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The landscape and the swampland

Andrea Campoleoni - UMONS

How to distinguish effective field theories (EFT) that can be 
completed into quantum gravity in the UV (landscape) from 
those that don’t (swampland)?

Vafa, Douglas (2005) 
and many others 
afterwards… Set	of	consistent	low-
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Figure 1: A schematic illustration of the space of (apparently) self-consistent e↵ective quantum
field theories. The sub-set which could arise from string theory is the string Landscape, while
all the other theories are in the string Swampland.

Self-consistency becomes much less powerful at low energies, even for theories which include
gravity. In string theory this manifests as the existence, within our current understanding, of a
huge number of resulting low-energy e↵ective theories. Each such theory is constructed about a
di↵erent vacuum of string theory, and the rich vacuum structure of the theory, the so-called
String Theory Landscape, then translate into a large spectrum of e↵ective theories. However, it
is important to not confuse this richness of structure with a complete absence of constraints. The
resulting set of theories still picks out only a subset of all the possible apparently self-consistent
e↵ective theories. The use of apparently here means that there is nothing manifestly wrong
with the e↵ective theory, but an inconsistency would manifest should one try to complete it in
the ultraviolet. The idea of the String Theory Swampland was introduced in [1] as a way to
quantify and refer to these residual low-energy constraints.1 More precisely:

The Swampland can be defined as the set of (apparently) consistent e↵ective field theories
that cannot be completed into quantum gravity in the ultraviolet.

So string theory might lead to a large Landscape of e↵ective low-energy theories, but there is
an even larger Swampland of e↵ective theories that cannot come from string theory. This is
illustrated in figure 1. Note that we phrased the definition of the Swampland using a general
notion of quantum gravity, rather than specifically string theory. For simplicity of notation, we
will rarely distinguish between such a general quantum theory of gravity and string theory, but
it is natural to define the Swampland in this more general sense.

Of course, the abstract concept of the Swampland has no useful meaning unless we understand
how to distinguish between e↵ective field theories that are in the Landscape from those in the

1See also [2] for similar ideas at the same time.
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[E. Palti, The Swampland: Introduction and Review, 1903.06239]



1. A biased tour into the swampland



The swampland program
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A network of conjectures about the constraints that EFT 
living in the landscape must satisfy: 

• Distance (or duality) conjecture 

• Weak gravity conjecture 

• No global symmetries conjecture 

• Completeness conjecture 

• Emergent proposal  

• de Sitter conjecture 

• and counting…

Obied, Ooguri, Spodyneiko, Vafa (2018)

Ooguri, Vafa (2006)

Arkani-Hamed, Motl, Nicolis, Vafa (2006)

Banks, Seiberg (2010) [Banks, Dixon (1988)]

[Polchinski (2003)]

Grimm, Palti, Valenzuela (2018)

See, e.g., E. Palti, The Swampland: 
Introduction and Review, 1903.06239
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Higher-spin gravity landscape?
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Most of the swampland conjectures have been inspired by 
and checked in String Theory 

Two versions of the swampland program: 

• Shaping the landscape of EFT resulting from string 
compactifications 

• Shaping the landscape of all EFT that can be UV completed into 
quantum gravity (M-theory may not be the only option!) 

A natural non-stringy candidate: Higher Spin Gravity

What are the swampland conjectures corroborated by Higher 
Spin Gravity and how to interpret possible mismatches?
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The swampland distance conjecture (SDC)
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this need not be the case. The point is that the additional dimensions may be compact and
small, so that they have yet to be observed. This naturally leads to thinking about string theory
in a space-time which has a compact direction. The simplest such setting is the case where one
of the dimensions is in the shape of a circle. We will study this in this section and this will lead
to our first encounter with a Swampland criterium: the distance conjecture.

2.2.1 Compactification of field theory on a circle

We consider D = d+1 dimensional space-time. The spatial direction Xd is taken to be compact
in the shape of a circle so is periodically identified

Xd ' Xd + 1 . (2.69)

We are interested in looking at the e↵ective theory in the d non-compact dimensions.

First, recall that we are working in Planck units, which in this case we therefore set as
Md

p = 1, where Md
p denotes the d-dimensional Planck mass. The periodicity of Xd is set to one

in those units.

We can write the metric on the D-dimensional space as

ds2 ⌘ GMNdXMdXN = e2↵�gµ⌫dX
µdX⌫ + e2��

⇣
dXd

⌘
2

. (2.70)

So here we have introduced the coordinates XM which are D-dimensional, so M = 0, ..., d, while
µ = 0, ..., d � 1. The D-dimensional metric is GMN and we take it as a product metric. The
d-dimensional metric is gµ⌫ . In practice we will take this to be ⌘µ⌫ but we keep it general for
now. The metric has a parameter � which can be regarded as a d-dimensional scalar field. The
constants ↵ and � are chosen to be

↵2 =
1

2 (d� 1) (d� 2)
, � = � (d� 2)↵ . (2.71)

Let us look at the circumference of the circle, denoted 2⇡R, it is given by

2⇡R ⌘
Z

1

0

p
GdddX

d = e�� . (2.72)

We see that the radius of the circle is a dynamical field in d-dimensions. We will be interested
in the behaviour of the d-dimensional theory under variations of the expectation value of the
field �, which amounts to variations of the size of the circle.

The first thing we want to do is decompose the D-dimensional Ricci scalar RD for the metric
(2.70). We have Z

dDX
p
�GRD =

Z
ddX

p
�g


Rd � 1

2
(@�)2

�
. (2.73)

We observe that indeed � picks up dynamics, and that it is canonically normalized.

Now consider introducing a massless D-dimensional scalar field  . Since the dth dimension
is periodic so must  be, therefore we can decompose it as

 
�
XM

�
=

1X

n=�1
 n (X

µ) e2⇡inX
d
. (2.74)
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Simplest example: compactifications on a circle, 

•                                                                                                 , 

• ! and " constants, while # specifies the radius:  

• # is a dynamical field:
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Fields and strings behave differently: 

•                                                       ,                                            

•

this need not be the case. The point is that the additional dimensions may be compact and
small, so that they have yet to be observed. This naturally leads to thinking about string theory
in a space-time which has a compact direction. The simplest such setting is the case where one
of the dimensions is in the shape of a circle. We will study this in this section and this will lead
to our first encounter with a Swampland criterium: the distance conjecture.

2.2.1 Compactification of field theory on a circle

We consider D = d+1 dimensional space-time. The spatial direction Xd is taken to be compact
in the shape of a circle so is periodically identified

Xd ' Xd + 1 . (2.69)

We are interested in looking at the e↵ective theory in the d non-compact dimensions.

First, recall that we are working in Planck units, which in this case we therefore set as
Md

p = 1, where Md
p denotes the d-dimensional Planck mass. The periodicity of Xd is set to one

in those units.

We can write the metric on the D-dimensional space as

ds2 ⌘ GMNdXMdXN = e2↵�gµ⌫dX
µdX⌫ + e2��

⇣
dXd

⌘
2

. (2.70)

So here we have introduced the coordinates XM which are D-dimensional, so M = 0, ..., d, while
µ = 0, ..., d � 1. The D-dimensional metric is GMN and we take it as a product metric. The
d-dimensional metric is gµ⌫ . In practice we will take this to be ⌘µ⌫ but we keep it general for
now. The metric has a parameter � which can be regarded as a d-dimensional scalar field. The
constants ↵ and � are chosen to be

↵2 =
1

2 (d� 1) (d� 2)
, � = � (d� 2)↵ . (2.71)

Let us look at the circumference of the circle, denoted 2⇡R, it is given by

2⇡R ⌘
Z

1

0

p
GdddX

d = e�� . (2.72)

We see that the radius of the circle is a dynamical field in d-dimensions. We will be interested
in the behaviour of the d-dimensional theory under variations of the expectation value of the
field �, which amounts to variations of the size of the circle.

The first thing we want to do is decompose the D-dimensional Ricci scalar RD for the metric
(2.70). We have Z

dDX
p
�GRD =

Z
ddX

p
�g


Rd � 1

2
(@�)2

�
. (2.73)

We observe that indeed � picks up dynamics, and that it is canonically normalized.

Now consider introducing a massless D-dimensional scalar field  . Since the dth dimension
is periodic so must  be, therefore we can decompose it as

 
�
XM

�
=

1X

n=�1
 n (X

µ) e2⇡inX
d
. (2.74)

20

The modes  n are d-dimensional scalar fields. The mode  0 is called the zero-mode of  , while
the  n are called Kaluza-Klein (KK) modes. Note that the momentum is quantized along the
compact direction

� i
@

@Xd
 = 2⇡n . (2.75)

For simplicity we now restrict to gµ⌫ = ⌘µ⌫ . Since  is massless in D-dimensions, its equation
of motion is

@M@M =
⇣
e�2↵�@µ@µ + e�2��@2Xd

⌘
 = 0 . (2.76)

This gives the equations of motion for the  n modes
"
@µ@µ �

✓
1

2⇡R

◆
2
✓

1

2⇡R

◆ 2
d�2

(2⇡n)2
#
 n = 0 . (2.77)

We can therefore read o↵ the mass of the KK modes as

M2

n =
⇣ n

R

⌘
2
✓

1

2⇡R

◆ 2
d�2

. (2.78)

So in the d-dimensional theory the KK modes are a massive tower of states with increasing
masses as in (2.78).

2.2.2 Compactification of string theory on a circle

Now let us repeat this exercise in string theory by considering strings on a circle of radius R.
We would like to connect with our results in section 2.1, but those were performed for a metric

ds2 = ⌘MNdXM
(s)dX

N
(s) , (2.79)

rather than (2.70). The subscripts on XM
(s) are to remind us that we are working with the metric

(2.79). For now we will proceed with the metric (2.79) and take the Xd
(s) direction as R-periodic

Xd
(s) ' Xd

(s) + 2⇡R . (2.80)

We will reconnect to the metric (2.70) later.

We consider the bosonic mode expansion, as in (2.28), but now we will not impose yet
XM

(s) (� + 2⇡, ⌧) = XM
(s) (�, ⌧) on the linear terms in �. So we have

XM
(s) (⌧,�) = xµ + ↵0pM⌧ +

↵0

2

�
pML � pMR

�
� + oscillators . (2.81)

We have allowed here for independent left-moving and right-moving momenta, and the overall
momentum of the string is half their sum

pM =
1

2

�
pMR + pML

�
. (2.82)

Recall that because the Xd direction is compact this is quantized. The appropriate quantization,
as we will soon see, is

pd =
n

R
. (2.83)
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Figure 7: Figure showing a string winding around a circler dimension 3 times.

