \BbbR r has a solution:

x=Cz \geq 0, z\top e= 1, (Cz)i = 0 for all i\in \scrK k,j = \{ p | C(p, k) = 0 or R(p, j) = 0\} .

This is a linear system in r variables, with \scrO (m) equalities and inequalities. In our
implementation (see section 5.2), to avoid numerical issue, we rather solve the linear
optimization problem (which is always feasible)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/2

4/
23

 to
 1

93
.1

90
.2

08
.3

8 
by

 N
ic

ol
as

 G
ill

is
 (

ni
co

la
s.

gi
lli

s@
um

on
s.

ac
.b

e)
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



44 NICOLAS GILLIS AND R\'OBERT RAJK\'O

(10) min
z

\sum 
i\in \scrK k,j

(Cz)i such that Cz \geq 0 and e\top z = 1

and check whether the optimal objective function value is below a given threshold
(we used 10 - 6).

4.4. Using partial identifiability theorems sequentially. In this section,
we provide a simple general framework to generalize partial identifiability theorems,
assuming a subset of columns of C \star is already identifiable.

Theorem 8. Let R = C \star S \star 
\top , where C \star \in \BbbR m\times r

+ and S \star \in \BbbR r\times n
+ with

rank(R) = r. Assume p columns of C \star are identifiable for p\in \{ 1,2, . . . , r - 1\} , say the
first p w.l.o.g.; that is, C \star (:, j) are identifiable for j = 1,2, . . . , p (Definition 3). Let \scrJ 
be the index set corresponding to the columns of R that do not contain the support of
the first p columns of C \star .

If rank (S \star (\scrJ , p+1 : r)) = r - p and if the (p+1)th column of C \star can be certified
to be identifiable in the exact NMF R(:,\scrJ ) = C \star (:, p+ 1 : r)S \star (\scrJ , p+ 1 : r)\top of size
r - p, then C \star (:, p+ 1) is identifiable in the exact NMF of R of size r.

Proof. Let R = CS\top be an exact NMF of X of size r with C \in \BbbR m\times r
+ and

S \in \BbbR n\times r
+ . W.l.o.g., C(:,1 : p) = C \star (:,1 : p)D, where D is a diagonal matrix since the

first p columns of C \star are identifiable. We have

(11) R(:,\scrJ ) =C \star S \star (\scrJ , :)\top =

r\sum 
q=p+1

C(:, q)S(\scrJ , q)\top .

The last equality follows by construction: the columns of R(:,\scrJ ) do not contain the
support of the columns of C \star (:,1 : p), which coincide with that of C(:,1 : p), implying
S(\scrJ , q) = 0 for all q \leq p. The fact that rank(S \star (p + 1 : r,\scrJ )) = r  - p implies that
rank(R(:,\scrJ )) = r - p since rank(C(: p+1 : r)) = r - p as rank(C) = r, and hence (11)
is an exact NMF of rank r - p. By assumption, C \star (:, p+1) is identifiable in the exact
NMF (11) so that one of the columns of C(:, p+ 1 : r) is equal to C \star (:, p+ 1) up to
scaling.

Let us illustrate Theorem 8 in a simple example where all columns of C \star can be
certified to be identifiable, using Theorem 6 sequentially.

Example 5. Let

R=

\left(          

0 1 1 1
0 1 2 3
0 1 2 1
1 0 1 2
1 0 2 1
1 1 0 1
1 1 1 0

\right)          
\underbrace{}  \underbrace{}  

C \star 

\left(    
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

\right)    
\underbrace{}  \underbrace{}  

S\top 
 \star 

.

All columns of C \star are identifiable. The first one is by Theorem 6. The second one is
by combining Theorem 8 and Theorem 6: the last three columns of R do not belong
to the support of C \star (:,1); we have
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PARTIAL IDENTIFIABILITY FOR NMF 45

R(:,2 : 4) =

\left(          

1 1 1
1 2 3
1 2 1
0 1 2
0 2 1
1 0 1
1 1 0

\right)          
\underbrace{}  \underbrace{}  

C \star (:,2:4)

\left(  1 0 0
0 1 0
0 0 1

\right)  
\underbrace{}  \underbrace{}  

S \star (2:4,2:4)\top 

,

where rank(S \star (2 : 4,2 : 4)) = 3. We can therefore apply Theorem 6 to the above
exact NMF of size r - p= 3, which certifies the identifiability of C \star (:,2) (the selective
window and FRZRW conditions hold). One can certify the identifiability of the last
two columns of C \star in the same way.