In the non-compact space we imposed Xµ
(s) (� + 2⇡, ⌧) = Xµ

(s) (�, ⌧) which lead to pµR = pµL, but
for a circle we may have a winding string

Xd
(s) (� + 2⇡, ⌧) = Xd

(s) (�, ⌧) + w2⇡R , (2.84)

with w 2 Z. The string is wrapping around the circle w times, as illustrated in figure 7. For
such a winding string we therefore have

↵0

2

⇣
pdL � pdR

⌘
= wR . (2.85)

Now consider the mass spectrum for the string on such a background. We again go to
target-space light-cone gauge. The Hamiltonian (2.53) now reads

H =
↵0

2


1

4

⇣
pdL � pdR

⌘
2

+ p↵p↵ +
⇣
pd
⌘
2
�
+
⇣
N? + Ñ? � 2

⌘
, (2.86)

where we split the index i = {↵, d}. Note that we no longer have the level matching condition
(2.59), but instead have

N? � Ñ? = nw . (2.87)

Then the d-dimensional mass is given by �pµpµ = 2p+p� � p↵p↵ which, for states with no
oscillators excited, leads to

⇣
M (s)

n,w

⌘
2

=
⇣ n

R

⌘
2

+

✓
wR

↵0

◆
2

. (2.88)

We would like to connect this result with the e↵ective action (2.73). However, to do that we
need to change from the metric (2.79) to the metric (2.70). This is called going from the string
frame to the Einstein frame. The di↵erence is the factor of e2↵� multiplying the gµ⌫ directions.
To get the Einstein frame mass for the states we simply note that pµpµ has one inverse factor of

the metric and so we need to multiply masses by a factor of e2↵� =
�

1

2⇡R

� 2
d�2 .
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Masses of the modes:

Field Theory (Kaluza Klein) String Theory (KK + winding)
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We consider the bosonic mode expansion, as in (2.28), but now we will not impose yet
XM

(s) (� + 2⇡, ⌧) = XM
(s) (�, ⌧) on the linear terms in �. So we have
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�
pML � pMR

�
� + oscillators . (2.81)

We have allowed here for independent left-moving and right-moving momenta, and the overall
momentum of the string is half their sum

pM =
1

2

�
pMR + pML

�
. (2.82)

Recall that because the Xd direction is compact this is quantized. The appropriate quantization,
as we will soon see, is

pd =
n

R
. (2.83)
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This does not quite do the full job. If we look at the e↵ective action coming from string
theory (2.68) we see that there is an overall factor of the exponential of the dilaton e�2�. An
important object is the d-dimensional dilaton �d defined as

�d ⌘ �� 1

2
log (2⇡RMs) . (2.89)

We would like to look at variations of R which keep �d fixed. This means that we must vary

e�2� ⇠ 1

2⇡RMs
. (2.90)

But if we consider the definition of the d-dimensional Planck mass Md
p coming from the string

e↵ective action (2.68) �
Md

p

�d�2

2
⌘ 2⇡MD�2

s e�2� , (2.91)

we see that in order to stay in the Einstein frame Md
p = 1 we have to choose our units such that

Ms ⇠ (2⇡R)
1

d�2 . (2.92)

This will then a↵ect the mass of the winding modes in (2.88) because of the factor of ↵0.

Performing the change of frames then finally leads to the Einstein frame mass

(Mn,w)
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R

⌘
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where the subscript on ↵0
0
denotes that the R scaling has been taken out. We see that this

indeed matches the simple field theory calculation for the KK masses (2.78).

2.2.3 The Swampland Distance Conjecture

We can now study the d-dimensional e↵ective theory. The action is given in (2.73), and this must
be supplemented by the spectrum (2.93). We are particularly interested in how the spectrum of
states behaves under variations of the expectation value of the field �. This is easy to determine
from the simple relation (2.72). The possible expectation values of the field � define a field
space M�, which in this case has one infinite real dimension. So we can consider

M� : �1 < � < 1 . (2.94)

Let us define a variation of � from some initial value �i to some final value �f as

�� = �f � �i . (2.95)

We now note that there are two infinite towers of massive states in this theory. The tower of KK
modes, with masses given by Mn,0 in (2.93), and a tower of winding modes given by M0,m. We
can associate to each tower a mass scale, which is the universal factor multiplying the integers n
and m. Using (2.72) we can write these mass scales as

MKK ⇠ e↵� , Mw ⇠ e�↵� , (2.96)
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Figure 8: Figure showing the mass scale, on a log plot, for the KK and winding towers as a
function of the scalar field � expectation value. The gradient of the slope is the exponent ↵.
The Z2 symmetry in the figure is due to T-duality.

where

↵ =
p
2

✓
d� 1

d� 2

◆ 1
2

> 0 . (2.97)

We therefore can make the following observation. For any �� there exists an infinite tower of
states, with some associated mass scale M , which becomes light at an exponential rate in ��

M (�i +��) ⇠ M (�i) e
�↵|��| . (2.98)

This is illustrated in figure 8. There are some important things to note about this observation

• The tower of states which becomes light is the KK tower if �� < 0 while it is the winding
tower if �� > 0. So some tower of states always become light no matter what the sign of
�� is.

• The behaviour (2.98) is deeply string theoretic. It is not true in quantum field theory
because one set of states are winding states which are absent in field theory.

• The product of the mass scales of the two towers is independent of �.

• The exponent ↵ in the mass is a constant of order one.

• The field � is canonically normalized, so the behaviour of the mass scales is exponential in
the proper distance in � field space.

• If |��| ! 1 then an infinite number of states become massless, which means that there
is no description of that locus in a d-dimensional quantum field theory.4

4We can describe it as a D-dimensional theory. Remarkably, this is true for either a very large or very small
radius of the circle.
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T-duality:

The last point has a continuous analogue. If we consider an e↵ective field theory which has a
cuto↵ ⇤ below the mass scale of an infinite tower of states, then this field theory can only hold
for a finite range of expectation values of �.

The behaviour (2.98) is very interesting and it is natural to wonder if there is a deep reason
behind it, and if so, then if it is a general property of string theory. There is good reason to
expect that the answer is positive to both of these questions. One clue is in the origin of the
two towers, the KK and winding modes. These towers a deeply related, indeed there is a Z2

symmetry which interchanges them. This is called T-duality, and it is most directly seen in the
string frame where we observe that the mass spectrum (2.88) is invariant under the action

T� duality : R $
p
↵0

R
. (2.99)

It can be shown that this is not only a symmetry of the mass spectrum, but of the full string
theory. In fact it can be embedded into a gauge symmetry which becomes manifest at the

self-dual radius R =
p
↵0
R . Duality is a very deep property of string theory. There are many more

dualities than T-duality. Indeed, all known string theories are themselves related by dualities. It
is then natural to expect that there are many di↵erent towers of states which are dual, and this
duality is such that as one moves in the parameter space of the theory, which in string theory
means in the scalar field space, the product of the mass scale of the dual towers stays constant
and so one must become light in any direction. As we move an infinite distance in parameter
space the tower must become massless.

This kind of reasoning, and various simple examples in string theory, let to the proposal
of the Swampland Distance Conjecture (SDC) in [4]. The conjecture is at heart analogous to
(2.98) but can be phrased more generally and precisely as follows.

Swampland Distance Conjecture [4]

• Consider a theory, coupled to gravity, with a moduli space M which is parametrized
by the expectation values of some field �i which have no potential. Starting from
any point P 2 M there exists another point Q 2 M such that the geodesic distance
between P and Q, denoted d (P,Q), is infinite.

• There exists an infinite tower of states, with an associated mass scale M , such that

M (Q) ⇠ M (P ) e�↵d(P,Q) , (2.100)

where ↵ is some positive constant.

Note that because this is an asymptotic statement about infinite distance d (P,Q) ! 1
the mass scale value at P is not so important. The behaviour of the conjecture is illustrated
schematically in figure 9. We will discuss the Swampland Distance Conjecture is more detail in
sections 3.6 and 4.

This is our first encounter with a Swampland conjecture. It typifies many of the general
properties of conjectures about the Swampland.

• It is supported by explicit constructions in string theory.
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The swampland distance conjecture (SDC)

Andrea Campoleoni - UMONS

Very “stringy" property, that triggered…

Swampland Distance Conjecture [4]

• Consider a theory, coupled to gravity, with a moduli space M which is parametrized
by the expectation values of some field �i which have no potential. Starting from
any point P 2 M there exists another point Q 2 M such that the geodesic distance
between P and Q, denoted d (P,Q), is infinite.

• There exists an infinite tower of states, with an associated mass scale M , such that

M (Q) ⇠ M (P ) e�↵d(P,Q) , (3.79)

where ↵ is some positive constant.

It is worth discussing the moduli space M in a bit more detail. We consider an action

S =

Z
ddx

p
�g


R

2
� gij

�
�i
�
@�i@�j + ...

�
. (3.80)

The real scalar fields �i do not have a potential, and the index i is kept arbitrary for now. The
�i are coordinates on a moduli space M, their kinetic terms define a metric on that space gij .20

This metric has Euclidean signature since the kinetic terms for physical scalar fields should
have fixed sign. The index range of i defines the real dimension of the moduli space M. The
special case of canonically normalised fields gij (�) = �ij , corresponds to a flat moduli space.
The moduli space may still have a non-trivial topology though, for example, some of the fields
may be compact � ⇠ �+ 2⇡.

A point P in the moduli space corresponds to some specification of the expectation values
for the scalar fields. The geodesic distance between two points P and Q, which plays a role in
the conjecture d (P,Q), is then defined as usual

d (P,Q) ⌘
Z

�

✓
gij

@�i

@s

@�j

@s

◆ 1
2

ds . (3.81)

Here � is the shortest geodesic connecting the points P and Q, and ds is the line element along
that geodesic.

The first part of the conjecture states that for a point P 2 M there exists some other point
Q 2 M which is an infinite distance away. The simplest example of such a field space is just
the real line M = R, and this was the case discussed in section 2.2. Then for any value of �,
the points � = ±1 are an infinite distance away. A simple example of a moduli space which
violates the conjecture is a periodic scalar � ⇠ �+ 2⇡, which defines a circle M = S1, since the
maximum distance between two points is just 2⇡. This does not mean that periodic scalars are
forbidden in quantum gravity, only that they must be part of a larger moduli space. For the
case of periodic pseudo-scalars, axions, this occurs because the axion decay constant f is itself a
scalar field.

In the case of a Kaluza-Klein reduction on a circle studied in section 2.2 we found that the
mass of the tower behaves as

M (Q) = M (P ) e�↵d(P,Q) . (3.82)

20Care to note the di↵erence between the moduli space metric gij and the space-time metric which appears in
the overall

p
�g factor. This is an unfortunate clash of notation, and the two quantities are completely unrelated.
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Swampland Distance Conjecture [4]

• Consider a theory, coupled to gravity, with a moduli space M which is parametrized
by the expectation values of some field �i which have no potential. Starting from
any point P 2 M there exists another point Q 2 M such that the geodesic distance
between P and Q, denoted d (P,Q), is infinite.

• There exists an infinite tower of states, with an associated mass scale M , such that
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The real scalar fields �i do not have a potential, and the index i is kept arbitrary for now. The
�i are coordinates on a moduli space M, their kinetic terms define a metric on that space gij .20

This metric has Euclidean signature since the kinetic terms for physical scalar fields should
have fixed sign. The index range of i defines the real dimension of the moduli space M. The
special case of canonically normalised fields gij (�) = �ij , corresponds to a flat moduli space.
The moduli space may still have a non-trivial topology though, for example, some of the fields
may be compact � ⇠ �+ 2⇡.

A point P in the moduli space corresponds to some specification of the expectation values
for the scalar fields. The geodesic distance between two points P and Q, which plays a role in
the conjecture d (P,Q), is then defined as usual
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Here � is the shortest geodesic connecting the points P and Q, and ds is the line element along
that geodesic.

The first part of the conjecture states that for a point P 2 M there exists some other point
Q 2 M which is an infinite distance away. The simplest example of such a field space is just
the real line M = R, and this was the case discussed in section 2.2. Then for any value of �,
the points � = ±1 are an infinite distance away. A simple example of a moduli space which
violates the conjecture is a periodic scalar � ⇠ �+ 2⇡, which defines a circle M = S1, since the
maximum distance between two points is just 2⇡. This does not mean that periodic scalars are
forbidden in quantum gravity, only that they must be part of a larger moduli space. For the
case of periodic pseudo-scalars, axions, this occurs because the axion decay constant f is itself a
scalar field.

In the case of a Kaluza-Klein reduction on a circle studied in section 2.2 we found that the
mass of the tower behaves as

M (Q) = M (P ) e�↵d(P,Q) . (3.82)

20Care to note the di↵erence between the moduli space metric gij and the space-time metric which appears in
the overall
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2. AdS swampland & holography



The CFT distance conjecture

Andrea Campoleoni - UMONS

Baume, Calderón Infante (2021); 
Perlmutter, Rastelli, Vafa, 
Valenzuela (2021)

What about AdS? 