It is important to note that the conditions of Theorem 8 do not necessarily become
milder as p increases. In practice, this means one needs to check

\sum p

p
\prime 
=0

\bigl( r
p
\prime 
\bigr) 
cases for

each column of C \star not identified yet. However, this can be implemented relatively
easily using recursion; see section 5.2 for the details. Let us illustrate this in another
example.

Example 6. Let

R=

\left(          

0 1 1 1
0 1 2 3
0 1 2 1
1 0 1 2
1 0 2 1
1 0 0 1
1 1 1 0

\right)          
\underbrace{}  \underbrace{}  

C \star 

\left(    
1 0 1 1
0 1 0 0
0 0 1 0
0 0 0 1

\right)    
\underbrace{}  \underbrace{}  

S\top 
 \star 

=

\left(          

0 1 1 1
0 1 2 3
0 1 2 1
1 0 2 3
1 0 3 2
1 0 1 2
1 1 2 1

\right)          
.

As in Example 5, the first column of C \star is identifiable. Now, we realize that Theorem
8 with p = 1 for the second column is not applicable: the last two columns of R
do contain the support of C \star (:,1) so that \scrJ = \{ 2\} , and rank(S(p + 1 : r,\scrJ ) = 1 <
r - p - 1 = 2. However, the second column of C \star satisfies the conditions of Theorem
6 and hence is identifiable.

Note that the last two columns of C \star do not satisfy the selective window assump-
tion, and it turns out that they are not identifiable since another exact NMF is given
by R=RI.

4.5. Partial identifiability for exact NMF when \bfitr = 3. We now analyze
the case when r= 3, which is of particular interest in the MCR literature, by providing
a new condition for identifiability of two columns of C \star . Before that, let us show the
following lemma.

Lemma 2. Let R= C \star S
\top 
 \star be an exact NMF of R of size r = rank(R), where the

kth column of C \star satisfies the selective window assumption. Let R=CS\top be an exact
NMF of R of size r. W.l.o.g., assume C \star and C are column stochastic. If the kth
column of C \star is not identified in C, that is, C(:, j) \not = C \star (:, k) for all j, then there
exists an index set \scrJ with | \scrJ | \geq 2 such that

C(:, j)\in \scrF C \star 

\bigl( 
C \star (:, k)

\bigr) 
for j \in \scrJ .
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46 NICOLAS GILLIS AND R\'OBERT RAJK\'O

Proof. Since C \star (:, k) satisfies the selective window assumption, that is, C \star (:, k) =
\alpha R(:, j) for some j and \alpha > 0, we have C \star (:, k) =Cz for some z \in \Delta . The result then
follows from the two observations:

\bullet Since C \star (:, k) = Cz, supp(C(:, j)) \subseteq supp(C \star (:, k)) for all j such that for
zj > 0. Therefore C(:, j)\in \scrF C \star 

(C \star (:, k)) since col(C) = col(C \star ) = col(R).
\bullet Let \scrJ = \{ j | zj > 0\} . If | \scrJ | = 1, C(: j) =C \star (:, k) for some j, a contradiction;

hence | \scrJ | \geq 2.

Theorem 9. Let R=C \star S
\top 
 \star , where C \star \in \BbbR m\times 3

+ and S \star \in \BbbR 3\times n
+ with rank(R) = 3,

and R, C \star , and S\top 
 \star are normalized to be column stochastic as in (2). Let us assume

that two columns of C \star satisfy the selective window assumption, say the first and
second one w.l.o.g.. Also let the supports of C \star (:,1) and C \star (:,2) not be contained in
one another. Then, these two columns are identifiable if there exists a column of R,
say the jth, such that

if \scrF C \star 
(C \star (:,2))\cap \scrF C \star 

(C \star (:,1)) = \emptyset ,

(12) R(:, j) /\in conv
\Bigl( \bigl[ 

C \star (:,1),\scrF C \star 

\bigl( 
C \star (:,2)

\bigr) \bigr] \Bigr) 
\cup conv

\Bigl( \bigl[ 
C \star (:,2),\scrF C \star 

\bigl( 
C \star (:,1)

\bigr) \bigr] \Bigr) 
,

else

(13) R(:, j) /\in conv
\Bigl( 
\scrF C \star 

\bigl( 
C \star (:,1)

\bigr) 
,\scrF C \star 

\bigl( 
C \star (:,2)

\bigr) \Bigr) 
.