• When                     a similar phenomenon is expected, related to 
"decompactification" (the radii of AdS and of the internal manifold 
are related) [not today…]

• One can also keep            fixed and move around the moduli space 

• A similar behaviour as in flat space is expected

Lüst, Palti, Vafa 
(2019)

The SDC has been mainly studied in the context of four- [11–18] or six-dimensional [19]

Minkowski theories with eight or more supercharges obtained by dimensional reduction of

type II string theories, or their lifts to strong coupling. Using the beautifully-intricate web

of dualities of string theory, it was proposed that the tower of massless states corresponds

to either a decompactification limit or a tensionless weakly-coupled fundamental string in

disguise [14–16], although it may be required to take quantum corrections into account to

make them manifest [16, 20–22]. Note that, in the latter case, the tower of states generically

contains arbitrarily large higher-spin fields. See [23] for implications in (quasi-)dS spaces.

A variation of this framework is the inclusion of a potential [16,24–36], which may lift the

flat spacetime geometry to an AdS space. In the limit of large AdS radius in Planck units,

LMPl ! 1, a similar behaviour is expected, with an infinite tower of states also becoming

massless, behaving as m/MPl ⇠ (LMPl)�↵
,↵ > 0 [37]. In supersymmetric cases a strong

version of the conjecture suggests ↵ = 1
2 , usually interpreted as a consequence of the no-scale-

separation condition between the internal manifold and the AdS radius. In string-theoretic

realisations of these AdS geometries, the tower is often identified with a sector of Kaluza–

Klein modes. Part of the internal manifold and the AdS space are stabilised by the same

fluxes and, as a consequence, the AdS radius and a breathing mode of the compact space are

linked together. The limit of large radius will then also lead to a decompactification. For

recent works, see [38–42].

This proposal is somewhat di↵erent from what one would naively call the Swampland

Distance Conjecture for moduli spaces of AdS vacua. Even though it is exploring the possible

AdS vacua of the theory, it is not about the continuously-connected part parametrised by

massless scalars, which we refer to in this work as the moduli space. It is rather about the

di↵erent branches of vacua parametrised by massive scalars. In string theory constructions,

the presence of fluxes will give masses to the scalars controlling these limits and can therefore

no longer be considered as moduli in the usual sense. Typically one consider di↵erent branches

of vacua in this setup by changing the flux quanta.

This raises the question of whether the SDC extends to moduli spaces of AdS vacua in

the sense described above, and what kind of towers of states can be expected to appear. In

those setups, the AdS scale in Planck units, LMPl, remains fixed throughout all the moduli

space. This is the kind of trajectories we want to tackle in this work.

In this context, an open question is whether it is possible to consider decompactification

limits. Such trajectories would imply the possibility of tuning the size of an internal dimension

without changing the AdS radius at all. Current models featuring a separation of scales always

link the AdS radius and the internal dimensions in some way, while the limits we are interested

3
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3

• The effective field theory description breaks 
down at the “corners" of moduli space ! 

• One can use the dual CFT description to 
explore the moduli space

Figure 1: A sketch of a generic moduli space with infinite-distance points. They typ-
ically correspond to weakly coupled regimes (perhaps in a dual frame), thus we start
the sequence (pn)n�0 with p0 already close to an infinite-distance point, and approach
it as n ! 1.

replaced by their dual anomalous dimensions �HS. In this context, the moduli space is
identified with the conformal manifold of the CFT, and the relevant metric that defines
distances is the Zamolodchikov metric. The holographic dictionary then allows one
to recover the bulk distance dividing by

p
CT , the square-root of the central charge

defined by the stress-tensor correlators [21]. The CFT distance conjecture of [21, 22]
concerns conformal manifolds, therefore the additional factor of

p
CT is immaterial,

since it remains constant on the manifold.

However, we are interested in generalizing these ideas to settings where a conformal
manifold is absent. A natural extension of the Zamolodchikov metric to the theory
space of quantum field theories is the (quantum) information metric [24, 25, 63, 64],
which was recently revisited in [23, 26, 27] in the swampland context. More specifically,
the notion of information metric is both quite general and unique. Extracting a metric
from a (family of) probability distribution(s) is essentially unique, but the choice of

6
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What is the counterpart of the geodesic distance in moduli 
space? 
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natural notion of distance on M, which we will use henceforth, is defined by the Zamolodchikov
metric, the matrix of two-point functions of exactly marginal operators. The gravity intuition
of the DC suggests that as one approaches infinite distance from the interior of M, a tower
of operators in the CFT saturates some bound. Our proposal is that this tower is always
comprised of higher-spin operators of unbounded spin which saturate their respective unitarity
bounds in the infinite distance limit, thus becoming conserved. In other words, the leading
Regge trajectory becomes exactly linear with unit slope at infinite distance. Moreover, their
anomalous dimensions vanish exponentially in the distance. This emergent symmetry is, we
conjecture, a necessary and sufficient condition for M to have infinite diameter. The rest of
this paper is devoted to formalizing these conjectures, and developing their consequences for
AdS quantum gravity and the relation to the DC.

The organization of this paper is as follows. Section 2 presents the CFT Distance Conjecture,
which contains a few components. In Section 3 we gather some strong evidence for our conjecture
by surveying the landscape of SCFTs in various dimensions. Section 4 phrases the conjecture in
terms of quantum gravity in AdS and writes the exponential decay rate of anomalous dimensions
in Planck units. In Subsection 4.1, we observe a lower bound on the exponent and catalog its
value in some SCFTs. Subsection 4.2 examines the interplay with the DC in the Swampland
program, and Subsection 4.3 explores how the higher-spin towers are manifest in gravity duals
of a few well-studied CFTs.

Note added: While finalizing this paper, we became aware of [64], which partially overlaps
with our results.

2 A CFT Distance Conjecture

We are interested in families of d-dimensional CFTs with exactly marginal parameters. We
assume the CFTs to be unitary and local, by which we mean in particular that they have
a local stress tensor operator.3 The associated conformal manifold, M, is endowed with a
natural notion of distance between two points, namely, the geodesic distance with respect to
the Zamolodchikov metric [65],

|x− y|2d〈Oi(x)Oj(y)〉 = gij(t
i) , (2.1)

where {Oi} are exactly marginal operators and {ti} are the associated local coordinates of M.
We will use these definitions of “distance” and“metric”henceforth. For reasons that will become
clear, the case of d = 2 must be distinguished from the case of d > 2. We will focus on d > 2
and make some brief comments about d = 2 below.

In many examples, there are distinguished limiting points of M where a free subsector of
the CFT decouples.4 The best understood class of examples are d = 4 SCFTs with N = 2
supersymmetry: these will serve as motivation and paradigm for our general conjectures. As we
review below (Section 3.1), all examples of d = 4, N = 2 conformal manifolds are parametrized
locally by complexified gauge couplings and exhibit “cusp” points where one or more gauge

3In particular, the two-point function coefficient CT of the canonically normalized stress tensor must be finite.
This excludes from consideration e.g. the infinite N limit of gauge theories. We will briefly comment on non-local
CFTs at the end of this section.

4By “limiting point of M” we mean a CFT Tt∗ defined by a convergent sequence of CFTs Tt, with t ∈ M, in
the limit t → t∗.
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Distance conjecture(s) can be reformulated in terms 
of CFT data (whether a conformal manifold exist!) 

• masses ⇔ anomalous dimensions of HS operators
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The previous setup is very effective to study superconformal 
field theories and their bulk duals 

How one can tackle models that do not admit a conformal 
manifold? (e.g. our beloved higher spins…)

IDEA: consider the space of fixed points of the RG flow and 
compute distances along the RG flow using the quantum 
information metric 

Within this approach one can also “discrete theory spaces”!  

• Well adapted to higher-spin holography, where higher-spin 
symmetry is recovered in the limit of large rank N

Stout (2021)
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where dW = ∂aWdga is a one-form and dS = ∂aSdga can be thought of as an operator
valued one-form. In particular, if the action S is linear in the couplings, then

∂aS =

∫

dDx Φ̂a(x) (3)

where Φ̂a(x) is the composite operator associated with the coupling ga. Thus if ga0 are bare
couplings then Φ̂a0(x) are bare operators. If one then defines renormalised couplings gaR ,
using some preferred scheme, then the renormalised operators are Φ̂aR

(x) = (Z−1)b0aR
Φ̂b0(x),

where the operator mixing matrix (Z−1)b0aR
= ∂gb0

∂gaR
is nothing other than a general co-

ordinate transformation matrix for the co-variant vector with components Φ̂aR
(x). Thus

the definition of Φ̂a(x) given in equation (3) is a general co-ordinate co-variant defini-
tion even when the action is non-linear in the couplings and is valid both for bare and
renormalised couplings. Equations (2) and (3) are referred to as an “action Principle” in
[14] .

The metric advocated by O’Connor and Stephens in [2] is determined by the infinites-
imal line element on the n-dimensional space parameterised by ga defined by

ds2 = 〈(dS − dW )⊗ (dS − dW )〉. (4)

In order to be able to pass to the infinite volume limit, it will be convenient to divide
equation (4) by a factor V =

∫

dDx, the volume of space, and use densities. Let

Φ̃a(x) = Φ̂a(x)− 〈Φ̂a(x)〉 (5)

and define

Gab =

∫

dDx〈Φ̃a(x)Φ̃b(0)〉. (6)

This is the metric which will be investigated here. Obviously Gab = Gba and under a
general co-ordinate transformation ga → ga

′

(x)

∂aS → ∂a′S =
∂gb

∂ga′
∂bS (7)

so

Gab → Ga′b′ =
∂gc

∂ga′

∂gd

∂gb′
Gcd (8)

has the correct transformation properties to be considered as a metric.

Of course if bare couplings are used then the Φ̂a(x) are divergent operators when
the regulator is removed. One can either keep the regulator in place until the end of the
calculation or transform to renormalised operators using a co-ordinate transformation -
provided the formalism is manifestly co-variant it does not matter and the latter possi-
bility allows a consistent analysis. However the R.H.S. of equation (6) contains further
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theories, where the renormalisation flow is just dictated by canonical dimensions, and the
slightly less trivial case of the 1-dimensional Ising model.

The purpose of this paper is to pursue these investigations for an interacting non-
trivial model which is exactly soluble — the O(N) model in the limit of N → ∞. For
D=3, this model is non-trivial and has two fixed points - the Gaussian fixed point (free
field theory) in the ultra-violet and the non-trivial Wilson-Fisher fixed point in the infra-
red (which is equivalent to the spherical model [13] ). The Ricci scalar diverges at the
Gaussian fixed point but elsewhere the curvature is finite, tending to a negative constant
in the infra-red. It is shown that, with the metric used here, the line of cross-over between
the Gaussian and Wilson-Fisher fixed points is a geodesic and this is related to the concept
of relative entropy in statistics.

In section 2, the choice of metric that is used will be described, motivated by consider-
ations of general co-ordinate invariance. Section 3 is devoted to the explicit determination
of the metric and curvature for the O(N) model in D dimensions, for large N . This in-
volves the inclusion of 1

N corrections, as the metric proves to be degenerate to lowest order.
Section 4 specialises to the infinite volume limit in D=3, where it is shown that the Ricci
Scalar, R → +∞ at the Gaussian fixed point, and R → −6π2 when any of the three
parameters of the model (constant external source, the mass of the scalar field or the 4 -
point coupling, λ) is large. In particular the infra-red fixed point corresponds to λ → ∞.
It is also shown that the line of cross-over, from the infra-red to the ultra-violet fixed point
is a geodesic, and section 5 is devoted to an interpretation of this result in terms of relative
entropy. Section 6 contains a summary and conclusions.

There are two appendices, one containing some technical aspects of Legendre trans-
forms, which are used in section 3, and a second which gives the connection co-efficients,
also used in section 3.

§2 The Metric

In this section a definition of a metric on the space of couplings will be given. The
basic motivation follows that of reference [2]. Consider a field theory in D-dimensional
Euclidean space with n couplings ga, a = 1, . . . , n, corresponding to operators Φ̂a(x) (in
general composite). The definition of the reduced free energy (i.e. the free energy divided
by the temperature) is

W (g) = − lnZ(g) where Z(g) =

∫

Dϕe−S[ϕ] (1)

and S[ϕ] is the action. This gives

1 =

∫

Dϕe−S[ϕ]+W ⇒ dW = 〈dS〉, (2)
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where dW = ∂aWdga is a one-form and dS = ∂aSdga can be thought of as an operator
valued one-form. In particular, if the action S is linear in the couplings, then

∂aS =

∫

dDx Φ̂a(x) (3)

where Φ̂a(x) is the composite operator associated with the coupling ga. Thus if ga0 are bare
couplings then Φ̂a0(x) are bare operators. If one then defines renormalised couplings gaR ,
using some preferred scheme, then the renormalised operators are Φ̂aR

(x) = (Z−1)b0aR
Φ̂b0(x),

where the operator mixing matrix (Z−1)b0aR
= ∂gb0

∂gaR
is nothing other than a general co-

ordinate transformation matrix for the co-variant vector with components Φ̂aR
(x). Thus

the definition of Φ̂a(x) given in equation (3) is a general co-ordinate co-variant defini-
tion even when the action is non-linear in the couplings and is valid both for bare and
renormalised couplings. Equations (2) and (3) are referred to as an “action Principle” in
[14] .

The metric advocated by O’Connor and Stephens in [2] is determined by the infinites-
imal line element on the n-dimensional space parameterised by ga defined by

ds2 = 〈(dS − dW )⊗ (dS − dW )〉. (4)

In order to be able to pass to the infinite volume limit, it will be convenient to divide
equation (4) by a factor V =

∫

dDx, the volume of space, and use densities. Let

Φ̃a(x) = Φ̂a(x)− 〈Φ̂a(x)〉 (5)

and define

Gab =

∫

dDx〈Φ̃a(x)Φ̃b(0)〉. (6)

This is the metric which will be investigated here. Obviously Gab = Gba and under a
general co-ordinate transformation ga → ga

′

(x)

∂aS → ∂a′S =
∂gb

∂ga′
∂bS (7)

so

Gab → Ga′b′ =
∂gc

∂ga′

∂gd

∂gb′
Gcd (8)

has the correct transformation properties to be considered as a metric.

Of course if bare couplings are used then the Φ̂a(x) are divergent operators when
the regulator is removed. One can either keep the regulator in place until the end of the
calculation or transform to renormalised operators using a co-ordinate transformation -
provided the formalism is manifestly co-variant it does not matter and the latter possi-
bility allows a consistent analysis. However the R.H.S. of equation (6) contains further
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If the action is linear in the couplings thenthe action is not linear in the couplings. If however one chooses parameters in which the
action is linear (these would be the bare parameters of the theory) then equation (12)
simplifies to

Gab = −∂a∂bw. (14)

The class of such co-ordinate systems is special, of course — only linear co-ordinate trans-
formations are allowed.* Within this class, however, equation (14) says that the compo-
nents of the metric can be determined if the partition function, and so w, is known as a
function of the regularised bare parameters. For translationally invariant systems, this is
equivalent to a knowledge of the effective potential, or the free energy. Another useful class
of co-ordinates is that obtained by the non-linear co-ordinate transformations associated
with the Legendre transformed variables, these can simplify the metric even further and
will prove useful in the sequel — this class, and the resulting form of the metric in terms
of the effective potential, is examined in detail in appendix 1.

When viewed in this light, some singularities in the metric can be given a more direct
interpretation. For example, if one of the operators is ϕ2 in a scalar field theory, the
statistical physics interpretation of the co-efficient of 1

2ϕ
2, t = (T − Tc)/Tc, is that it is

the deviation from the critical temperature, and the second derivative of the free energy
with respect to t is the specific heat, hence one expects some components of the metric
(14) to diverge at critical points and in general one might expect the curvature to diverge
there also. In fact for the O(N) model at large N in 3 dimensions, the critical exponent
for the specific heat, α = −1 + o

(

1
N

)

, is negative at the infra-red (Wilson-Fisher) fixed
point, so the specific heat is actually finite at t = 0 and it is only the third derivative of
the free energy with respect to t that diverges. Calculation of the Ricci scalar however,
reveals that it is finite all along the critical line between the infra-red and the ultra-violet
fixed point, diverging only at the ultra-violet (Gaussian) fixed point. The non-analyticity
of the free energy along the critical line is still reflected in the Ricci scalar however, in that
it displays a discontinuity across the critical line.

§3 The Geometry of the O(N) Model

The model that will be investigated here is the O(N) model in D Euclidean dimensions,
in the limit of N → ∞. This is an example of a non-trivial interacting field theory (for
D < 4) which can be solved exactly. The model consists of a scalar field $ϕ in the vector
representation of O(N), with components ϕi, i = 1, · · · , N . The action is (really total
energy since the space is Euclidean)

S =

∫

dDx

{

1

2
($ϕ)2 +$j · $ϕ+

r

2
ϕ2 +

u

4!
(ϕ2)2

}

(15)

* In some situations there is a natural complex structure on the space of parameters and
a metric of the form (14) can be interpreted as a Kähler metric. The class of allowed co-
ordinate transformations which preserve the form of (14) can then be extended to include
any complex analytic transformation. An example is the Seiberg-Witten metric on the
parameter space of N = 2 super symmetric Yang-Mills theory in four dimensions [16] .

6

with

divergences in general, either infra-red divergences due to the large x-behaviour or ultra-
violet divergences due to the small x-behaviour. The usual procedure is to perform further
subtractions, over and above any that may have already been used to obtain renormalised
operators, so as to obtain a renormalised 2-point function [15] . This will not be done here
– rather Gab will be defined using a regulator, connections and curvatures will be calcu-
lated first and only then will the regulator be removed. There is a good geometrical reason
for this strategy. As explained above multiplicative renormalisation can be interpreted as
a co-ordinate transformation and so does not change the geometry — the components of
the metric look different but the geometry (in particular the Ricci scalar) is not changed.
Subtracting extra terms which are non-linear in the couplings from (6) would however
change the geometry and so would change the Ricci scalar. By avoiding such subtractions
one can be confident that the resulting Ricci scalar is independent of the renormalisation
scheme.

As noted in [2], for free field theories, the curvature remains finite even though the
components of the metric diverge when the regulator is removed. For the large N limit of
the O(N) model in three dimensions, it will transpire that the curvature diverges at the
Gaussian fixed point but not elsewhere.

Equation (6) can be written in a manner more convenient for computations. Let

w =
1

V
W (9)

be the reduced free energy density, so that W =
∫

w dDx. Then equation (2) reads

∂aw =
1

V
〈∂aS〉. (10)

Differentiating a second time gives

∂a∂bw =
1

V
{〈∂a∂bS〉 − 〈∂aS∂bS〉+ 〈∂aS〉〈∂bS〉} (11)

or

Gab =

∫

dDx〈Φ̃a(x)Φ̃b(0)〉 =
1

V
〈∂a∂bS〉 − ∂a∂bw. (12)

Despite appearances the right hand side of (12) is co-variant under general co-ordinate
transformations since, if ∂bS → ∂b′S = ∂gc

∂gb′ ∂cS and ∂bw → ∂b′w = ∂gc

∂gb′ ∂cw then

∂a′∂b′S =
∂gc

∂ga′

∂gd

∂gb′
∂c∂dS+

∂2gc

∂ga′∂gb′
∂cS and ∂a′∂b′w =

∂gc

∂ga′

∂gd

∂gb′
∂c∂dw+

∂2gc

∂ga′∂gb′
∂cw.

(13)
So the inhomogeneous terms cancel when expectation values are taken, by virtue of equa-
tion (2). The analysis of this section has been general co-ordinate co-variant up to this
point. Equations (3), (6) and (12) are valid even if renormalised couplings are used and
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in practice we’ll have 
to compute the free 
energy…



Halfway summary

Andrea Campoleoni - UMONS

CFT distance conjectures (in a broad sense):  

1. In any theory space, HS symmetries emerge only at infinite distance 

2. All CFTs at infinite distance display HS symmetry 

3. The anomalous dimensions of the HS currents vanish exponentially 
fast in the distance

Next goal: test these ideas in HS holography, i.e. for Chern-Simons 
vector models 

• Challenge: find a way to interpolate between different values of the rank 
N of the gauge group

We found a rather general way to measure distances on theory spaces



3. Higher spin swampland
[aka “what we actually did ourselves"]



3.1 Choose the theory space



Multicritical vector models

Andrea Campoleoni - UMONS

We propose to consider multicritical vector models  

•  Field content:                       with       in the vector repr. of  

•  Action: 

•  A bit of notation…                      ,                ,                  ,  

Why? 

• There are flows in which factors “fuse”:  

• Possibility to modify N following the RG flow! Possibility to measure 
distances between different values of N

of strings. Furthermore, it is not clear whether a sensible finite-rank bulk description
of higher-spin theories of gravity exists, although settings such as ABJ triality [46] may
help shed light on this matter. As we shall discuss in detail in section 5.3, already the
coupling space of Chern-Simons-matter CFTs exhibits stringy matrix-like degrees of
freedom, and does lead to exponential decay in this direction of theory space.

In the following sections we present the multicritical field theories at stake, studying
RG flows and computing the information distance along suitable trajectories in theory
space.

3 Multicritical bosonic models

In this section we describe in detail the bosonic models that we consider. The well-
known critical O(N) vector models can be generalized to multicritical models, whose
field content comprises spacetime scalars

�1 , . . . , �k (3.1)

where for each a = 1 , . . . , k the field �a belongs to the vector representation of O(Na).
The symmetry group of the theory is thus O(N1) ⇥ · · · ⇥ O(Nk). In particular, the
bicritical case k = 2 plays a role in critical phenomena of condensed-matter systems [75,
80].2

The quartic couplings that preserve this symmetry are packaged into a symmetric,
positive-definite matrix �ab, and the Euclidean action reads

S =

Z
d
d
y

✓
1

2
(@�a)

2 +
1

2
ra �

2

a
+

�ab

N
�
2

a
�
2

b

◆
. (3.2)

In order to simplify the ensuing analysis, let us introduce some notation. We write
N =

P
a
Na for the total rank and we define the ratios xa = Na

N
. For d spacetime

dimensions, one can further define dimensionless couplings ra = µ
2
ga and �ab = µ

4�d
gab

in terms of the RG scale µ.

3.1 Bosonic beta functions

In order to study infinite-distance limits of RG flows in multicritical models we shall
focus on two limiting regimes: the ✏-expansion and the large-N limit. The latter is
defined by N � 1 with xa and gab fixed, both for the bosonic and the fermionic case.
The former is defined by ✏ ⌧ 1 with d = 4� ✏ in the bosonic case and d = 2+ ✏ in the
fermionic case. Since we are interested in infinite-distance limits, we work at leading

2
The “frustrated” models of [74] are somewhat similar, but their theory space and RG flows are

di↵erent.
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help shed light on this matter. As we shall discuss in detail in section 5.3, already the
coupling space of Chern-Simons-matter CFTs exhibits stringy matrix-like degrees of
freedom, and does lead to exponential decay in this direction of theory space.

In the following sections we present the multicritical field theories at stake, studying
RG flows and computing the information distance along suitable trajectories in theory
space.