Proof. Let R=CS\top be an exact NMF of R of size r= 3. The proof mostly relies
on Lemma 2: if C \star (:, k) is not identified, then there are least two columns of C in
\scrF C \star (C \star (:, k)). Note that, for r = 3, \scrC is a polygon, and hence there are three types
of facets depending on their dimension: the two-dimensional polygon itself, \scrC , one-
dimensional segments, and zero-dimensional vertices. By (12) or (13), \scrF C \star 

(C \star (:, j))
for j = 1,2 cannot be the polygon itself and hence is either segments or vertices.

Case 1: \scrF C \star 
(C \star (:,2)) \cap \scrF C \star 

(C \star (:,1)) = \emptyset . Since C has three columns, there
cannot be four columns of C in \scrF C \star (C \star (:, k)) for k \in \{ 1,2\} , and therefore C \star (:, k)
is identified for k = 1 or k = 2, say C \star (:,1) w.l.o.g.. Then, because of (12), C \star (:,2)
must also be identified; otherwise R(:, j) cannot be reconstructed. In fact, if C \star (:,2)
was not identified, the two columns of C not multiples of C \star (:,1) (which is identified)
must be on \scrF C \star 

(C \star (:,2)), a contradiction between the fact that R(:, j) = CS(j, :)\top 

and (12).
Case 2: \scrF C \star (C \star (:,2)) \cap \scrF C \star (C \star (:,1)) \not = \emptyset . The two facets \scrF C \star (C \star (:,1)) and

\scrF C \star 
(C \star (:,2)) intersect in a vertex. In fact, for r = 3, \scrF C \star 

(C \star (:,1)) and \scrF C \star 
(C \star (:,2))

are adjacent segments of \scrC since the support of C \star (:,1) does not contain and is not
contained in that of C \star (:,2). Moreover, by the same support condition, C \star (:,1) /\in 
\scrF C \star 

(C \star (:,2)) and vice versa. Therefore, if C \star (:,1) or C \star (:,2) is not identified, the
three columns of C belong to \scrF C \star (C \star (:,1)) \cup \scrF C \star (C \star (:,2)), which is a contradiction
since R(:, j) does not belong to the convex hull of these sets (see (13)), and hence C
cannot be used to reconstruct R(:, j).

Example 7. Let us construct two examples to illustrate the two cases in
Theorem 9. To do so, we use the equivalence of exact NMF with the NPP and
use the same outer polygon \scrP out = [0,1]2 as in Example 1.

In the first case of Theorem 9, the two minimal faces containing C \star (:,1) and
C \star (:,2) do not intersect. For example, one can take the two points (0.5,0) and (0.5,1);
see Figure 6.
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FIG. 6. Geometric interpretation of the exact NMF problem: identifiability of the first two
columns of C \star , case 1 of Theorem 9.

These two points correspond to

C \star (:,1) = F (0.5,0) + g= (0,1,0.5,0.5)\top and C \star (:,2) = F (0.5,1) + g= (1,0,0.5,0.5)\top .

If a column of R=C \star S
\top 
 \star does not belong to

conv
\Bigl( 
C \star (:,1),\scrF C \star 

\bigl( 
C \star (:,2)

\bigr) \Bigr) 
\cup conv

\Bigl( 
C \star (:,2),\scrF C \star 

\bigl( 
C \star (:,1)

\bigr) \Bigr) 
,

then both columns are identifiable. This is the case in Figure 6 with

R(:,3) = F (0.9,0.4) + g= (0.4,0.6,0.9,0.1)\top .

In the second case of Theorem 9, the two minimal faces containing C \star (:,1) and
C \star (:,2) do intersect. For example, one can take the two points (0.5,0) and (0,0.5); see
Figure 7. These two points correspond to

C \star (:,1) = F (0.5,0) + g= (0,1,0.5,0.5)\top and C \star (:,2) = F (0,0.5) + g= (0.5,0.5,0,1)\top .