3 Multicritical bosonic models

In this section we describe in detail the bosonic models that we consider. The well-
known critical O(N) vector models can be generalized to multicritical models, whose
field content comprises spacetime scalars
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where for each a = 1 , . . . , k the field �a belongs to the vector representation of O(Na).
The symmetry group of the theory is thus O(N1) ⇥ · · · ⇥ O(Nk). In particular, the
bicritical case k = 2 plays a role in critical phenomena of condensed-matter systems [75,
80].2
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In order to simplify the ensuing analysis, let us introduce some notation. We write
N =
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Na for the total rank and we define the ratios xa = Na
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. For d spacetime

dimensions, one can further define dimensionless couplings ra = µ
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Calabrese, Pelissetto, 
Vicari (2022)

3.1.1 Bosonic renormalization group flows

The RG flows described by eq. (3.6) possess many fixed points where the global symme-
try of the theory in eq. (3.2) is enhanced.4 This occurs whenever the coupling matrix
↵ comprises decoupled diagonal blocks, each of which has the appropriate fixed-point
value. For instance, the upper-left m⇥m block can decouple and acquire the fixed-point
value corresponding to the critical O (

P
m

a=1
Na) model. In particular, there are flows

where two factors O(Na) “fuse” according to

O(Na)⇥O(Nb) �! O(Na +Nb) , (3.7)

while all other couplings stay fixed. The beta functions decouple and the RG flow
is e↵ectively bicritical.5 For reasons that will become apparent in section 5, we will
consider chains of RG flows composed of elementary steps of this type. This allows us
to e↵ectively restrict computations to simple bicritical models, up to some adjustments
of the ranks and fixed-point values of the couplings. In this context one can thus display
bicritical couplings as symmetric 2⇥ 2 matrices.

As we will explain in more detail in section 5, we will focus on O(N)M multicritical
models, where all the ranks are equal and the chain of RG flows comprises M �1 steps.
Specifically, it takes the form

O(MN) �! O((M � 1)N)⇥O(N) �! O((M � 2)N)⇥O(N)2

�! . . . �! O(N)⇥O(N)M�1
�! O(N)M

(3.8)

in the bosonic case, while in the fermionic case the flow goes in the opposite direction.
The k-th step of the chain is

O((k + 1)N)⇥O(N)M�k�1
�! O(kN)⇥O(N)M�k

. (3.9)

At each step, we dub the corresponding fixed points FPS and FPB, since the symmetry
group O((k+1)N) at the “symmetric” point FPS goes to O(kN)⇥O(N) at the “broken”
point FPB. The matrices of couplings ↵ ⌘

2B

4�d
g are dimension-independent at the fixed

points, where they take the values

FPS :

 
MN

(k+1)N+8

MN

(k+1)N+8

MN

(k+1)N+8

MN

(k+1)N+8

!
�! FPB :

✓
MN

kN+8
0

0 MN

N+8

◆
. (3.10)

The flow diagram, restricted to the bicritical subspace, is depicted in figure 2. Ex-
amining the beta functions of eq. (3.6), one finds that at large N the specific trajectory

4
There also exist “conical” fixed points where di↵erent O(Na) are coupled but no symmetry en-

hancement occurs [71, 75, 80].
5
Let us remark that, since the ’t Hooft couplings ↵ refer to the total rank N , the fixed-point values

are rescaled with respect to the ordinary bicritical model.
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We work with N ≫ 1 and d = 4 − $ (or d = 2 + $ for fermions) 

Beta functions for the bosonic models:

order in the large-N limit in the remainder of this paper, unless otherwise stated.
Since this is not su�cient to perform all computations in closed form, the ✏-expansion
will serve as an additional analytical tool to obtain explicit expressions. We will then
compare the results with the numerics for ✏ = 1.

✏ = 1 ✏ ⌧ 1
Bose (d = 4� ✏) large N (numeric) pert. exp. N � 1 (analytic)
Fermi (d = 2 + ✏) large N (numeric) pert. exp. 1/✏ � N � 1 (analytic)

Table 3.1: Our scheme of approximations.

The first step toward infinite-distance limits is to compute beta functions. Both
in the ✏-expansion and at large N the beta functions are dominated by the one-loop
contribution. In the bosonic model, the one-loop beta functions were worked out in [78,
80], which we recovered via a heat-kernel computation. The resulting beta functions
read3

µ
dga

dµ
= � 2ga � 2B

✓
xb �

4B

N
�ab

◆
gab

1 + ga
,

µ
dgab

dµ
= � ✏ gab + 2B

✓
xc +

2

N
(�ac + �bc)

◆
gac gbc

(1 + gc)2
+

8B

N

g
2

ab

(1 + ga)2(1 + gb)2
,

(3.3)

where B ⌘
2⌦d�1

(2⇡)d
= 1

4⇡2 +O(✏) and ⌦d�1 is the volume of the (d� 1)-dimensional unit

sphere. Let us remark that, for large N , eq. (3.3) are reliable even for ✏ = 1, namely in
d = 3.

Since we are going to study RG flows connecting critical points, we work in a massless
scheme. To further simplify the flow equations, we define rescaled couplings as in [80]:

gab ⌘
4� d

2B
↵ab

✏⌧1
⇠ 2⇡2

✏ ↵ab , (3.4)

as well as the RG time
t ⌘ (4� d) log

µ

⇤UV

(3.5)

which absorbs the dependence on the UV cuto↵ in the RG flow. With these conven-
tions, eq. (3.3) can be recast in the simpler form

↵̇ab = �↵ab +

✓
xc +

2

N
(�ac + �bc)

◆
↵ac ↵bc +

4

N
↵
2

ab
, (3.6)

where the dot denotes a derivative with respect to the RG time t.

3
Here, and in the following, we leave summations over a, b, c, d dummy indices implicit, unless there

is a potential ambiguity.
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Focus on              models and on flows that follow this pattern

3.1.1 Bosonic renormalization group flows

The RG flows described by eq. (3.6) possess many fixed points where the global symme-
try of the theory in eq. (3.2) is enhanced.4 This occurs whenever the coupling matrix
↵ comprises decoupled diagonal blocks, each of which has the appropriate fixed-point
value. For instance, the upper-left m⇥m block can decouple and acquire the fixed-point
value corresponding to the critical O (

P
m

a=1
Na) model. In particular, there are flows

where two factors O(Na) “fuse” according to

O(Na)⇥O(Nb) �! O(Na +Nb) , (3.7)

while all other couplings stay fixed. The beta functions decouple and the RG flow
is e↵ectively bicritical.5 For reasons that will become apparent in section 5, we will
consider chains of RG flows composed of elementary steps of this type. This allows us
to e↵ectively restrict computations to simple bicritical models, up to some adjustments
of the ranks and fixed-point values of the couplings. In this context one can thus display
bicritical couplings as symmetric 2⇥ 2 matrices.

As we will explain in more detail in section 5, we will focus on O(N)M multicritical
models, where all the ranks are equal and the chain of RG flows comprises M �1 steps.
Specifically, it takes the form

O(MN) �! O((M � 1)N)⇥O(N) �! O((M � 2)N)⇥O(N)2

�! . . . �! O(N)⇥O(N)M�1
�! O(N)M

(3.8)

in the bosonic case, while in the fermionic case the flow goes in the opposite direction.
The k-th step of the chain is

O((k + 1)N)⇥O(N)M�k�1
�! O(kN)⇥O(N)M�k

. (3.9)

At each step, we dub the corresponding fixed points FPS and FPB, since the symmetry
group O((k+1)N) at the “symmetric” point FPS goes to O(kN)⇥O(N) at the “broken”
point FPB. The matrices of couplings ↵ ⌘

2B

4�d
g are dimension-independent at the fixed

points, where they take the values

FPS :

 
MN

(k+1)N+8

MN

(k+1)N+8

MN

(k+1)N+8

MN

(k+1)N+8

!
�! FPB :

✓
MN

kN+8
0

0 MN

N+8

◆
. (3.10)

The flow diagram, restricted to the bicritical subspace, is depicted in figure 2. Ex-
amining the beta functions of eq. (3.6), one finds that at large N the specific trajectory

4
There also exist “conical” fixed points where di↵erent O(Na) are coupled but no symmetry en-

hancement occurs [71, 75, 80].
5
Let us remark that, since the ’t Hooft couplings ↵ refer to the total rank N , the fixed-point values

are rescaled with respect to the ordinary bicritical model.
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At each step the flow is essentially bicritical



The bicritical RG flow for bosons
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of eq. (3.10) is simply the line connecting FPS to FPB. Since the information distance
is reparametrization invariant, we choose to parametrize it with u 2 (0, 1) according to

↵(u) = ↵FPS (1� u) + ↵FPB u

⌘ ↵FPS + v u ,
(3.11)

where v ⌘ ↵FPB � ↵FPS is the tangent vector to the line.

Out[� ]=

FPB
FPS
GFP

Figure 2: Streamplot of the RG flow for the bosonic model for the bicritical flow
with both ranks equal to 1000. The straight line represents a single step of the type
of eq. (3.9). The direction of the flow is following the directions of the arrows, or
equivalently from blue to red on the highlighted single-step trajectory. The fixed points
FPS (resp. FPB) corresponds to the fixed point of the (un)broken configuration, while
GFP represents the Gaussian fixed point of zero couplings.

3.2 Information metric at large N

In this section we set up the computation of the information metric in the bosonic
model. Since we are interested in infinite-distance limits, we work at large N .

We begin introducing Hubbard-Stratonovich fields �a, to rewrite the quartic inter-
actions in terms of the cubic interactions �a�

2

a
. Integrating out the �a, the resulting
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line

3.1.1 Bosonic renormalization group flows

The RG flows described by eq. (3.6) possess many fixed points where the global symme-
try of the theory in eq. (3.2) is enhanced.4 This occurs whenever the coupling matrix
↵ comprises decoupled diagonal blocks, each of which has the appropriate fixed-point
value. For instance, the upper-left m⇥m block can decouple and acquire the fixed-point
value corresponding to the critical O (

P
m

a=1
Na) model. In particular, there are flows

where two factors O(Na) “fuse” according to

O(Na)⇥O(Nb) �! O(Na +Nb) , (3.7)

while all other couplings stay fixed. The beta functions decouple and the RG flow
is e↵ectively bicritical.5 For reasons that will become apparent in section 5, we will
consider chains of RG flows composed of elementary steps of this type. This allows us
to e↵ectively restrict computations to simple bicritical models, up to some adjustments
of the ranks and fixed-point values of the couplings. In this context one can thus display
bicritical couplings as symmetric 2⇥ 2 matrices.

As we will explain in more detail in section 5, we will focus on O(N)M multicritical
models, where all the ranks are equal and the chain of RG flows comprises M �1 steps.
Specifically, it takes the form

O(MN) �! O((M � 1)N)⇥O(N) �! O((M � 2)N)⇥O(N)2

�! . . . �! O(N)⇥O(N)M�1
�! O(N)M

(3.8)

in the bosonic case, while in the fermionic case the flow goes in the opposite direction.
The k-th step of the chain is

O((k + 1)N)⇥O(N)M�k�1
�! O(kN)⇥O(N)M�k

. (3.9)

At each step, we dub the corresponding fixed points FPS and FPB, since the symmetry
group O((k+1)N) at the “symmetric” point FPS goes to O(kN)⇥O(N) at the “broken”
point FPB. The matrices of couplings ↵ ⌘

2B

4�d
g are dimension-independent at the fixed

points, where they take the values

FPS :

 
MN

(k+1)N+8

MN

(k+1)N+8

MN

(k+1)N+8

MN

(k+1)N+8

!
�! FPB :

✓
MN

kN+8
0

0 MN

N+8

◆
. (3.10)

The flow diagram, restricted to the bicritical subspace, is depicted in figure 2. Ex-
amining the beta functions of eq. (3.6), one finds that at large N the specific trajectory

4
There also exist “conical” fixed points where di↵erent O(Na) are coupled but no symmetry en-

hancement occurs [71, 75, 80].
5
Let us remark that, since the ’t Hooft couplings ↵ refer to the total rank N , the fixed-point values

are rescaled with respect to the ordinary bicritical model.

10

3.1.1 Bosonic renormalization group flows

The RG flows described by eq. (3.6) possess many fixed points where the global symme-
try of the theory in eq. (3.2) is enhanced.4 This occurs whenever the coupling matrix
↵ comprises decoupled diagonal blocks, each of which has the appropriate fixed-point
value. For instance, the upper-left m⇥m block can decouple and acquire the fixed-point
value corresponding to the critical O (

P
m

a=1
Na) model. In particular, there are flows

where two factors O(Na) “fuse” according to

O(Na)⇥O(Nb) �! O(Na +Nb) , (3.7)

while all other couplings stay fixed. The beta functions decouple and the RG flow
is e↵ectively bicritical.5 For reasons that will become apparent in section 5, we will
consider chains of RG flows composed of elementary steps of this type. This allows us
to e↵ectively restrict computations to simple bicritical models, up to some adjustments
of the ranks and fixed-point values of the couplings. In this context one can thus display
bicritical couplings as symmetric 2⇥ 2 matrices.

As we will explain in more detail in section 5, we will focus on O(N)M multicritical
models, where all the ranks are equal and the chain of RG flows comprises M �1 steps.
Specifically, it takes the form

O(MN) �! O((M � 1)N)⇥O(N) �! O((M � 2)N)⇥O(N)2

�! . . . �! O(N)⇥O(N)M�1
�! O(N)M

(3.8)

in the bosonic case, while in the fermionic case the flow goes in the opposite direction.
The k-th step of the chain is

O((k + 1)N)⇥O(N)M�k�1
�! O(kN)⇥O(N)M�k

. (3.9)

At each step, we dub the corresponding fixed points FPS and FPB, since the symmetry
group O((k+1)N) at the “symmetric” point FPS goes to O(kN)⇥O(N) at the “broken”
point FPB. The matrices of couplings ↵ ⌘

2B

4�d
g are dimension-independent at the fixed

points, where they take the values

FPS :

 
MN

(k+1)N+8

MN

(k+1)N+8

MN

(k+1)N+8

MN

(k+1)N+8

!
�! FPB :

✓
MN

kN+8
0

0 MN

N+8

◆
. (3.10)

The flow diagram, restricted to the bicritical subspace, is depicted in figure 2. Ex-
amining the beta functions of eq. (3.6), one finds that at large N the specific trajectory

4
There also exist “conical” fixed points where di↵erent O(Na) are coupled but no symmetry en-

hancement occurs [71, 75, 80].
5
Let us remark that, since the ’t Hooft couplings ↵ refer to the total rank N , the fixed-point values

are rescaled with respect to the ordinary bicritical model.

10



The bicritical RG flow for fermions
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Similar story…
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Figure 3: Streamplot of the RG flow for the fermionic model for the bicritical flow
with both ranks equal to 1000. The straight line represents a single step of the type
of eq. (4.14). The direction of the flow is following the directions of the arrows, or
equivalently from blue to red on the highlighted single-step trajectory. The fixed points
FPS (resp. FPB) corresponds to the fixed point of the (un)broken configuration, while
GFP represents the Gaussian fixed point of zero couplings.

and the corresponding saddle-point gap equations now take the form

�a = 4 gab xb �b L̇(�
2

b
) . (4.18)

In particular, for d = 2 + ✏, one has

L̇(�2)
✏⌧1
⇠

B

4
log

✓
1 +

1

�2

◆
. (4.19)

The full large-N metric can then be computed numerically, but analogously to the
bosonic case one expects the calculation to simplify dramatically for ✏ ⌧ 1, since the
entire RG trajectory is weakly coupled. However, since close to d = 2 the Gross-Neveu
model develops gaps that are exponentially suppressed in the couplings, one cannot
apply conventional perturbation theory to approach eq. (4.18). Numerical precision
is also compromised by exponential underflow. We were not able to solve eq. (4.18)
analytically for generic (small) couplings, but we managed to find a closed-form solution

17

and once again t ⌘ (d� 2) log µ

⇤UV
. One finally arrives at a result similar to eq. (3.6),

↵̇ab = ↵ab �

✓
xc �

1

2N
(�ac + �bc)

◆
↵ac ↵bc . (4.12)

To our knowledge, the above is the first computation of the beta functions of the
multicritical Gross-Neveu model in the literature.

4.1.1 Fermionic renormalization group flows

In the fermionic case, similarly to the bosonic one, we will consider models of the form
U(N)M and compute the information distance as a function of M � 1. In this case,
the chain of RG flows is

U(MN)  � U((M � 1)N)⇥ U(N)  � U((M � 2)N)⇥ U(N)2

 � . . .  � U(N)⇥ U(N)M�1
 � U(N)M

(4.13)

Analogously to eq. (3.9), the single-step RG flow

U(kN)⇥ U(N)M�k
�! U((k + 1)N)⇥ U(N)M�k�1

. (4.14)

now connects the “broken” fixed point FPB to “symmetric” FPS. The matrices of
couplings ↵ ⌘ 2B

d�2
g are once again independent of the dimension at the fixed points,

where they take the values

FPB :

✓
MN

kN�1
0

0 MN

N�1

◆
�! FPS :

 
MN

(k+1)N�1

MN

(k+1)N�1

MN

(k+1)N�1

MN

(k+1)N�1

!
. (4.15)

The flow diagram, restricted to the bicritical subspace, is depicted in figure 3.

In complete analogy to the bosonic case, the relevant trajectory of eq. (4.15) is
simply a line to leading order in the large-N limit. Thus, we choose to parametrize it
according to

↵(u) = ↵FPB (1� u) + ↵FPS u

⌘ ↵FPB + v u ,
(4.16)

where now v ⌘ ↵FPS � ↵FPB is properly oriented tangent vector to the line.

4.2 Information metric for fermions

Similarly to the bosonic case, evaluating the e↵ective action on a background with
constant gaps �a, one obtains the e↵ective potential for the fermionic models. With
the same definition in eq. (3.15), it takes the form

Ve↵ =
N

4
(g�1)ab �a �b �N xa L(�

2

a
) , (4.17)
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Computing the information metric

Andrea Campoleoni - UMONS

We resort to the usual Hubbard-Stratonovich trick 

• We rewrite the quartic interaction as 

• Integrating out the       we get

of eq. (3.10) is simply the line connecting FPS to FPB. Since the information distance
is reparametrization invariant, we choose to parametrize it with u 2 (0, 1) according to

↵(u) = ↵FPS (1� u) + ↵FPB u

⌘ ↵FPS + v u ,
(3.11)

where v ⌘ ↵FPB � ↵FPS is the tangent vector to the line.
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Figure 2: Streamplot of the RG flow for the bosonic model for the bicritical flow
with both ranks equal to 1000. The straight line represents a single step of the type
of eq. (3.9). The direction of the flow is following the directions of the arrows, or
equivalently from blue to red on the highlighted single-step trajectory. The fixed points
FPS (resp. FPB) corresponds to the fixed point of the (un)broken configuration, while
GFP represents the Gaussian fixed point of zero couplings.

3.2 Information metric at large N

In this section we set up the computation of the information metric in the bosonic
model. Since we are interested in infinite-distance limits, we work at large N .

We begin introducing Hubbard-Stratonovich fields �a, to rewrite the quartic inter-
actions in terms of the cubic interactions �a�

2

a
. Integrating out the �a, the resulting
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e↵ective action takes the form [72, 80]6

Se↵ = �
N

4
(g�1)ab

Z
d
d
y �a �b +

N

2
xa Tr log (�⇤+ ra + 2 �a) , (3.12)

where g�1 denotes the matrix inverse of g. The above expression is now amenable to a
saddle-point large-N expansion, where the xa are kept fixed.7

For constant �a, the e↵ective potential reads

Ve↵ = �
N

4
(g�1)ab �a �b +

N

2
xa

Z
⇤UV d

d
p

(2⇡)d
log

�
p
2 + ra + 2 �a

�
, (3.13)

and the saddle-point condition yields the gap equations

�a = 2 gab xb L̇(rb + 2�b) , (3.14)

where L̇(r) ⌘ dL

dr
and we have defined

L(r) ⌘

Z
⇤UV d

d
p

(2⇡)d
log

�
p
2 + r

�

=
⌦d�1

d(2⇡)d
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UV

r
2F1

✓
1,

d

2
;
d+ 2

2
;�

⇤2

UV

r

◆
.

(3.15)

Finally, denoting the saddle-point gaps by �a(r,g) as a function of the couplings, the
large-N negative energy density �w = 1

Vol
logZ takes the form

�w
N�1
⇠ �Ve↵(�(r,g)) , (3.16)

and its Hessian in coupling space

G(ab)(cd) = �
@

@gab

@

@gcd
Ve↵(�(0,g)) (3.17)

gives the (intensive [26]) quantum information metric restricted to the subspace of
vanishing quadratic couplings. While ordinary diagrammatic perturbation theory in
this subspace is subject to IR divergences, we expect the non-perturbative result to
be well-defined. Indeed, we have verified that the analytic result from the ✏-expansion
matches the numerical computation of eq. (3.17). Furthermore, we have verified that,
in the ordinary O(N) model, eq. (3.17) matches the calculation of [25], including all
the combinatoric factors.

6
The same result can be obtained with a variational calculation [81].

7
In principle one could also build a large-N expansion where some of the Na = Nxa are fixed

instead [80, 81].
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Figure 3: Streamplot of the RG flow for the fermionic model for the bicritical flow
with both ranks equal to 1000. The straight line represents a single step of the type
of eq. (4.14). The direction of the flow is following the directions of the arrows, or
equivalently from blue to red on the highlighted single-step trajectory. The fixed points
FPS (resp. FPB) corresponds to the fixed point of the (un)broken configuration, while
GFP represents the Gaussian fixed point of zero couplings.

and the corresponding saddle-point gap equations now take the form

�a = 4 gab xb �b L̇(�
2

b
) . (4.18)

In particular, for d = 2 + ✏, one has
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The full large-N metric can then be computed numerically, but analogously to the
bosonic case one expects the calculation to simplify dramatically for ✏ ⌧ 1, since the
entire RG trajectory is weakly coupled. However, since close to d = 2 the Gross-Neveu
model develops gaps that are exponentially suppressed in the couplings, one cannot
apply conventional perturbation theory to approach eq. (4.18). Numerical precision
is also compromised by exponential underflow. We were not able to solve eq. (4.18)
analytically for generic (small) couplings, but we managed to find a closed-form solution
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Computing distances along the flow

Andrea Campoleoni - UMONS

For bosons, we computed the full metric in d = 3 numerically in 
the large-N expansion and analytically in d = 4 − $ for $ ≪ 1 

The length of the RG trajectory is

the leading-order solution to gap equation is perturbative, up to logarithmic terms,
the leading-order term in the fermionic gap is non-perturbative, of the form � ⇠ e

�
1
✏ .

In order to circumvent this, instead of computing the full metric (in a neighbourhood
of the Gaussian point g = 0) Gg, we computed its pullback Gvv(u) ⌘ Gg(u)(v, v) on
the RG trajectory that we consider. The length of the RG trajectory represents the
single-step distance �bdry

ss
on the boundary side of the holographic correspondence, and

is given by

�bdry

ss
=

Z
1

0

p
Gvv(u) du . (5.1)

Generalizing the holographic correspondence between metrics from the case of a con-
formal manifold to the information metric, one is thus naturally led to propose the bulk
distance [21]

�bulk

ss
⇠

1
p
CT

Z
1

0

p
Gvv(u) du (5.2)

at large CT central charge. The rationale behind the asymptotics in eq. (5.2) is that
dividing by CT is strictly speaking only unambiguous when CT does not vary along the
curve, i.e. on a conformal manifold. Hence, in the spirit of keeping our proposal as
close as possible to this well-established case, the RG trajectories that provide single
steps ought to be the ones along which CT varies the least.

In order to probe large distances in theory space, as we have anticipated one ul-
timately need consider the hierarchy M � N � 1, and whenever 1

✏
� 1 it is also

the largest parameter in the hierarchy. We do this within the ✏-expansion in order to
obtain more manageable closed-form expressions for the large-distance behavior, but
our numerical computations do not rely on this assumption. In the large-N limit, CT

does not vary to leading order over a single step, and eq. (5.2) is well-defined. This is
consistent with the intuition that only the large-N limit of the theories we discuss seem
to describe sensible gravitational physics in the bulk. However, since we are interested
in the leading 1

N
corrections (to anomalous dimensions of higher-spin currents), picking

the trajectories where the subleading part of CT varies the least seems to be the most
sensible option. The general structure is [82, 83]

C
G

T
⇠ aN + b (5.3)

for a single, decoupled critical sector with symmetry group G = O(N) or U(N), where
a , b = O(1) are known constants [82, 83]. For a free sector, b = 0 instead. Therefore,
summing over the decoupled group factors

C

Q
i Gi

T
=

X

i

C
Gi
T

⇠

X

i

(aNi + bi) , (5.4)

where bi = b for critical factors and bi = 0 for free factors.