If a column of R=C \star S
\top 
 \star does not belong to

conv
\Bigl( 
\scrF C \star 

\bigl( 
C \star (:,1)

\bigr) 
,\scrF C \star 

\bigl( 
C \star (:,2)

\bigr) \Bigr) 
,

then both columns are identifiable.
This is the case in Figure 7, with

R(:,3) = F (0.75,0.75) + g= (0.75,0.25,0.75,0.25)\top .

5. Applications of the new partial identifiability results. In this section,
we first discuss whether the conditions of our identifiability results are reasonable
in practice. Then we propose an algorithm, Algorithm 1, that combines our partial
identifiability results to certify the partial identifiability results for a given input
matrixR. Finally, we illustrate its use in an example from the chemometrics literature.

5.1. Are the conditions of our identifiability results reasonable?. All
our proposed identifiability results rely on two facts:
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FIG. 7. Geometric interpretation of the exact NMF problem: identifiability of the first two
columns of C \star , case 2 of Theorem 9.

1. Some columns of C satisfy the selective window assumption; this requires
some rows of S to be unit vectors (up to scaling).

2. These columns of C must have some degree of sparsity. (Note that this is a
necessary condition for identifiability of exact NMF; see Theorem 5).

This implies some degree of sparsity in R = CS\top since some columns of R will be
equal to the columns of C that have zero entries.

The selective window assumption is reasonable in many applications; see, e.g., the
discussion in [12, Chapter 7] about separability and the references therein. However,
sparsity is not necessarily natural in all applications where separability arises, e.g., in
blind hyperspectral unmixing, where spectral signatures are typically dense, and in
facial feature extraction, where facial images are dense. However, it is reasonable in
other applications. The following are examples:

\bullet MCR: The spectral content of some sources/components can be high (overlap-
ping), while it is zero/small for others at some wavelength (selective window
assumption). Moreover, all components are not present at all time window
(sparsity); see an example in section 5.3.

\bullet Topic modeling: The presence of anchor words, which are words associated to
a single topic, is a reasonable assumption [4] (selective window), while most
documents only discuss a few topics (sparsity). For example, using the widely
used data set tdt2\.top30 (9394 documents and 19528 words) we computed an
approximate exact NMF of the form R\approx \~R=CS\top for r \in \{ 1,2, . . . ,100\} using
a separable NMF algorithm, namely, the successive projection algorithm [3],
one of the most widely used ones. All decompositions \~R=CS\top obtained are
certified to be unique using the restricted DBU theorem (Theorem 6). (Here
we can only certify that the exact NMF of the approximation is identifiable
since there does not exist an exact NMF of R for a small r; in fact,2 rank(R)\geq 
800. This is often the case in practice because of the noise and model
misfit.)

2We stopped the modified Gram--Schmidt with column pivoting at r = 800 after about 5 hours
on a standard laptop.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/2

4/
23

 to
 1

93
.1

90
.2

08
.3

8 
by

 N
ic

ol
as

 G
ill

is
 (

ni
co

la
s.

gi
lli

s@
um

on
s.

ac
.b

e)
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



PARTIAL IDENTIFIABILITY FOR NMF 49

Algorithm 1 Partial identifiability guarantees for C in an exact NMF R= CS\top of
size rank(R).

Input: An exact NMF of R=CS\top , with C\in \BbbR m\times r
+ and S\in \BbbR n\times r

+ , where r=rank(R).
Output: A subset \scrK of the columns of C that are guaranteed to be identifiable

(Definition 3).
1: Normalize (R,C,S\top ) so that they are column stochastic; see (2).
2: Initialize \scrK = \emptyset .
3: Let \scrL be the set of columns of C that satisfies the selective window assumption,

that is, \scrL = \{ i | there exist k and \alpha > 0 such that S(k, :) = \alpha e\top (i)\} .
4: \% Use Theorems 6 and 7
5: for every index in k \in \scrL \setminus \scrK do
6: if rank(C(\scrI , :)) = r - 1, where \scrI = \{ i | C(i, k) = 0\} then
7: \scrK \leftarrow \scrK \cup \{ k\} .
8: end if
9: if there exists \scrJ s.t. \scrF C(C(:, k))\cap \scrF C(R(:, j)) = \emptyset for all j \in \scrJ , rank(R(:,\scrJ ))