In order to simplify the computation of the information distance, we consider simple
multicritical models of the form O(N)M or U(N)M , i.e. with fixed equal ranks N � 1.

20

[v is the direction of the line connecting the 
two fixed points of the bicritical RG flow]
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�
1
✏ .

In order to circumvent this, instead of computing the full metric (in a neighbourhood
of the Gaussian point g = 0) Gg, we computed its pullback Gvv(u) ⌘ Gg(u)(v, v) on
the RG trajectory that we consider. The length of the RG trajectory represents the
single-step distance �bdry

ss
on the boundary side of the holographic correspondence, and

is given by
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=
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Generalizing the holographic correspondence between metrics from the case of a con-
formal manifold to the information metric, one is thus naturally led to propose the bulk
distance [21]
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at large CT central charge. The rationale behind the asymptotics in eq. (5.2) is that
dividing by CT is strictly speaking only unambiguous when CT does not vary along the
curve, i.e. on a conformal manifold. Hence, in the spirit of keeping our proposal as
close as possible to this well-established case, the RG trajectories that provide single
steps ought to be the ones along which CT varies the least.

In order to probe large distances in theory space, as we have anticipated one ul-
timately need consider the hierarchy M � N � 1, and whenever 1

✏
� 1 it is also

the largest parameter in the hierarchy. We do this within the ✏-expansion in order to
obtain more manageable closed-form expressions for the large-distance behavior, but
our numerical computations do not rely on this assumption. In the large-N limit, CT

does not vary to leading order over a single step, and eq. (5.2) is well-defined. This is
consistent with the intuition that only the large-N limit of the theories we discuss seem
to describe sensible gravitational physics in the bulk. However, since we are interested
in the leading 1

N
corrections (to anomalous dimensions of higher-spin currents), picking

the trajectories where the subleading part of CT varies the least seems to be the most
sensible option. The general structure is [82, 83]

C
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T
⇠ aN + b (5.3)

for a single, decoupled critical sector with symmetry group G = O(N) or U(N), where
a , b = O(1) are known constants [82, 83]. For a free sector, b = 0 instead. Therefore,
summing over the decoupled group factors
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where bi = b for critical factors and bi = 0 for free factors.

In order to simplify the computation of the information distance, we consider simple
multicritical models of the form O(N)M or U(N)M , i.e. with fixed equal ranks N � 1.
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Computing distances along the flow
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The trajectories we have chosen are those along which CT varies 
the least (strictly speaking the previous expression makes sense 
only if CT is constant) 

This provides a criterion to interpret our trajectories as 
“geodesics” in theory space
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The higher-spin limit then amounts to taking M ! 1, since, as we will discuss in
detail in section 6, the anomalous dimensions �HS of the higher-spin currents of interest
vanishes according to

�
O(NM)
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�
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HS

,
�
U(NM)

HS

�
U(N)M

HS

⇠
O(1)

M
. (5.5)

We are interested in expressing eq. (5.5) in terms of the information distance along the
chain of single-step flows connecting the initial and final fixed points. According to the
preceding discussions, the chain of RG flows in eq. (3.8) and eq. (4.13) comprises M�1
steps, and the full bulk distance is then the sum over single steps of eq. (5.2), namely

�bulk
⇠

M�1X

k=1

�bulk

k
(5.6)

where the k-th step connects

O((k + 1)N)⇥O(N)M�k�1
�! O(kN)⇥O(N)M�k bosonic ,

U(kN)⇥ U(N)M�k
�! U((k + 1)N)⇥ U(N)M�k�1 fermionic .

(5.7)

In the following we derive expressions for �bulk(M) in order to check whether it diverges
as M ! 1 and, if so, how eq. (5.5) depends on it in this limit.

5.1 Bosonic case

5.1.1 Distance in d = 4� ✏

In the ✏-expansion for the bosonic model the asymptotics of the metric can be computed
explicitly from eq. (3.22), but its expression is quite long and cumbersome. However,
for k � N � 1 the pullback of eq. (4.21) greatly simplifies to

Gvv ⇠
✏
2

2⇡2 N
log

✓
4

✏2(1� u)u

◆
. (5.8)

The single-step bulk distance is therefore independent of k and scales as 1/
p
M due

to the factor of CT in eq. (5.2). The total bulk distance thus scales like
p
M , or more

precisely

�bulk
⇠

✏

N

r
log

1

✏

p

M (5.9)

up to an irrelevant numerical factor. Thus, the distance diverges as M � 1, which is a
proper infinite-distance limit. We have compared the prediction �bulk

⇠ O(1)
p
M with

a numerical computation, and the resulting very good agreement is depicted in figure 4.
Importantly, the agreement does not rely on M � N . Examining the ratios, one finds
a relative discrepancy of less than 5⇥ 10�3 for M  103, as shown in figure 5.
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Contrasting with anomalous dimensions
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Anomalous dimensions of HS currents 

• At the decoupling point O(N)M they scale as 

• They gradually decrease up to 

The distance conjecture is violated!
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One subtle point regarding the interplay between the weakly gauged O(N) symmetry
on the CFT side and the leftover global O(M) symmetry that becomes gauged in the
AdS-dual gravitational description is that M should not exceed N , for the bulk fields
must be independent. Indeed, let us consider the anti-symmetrized product of n bulk
fields

(�i1
[a1
�
j1

|b1|
�i1j1) . . . (�

in
an]

�
jn

bn
�injn) () �[a1|b1| . . . �an]bn , (6.8)

for which we also wrote down the dual operator. Clearly, the expression will vanish for
n > N , but it has no reasons to vanish on the bulk side for M � n. Recalling that the
bulk coupling G is of order 1/N we have some bounds on the size of the Yang-Mills
group M , G�1 & M . In other words, for M large enough the large-N expansion is
inapplicable. Similar subtleties were also pointed out e.g. in [117, 132] and studied
recently in [133].

7 Implications for the swampland

The results that we have collected suggest a natural interpretation in terms of the
swampland distance conjecture [13], in particular regarding its CFT counterpart [21,
22]. The RG trajectories that we have considered always include a O(N) or U(N)
symmetry subgroup (we will refer to the former for brevity). It is thus tempting to
impose a singlet constraint on this subgroup to identify duals of higher-spin states in
the bulk: at the decoupled O(N)M fixed point the anomalous dimensions of the corre-
sponding higher-spin currents scale as �HS ⇠

1

N
. Gauging a diagonal O(N) subgroup,

for su�ciently large Chern-Simons level the above discussion is una↵ected, with the
proviso that only one stress tensor is now conserved, allowing a more sensible holo-
graphic interpretation.14 To elaborate further on this point, in the preceding section
we have discussed how a proper bulk interpretation seems to require M . N , while the
infinite-distance limit requires M � N . This is not unexpected, since infinite-distance
limits encode a breakdown of the bulk EFT description, while its boundary counterpart
can remain perfectly sensible. We nonetheless find the same power-like behavior of the
distance �(M) as a function of the number of steps M , as depicted in figure 8.

The chain of RG flows gradually enhances the fixed points to O(MN), along a
distance � ⇠

p
M . The anomalous dimensions gradually decrease up to �HS ⇠

1

MN
.

Thus, in the infinite-distance limit one has

�
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HS

�
O(N)M

HS

,
�
U(NM)

HS

�
U(N)M

HS

⇠
O(1)

�2
. (7.1)

This power-like recovery of higher-spin symmetry is strikingly di↵erent from the expo-
nential decay that is apparently ubiquitous in string-theoretic constructions, and to our

14
In the presence of many independent conserved spin-2 tensors, the union of corresponding AdS

spaces glued at their conformal boundary has been proposed as a holographic description [134, 135].
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How to give an holographic interpretation to this computation? 

• Let’s impose the singlet constraint on a diagonal O(N)
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Validity of the holographic interpretation
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Since we impose the singlet constraint only on the diagonal 
O(N), our HS currents display Chan-Paton factors:

algebra so(d, 2), say V . Then, it is a well-known result [90, 91] that all quasi-primary
single-trace operators (we do not display the tensor indices of the various operators and
only indicate their number)

Js = �̄
i
@
s
�i + . . . , � = d+ s� 2 , (6.1)
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are covered by a scalar operator J0 and by conserved tensors Js with s = 1, 2, 3, . . .
for the U(N) case and with s = 2, 4, 6, . . . for the O(N) case. From the representation
theory point of view this corresponds to the decomposition of V ⌦ V or (V ⌦ V )S
into irreducible representations of the conformal algebra. The standard AdS/CFT
dictionary
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implies that the dual theory has gauge (for s > 0) fields �µ1 ... µs with the same range
of s, i.e. all spins for the dual of the free U(N) model and all even spins for the dual of
the O(N) one.

Similarly, one can take a U(N) vector multiplet  i of free fermions. In d = 3 the
spectrum of the single-trace operators is very close to the one of the free scalar CFT:
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The latter property is a first sign of the three-dimensional bosonization duality [34, 86,
92–95]. Another comment is that all CFTs with higher spin conserved tensors in d � 3
are free CFTs [96–99], possibly, in disguise.

A simple extension of this construction is to take several vector multiplets, �i

a
, that

transform under U(N)⇥ U(M) or O(N)⇥O(M) and to impose the singlet constraint
with respect to U(N) or O(N) only. The higher spin currents then get decorated with
U(M) or O(M) indices
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In the case of U(N)⇥U(M) the single-trace operators take values in the adjoint of U(M)
and for the case of O(N)⇥ O(M) the currents with odd/even spins take values in the
adjoint/rank-two symmetric plus singlet representations ofO(M). Since U(M) orO(M)
is the leftover global symmetry, it becomes gauged in the bulk and one expects fields
�µ1 ... µs to take values in the same representations of U(M) or O(M). In particular,
the spin-one field always carries the adjoint representation. Likewise, one can decorate
currents Js

a
b built out of U(N) ⇥ U(M) free fermions  a

i
with U(M). A thorough

discussion of all free cases from the representation theory point of view as well as
supersymmetric extensions can be found in [100].
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When M >> N some of the 
bulk field seem not to be 
independent anymore

Figure 8: The power-like behavior � ⇠
p
M , or at least � ⇠ M

↵ with ↵ ⇡ 0.5, persists
down to small steps M . N , where a bulk description is more reliable due to the
absence of the extra constraints discussed in section 6 (see also [133]). The analytic
control given by the ✏-expansion provides a convenient cross-check, but our ultimate
interest is in the case d = 3, and our numerical technique does not require M � N .

knowledge eq. (7.1) is the first example of this kind. Of course, care must be taken in
placing this result in the context of the swampland distance conjecture, since distances
outside of ordinary moduli spaces have been explored to a much lesser extent [23, 26,
27]. Furthermore, let us remark that alternative definitions of the distance at stake
are possible, namely applying the information distance(s) in di↵erent ways compared
to what we have done in this paper [27].15 Nevertheless, our approach based on RG
flows connecting discrete sets of (fixed) points may be motivated by additional physical
considerations. Namely, much like moving in moduli spaces corresponds to changing
VEVs with no energy cost, moving in a discrete landscape of vacua corresponds to
crossing domain walls, whose existence is entailed by the cobordism conjecture in the

15
We thank John Stout for pointing this out.
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Bulk interpretation for M >> N?
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Figure 4: Bosonic distance for d = 4 � 10�3, N = 100 and M  1000. The numerical
computation (left panel) agrees with the perturbative prediction (right panel). The
square-root behaviour is fitted with a power-law model.

Figure 5: Ratio of the bosonic distances for d = 4 � 10�3 and M  1000, computed
using the full numerical model and the small ✏, large-M perturbative analysis. The
di↵erence between the two approaches gives an error less than 5⇥ 10�3.

5.1.2 Distance in d = 3

For d = 3, arguably more interesting for higher-spin holography, the perturbative ap-
proch breaks down and we relied on a numerical method. In more detail, we numer-
ically solved eq. (3.14) for couplings along the trajectory, and subsequently computed
the pullback metric of eq. (4.21). Finally, we evaluated the total distance summing
over single steps according to eq. (5.6). For M  1000 and N = 100 the results are
shown in figure 6, where a polynomial fit shows a behavior seemingly compatible with
the square-root result from the ✏-expansion, once again without assuming M � N , so
that the regime of validity of a bulk interpretation for d = 3 has an overlap with the
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where we can compare the numerical 
approach with the epsilon expansion 
we get an error of less than 
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in the fermionic case the numerical 
approach is much reliable, but we 
obtain qualitatively similar results



Exploring other directions in the theory space
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Standard way to impose the singlet constraint in d=3: 
coupling to a Chern-Simons action

In the large-N limit with                                        fixed one 
has a line of fixed points

When N ! 1, this is the leading contribution to Gvv defined on (0, 1), and indeed
the integral of eq. (4.26) (defined with some determination of the square root) has a
vanishing imaginary part for N ! 1. Thus, the single-step integrated bulk distance is
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up to an irrelevant numerical factor. For the full trajectory U(N)M ! · · · ! U(MN),
the integrated bulk distance is therefore
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again up to an irrelevant numerical factor. Notice that both closed-form expressions for
✏ ⌧ 1 feature the same

p
M scaling for M � 1, which is therefore an infinite-distance

limit also in the fermionic case. Let us observe that the ✏-dependence of eq. (5.12)
and eq. (5.9) are related by the substitution ✏Bose = e

�1/✏Fermi . This can be traced back
to the ✏-dependence of the solutions � to the respective gap equations in eq. (3.21)
and eq. (4.23), which are also related in this fashion.

5.2.2 Distance in d = 3

In d = 3 once again numerical methods are the only tool at our disposal. However,
the fermionic case is still quite numerically unstable even at ✏ = 1, presumably because
of residual issues stemming from the exponential underflows at ✏ ⌧ 1. Our numerical
analysis shows that the computations are stable and reliable up to M ⇡ 120, which
is not particularly large. However, the plot in figure 7 still shows a clear polynomial
trend, which seems compatible with a large-M square-root behavior considering the
larger uncertainty of this fermionic computation. Moreover, as in the bosonic case, the
power-like scaling appears to hold also in the regime of validity of a bulk interpretation.

5.3 Chern-Simons-matter CFTs

In order to build a sensible bulk interpretation of (multi)critical vector models, the
standard procedure involves introducing a singlet constraint on spectra. In d = 3 this
can be implemented by coupling vector matter to a Chern-Simons sector [34, 84, 85] at
positive level kCS � 1. In the large-N limit with

� ⌘
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N

kCS +N
2 (0, 1) (5.13)

fixed, one finds a line of CFTs for all �, and higher-spin symmetry is present at the edges
of the interval, where the theory is equivalent to the critical/free bosons or free/critical
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Higher-spin symmetry is present at the edges of the interval 
(free/critical bosons or fermions)

How information distance behave in the λ space?
1/�, the second derivative of �FCS with respect to 1/� yields the asymptotic metric
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up to a prefactor. Thus, the distance to � = 0 is infinite. By duality, one can argue that
the same conclusion applies to � = 1. This result also fits with our general expectations
due to how free theories and higher-spin symmetry are recovered at the endpoints.

More in detail, the distance �(�,�0) ⇠ c log �0
�
diverges logarithmically in �, where

� < �0 and c > 0 is some positive constant. The anomalous dimensions of higher-spin
currents scale according to [87]
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where as and bs only depend on the spin. For � ⌧ 1 one finds
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so that, in terms of the distance �,
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Hence, in the case of the Chern-Simons theory space parametrized by �, the recovery
of higher-spin symmetry seems to be exponentially fast in the distance. Consistently
with our preceding considerations, one may be led to speculate that the matrix-like
nature of Chern-Simons degrees of freedom, which dominates over the vector-like one
in this case, be responsible for the stringy exponential decay of higher-spin anomalous
dimensions. The presence of a gauge theory can also be detected via the large spin
asymptotic of the higher-spin anomalous dimensions, which is log s, see [89].

6 Higher-spin holography

Let us briefly summarize the main features of the higher-spin/vector model holography.
We will concentrate on the spectrum, i.e. on the dictionary between single-trace oper-
ators and bulk fields, most of which is a simple consequence of representation theory.
The most basic example was anticipated [90] long before the AdS/CFT correspondence
and concerns free vector models. Two important twists of the story are to add critical
vector models to the scene [31–33, 35] and to extend all of the models to Chern-Simons
vector models [34, 36, 37].

In the simplest case we have a O(N) or U(N) vector �i of free scalars. The free scalar
field corresponds to a unitary irreducible representation of the conformal symmetry
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the distance at λ = 0 is 
infinite and one can argue 
that the same is true at λ = 1 
by a duality argument



Chern-Simons vector models
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This time the distance diverges logarithmically in the 
parameter!
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Hence, in the case of the Chern-Simons theory space parametrized by �, the recovery
of higher-spin symmetry seems to be exponentially fast in the distance. Consistently
with our preceding considerations, one may be led to speculate that the matrix-like
nature of Chern-Simons degrees of freedom, which dominates over the vector-like one
in this case, be responsible for the stringy exponential decay of higher-spin anomalous
dimensions. The presence of a gauge theory can also be detected via the large spin
asymptotic of the higher-spin anomalous dimensions, which is log s, see [89].

6 Higher-spin holography

Let us briefly summarize the main features of the higher-spin/vector model holography.
We will concentrate on the spectrum, i.e. on the dictionary between single-trace oper-
ators and bulk fields, most of which is a simple consequence of representation theory.
The most basic example was anticipated [90] long before the AdS/CFT correspondence
and concerns free vector models. Two important twists of the story are to add critical
vector models to the scene [31–33, 35] and to extend all of the models to Chern-Simons
vector models [34, 36, 37].

In the simplest case we have a O(N) or U(N) vector �i of free scalars. The free scalar
field corresponds to a unitary irreducible representation of the conformal symmetry
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For           the anomalous dimensions scale as
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up to a prefactor. Thus, the distance to � = 0 is infinite. By duality, one can argue that
the same conclusion applies to � = 1. This result also fits with our general expectations
due to how free theories and higher-spin symmetry are recovered at the endpoints.

More in detail, the distance �(�,�0) ⇠ c log �0
�
diverges logarithmically in �, where

� < �0 and c > 0 is some positive constant. The anomalous dimensions of higher-spin
currents scale according to [87]
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Hence, in the case of the Chern-Simons theory space parametrized by �, the recovery
of higher-spin symmetry seems to be exponentially fast in the distance. Consistently
with our preceding considerations, one may be led to speculate that the matrix-like
nature of Chern-Simons degrees of freedom, which dominates over the vector-like one
in this case, be responsible for the stringy exponential decay of higher-spin anomalous
dimensions. The presence of a gauge theory can also be detected via the large spin
asymptotic of the higher-spin anomalous dimensions, which is log s, see [89].

6 Higher-spin holography

Let us briefly summarize the main features of the higher-spin/vector model holography.
We will concentrate on the spectrum, i.e. on the dictionary between single-trace oper-
ators and bulk fields, most of which is a simple consequence of representation theory.
The most basic example was anticipated [90] long before the AdS/CFT correspondence
and concerns free vector models. Two important twists of the story are to add critical
vector models to the scene [31–33, 35] and to extend all of the models to Chern-Simons
vector models [34, 36, 37].

In the simplest case we have a O(N) or U(N) vector �i of free scalars. The free scalar
field corresponds to a unitary irreducible representation of the conformal symmetry
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up to a prefactor. Thus, the distance to � = 0 is infinite. By duality, one can argue that
the same conclusion applies to � = 1. This result also fits with our general expectations
due to how free theories and higher-spin symmetry are recovered at the endpoints.
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�
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Hence, in the case of the Chern-Simons theory space parametrized by �, the recovery
of higher-spin symmetry seems to be exponentially fast in the distance. Consistently
with our preceding considerations, one may be led to speculate that the matrix-like
nature of Chern-Simons degrees of freedom, which dominates over the vector-like one
in this case, be responsible for the stringy exponential decay of higher-spin anomalous
dimensions. The presence of a gauge theory can also be detected via the large spin
asymptotic of the higher-spin anomalous dimensions, which is log s, see [89].
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Let us briefly summarize the main features of the higher-spin/vector model holography.
We will concentrate on the spectrum, i.e. on the dictionary between single-trace oper-
ators and bulk fields, most of which is a simple consequence of representation theory.
The most basic example was anticipated [90] long before the AdS/CFT correspondence
and concerns free vector models. Two important twists of the story are to add critical
vector models to the scene [31–33, 35] and to extend all of the models to Chern-Simons
vector models [34, 36, 37].

In the simplest case we have a O(N) or U(N) vector �i of free scalars. The free scalar
field corresponds to a unitary irreducible representation of the conformal symmetry
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The exponential falloff in the distance is recovered!
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up to a prefactor. Thus, the distance to � = 0 is infinite. By duality, one can argue that
the same conclusion applies to � = 1. This result also fits with our general expectations
due to how free theories and higher-spin symmetry are recovered at the endpoints.

More in detail, the distance �(�,�0) ⇠ c log �0
�
diverges logarithmically in �, where

� < �0 and c > 0 is some positive constant. The anomalous dimensions of higher-spin
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Hence, in the case of the Chern-Simons theory space parametrized by �, the recovery
of higher-spin symmetry seems to be exponentially fast in the distance. Consistently
with our preceding considerations, one may be led to speculate that the matrix-like
nature of Chern-Simons degrees of freedom, which dominates over the vector-like one
in this case, be responsible for the stringy exponential decay of higher-spin anomalous
dimensions. The presence of a gauge theory can also be detected via the large spin
asymptotic of the higher-spin anomalous dimensions, which is log s, see [89].

6 Higher-spin holography

Let us briefly summarize the main features of the higher-spin/vector model holography.
We will concentrate on the spectrum, i.e. on the dictionary between single-trace oper-
ators and bulk fields, most of which is a simple consequence of representation theory.
The most basic example was anticipated [90] long before the AdS/CFT correspondence
and concerns free vector models. Two important twists of the story are to add critical
vector models to the scene [31–33, 35] and to extend all of the models to Chern-Simons
vector models [34, 36, 37].

In the simplest case we have a O(N) or U(N) vector �i of free scalars. The free scalar
field corresponds to a unitary irreducible representation of the conformal symmetry
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Interpretation: the matrix-like nature 
of the degrees of freedom in Chern-
Simons may be responsible for the 
stringy decay
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Using the quantum information metric one can holographically 
explore regions of the (CFT) theory space in which the 
effective field theory description may break down

Using multicritical vector models we identified a theory space 
including the usual vector models enjoying higher spin symmetry 

The higher-spin points lies at infinite information distance from 
any generic point in the theory space    OK!

The anomalous dimensions of higher-spin currents don’t fall off 
exponentially in the distance      [violation of a part of the SDC]

Reaching the higher-spin points by varying the parameter λ in  
Chern-Simons vector models give an esponential fall off    OK!



Conclusion
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The emergence of higher-spin symmetries at infinite distance 
in moduli space / conformal manifold / theory space seems a 
very robust feature

The exponential fall off seems instead a characteristic of string 
models or, holographically, of matrix-like degrees of freedom

Outlook

Holographic (dual?) description of multicritical vector models?

Testing other swampland conjectures in higher spin gravity?