= r - 1 then
10: \scrK \leftarrow \scrK \cup \{ k\} .
11: end if
12: end for
13: \% Use Theorem 8 combined Theorems 6 and 7, recursively
14: i= 1
15: while i\leq | \scrK | do
16: \scrP = \{ 1,2, . . . , r\} \setminus \{ \scrK (i)\} \% \scrK (i) is the ith element in the set \scrK 
17: Let \scrJ be the subset of columns of R not containing the support ofC (:,\scrK (i)).
18: if rank(S(\scrJ ,\scrP )) = r - 1 then
19: \scrK \prime = Algorithm 1(C(:,\scrP ), S(\scrJ ,\scrP ))
20: \scrK \leftarrow \scrK \cup \scrP (\scrK \prime ),
21: end if
22: i\leftarrow i+ 1
23: end while
24: if r= 3 then use Theorem 9 for pairs of indices in \scrK .

In summary, our results will likely apply when R contains some columns with
sufficiently many zero entries, while the selective window assumption makes sense.

5.2. An algorithm to check partial identifiability. Relying on our new
theoretical results, we provide in this section an algorithm that provides partial
identifiability guarantees for the exact NMF of a given nonnegative matrix R; see
Algorithm 1. As for all the results of this paper, Algorithm 1 assumes rank(R) =
rank(C) = r which is reasonable in most real-world applications. Algorithm 1 is
available at https://gitlab.com/ngillis/nmf-partial-identifiability along with all the
examples presented in the paper (and two other ones).

Remark 4(use of Algorithm 1 for real-world data). NMF algorithms may return
C and S with many entries close to zero but not exactly zero (e.g., if the algorithm
has not converged). Therefore, to check whether your computed solution is close to
being (partially) identifiable, you can set these entries to zero using some threshold
strategy and then call Algorithm 1.
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FIG. 8. A five-component data set. On the left, the elution profiles of the chemical components
which are the columns of C \star . On the right, the spectra of the chemical components which are the
columns of S \star .

Another strategy is to weaken the sharp zero condition in the sense of generalized
Borgen plots [18]. This strategy is useful for experimental noisy data which may also
include a background subtraction resulting in small negative entries.

5.3. Numerical example from the chemometrics literature. Let us con-
sider the five-component data set from [20, section 4.3]; see Figure 8.

Algorithm 1 certifies that the first and third columns of C \star are identifiable and
the fifth column of S \star 

[K,L] = check\.partial\.identif(C,S),

K = [1 3], L= 5.

For example, for C \star , using the restricted DBU theorem, the elution profiles (that
is, the columns of C \star ) that can be guaranteed to be identifiable are the first (A) and
third ones (C): they satisfy the selective window condition (first wavelengths for A,
last ones for C), while the FRZRW condition can be checked (the other elution profiles
have rank r - 1 when restricted to the entries where the corresponding column of C \star is
zero). Note that the first columns of S \star satisfy the selective window condition but not
the FRZRW condition because, when its spectrum is equal to zero, the spectrum of
other components also are (namely, all of them but C). These are the same conclusions
as in [20].

6. Conclusion. In this paper, we have provided the following partial identifia-
bility results for exact NMF:

\bullet a rigorous description and proof of the restricted DBU theorem (Theorem 6);
\bullet a new partial identifiability result based on the geometric interpretation of

the restricted DBU theorem (Theorem 7);
\bullet a sequential approach to guarantee the identifiability of more factors (Theo-

rem 8).
Since this paper is, to the best of our knowledge, the first to rigorously investigate

partial identifiability of exact NMF, there is still a lot to be done. In particular, can
stronger partial identifiability theorems be obtained? For example, is it possible
to provide partial identifiability results for several components simultaneously under
weaker conditions? We have done this for the case r= 3 considering two components
at a time (see Theorem 9), and this idea can probably be generalized to larger r. In
particular, considering all factors allows one to relax the selective window assumption
(a.k.a. separability, which is rather strong) to the SSC; see Theorem 4.
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