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Goal and Context

AMR → Automatic Modulation Recognition

→ act of determining the employed modulation type of an RF signal at
given time, frequency and space

Spectrum awareness and monitoring

Cognitive radio (CR): adaptive modulation/demodulation

Military → electronic warfare (EW) → interference avoidance

Increase spectrum efficiency

other
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State of the art

How to perform Modulation Recognition ?

1 Decision trees based on statistics -> classical military approach
2 Decision theoretic approach (likelihood based classifiers -> cumulative

distribution functions (CDF))
3 Feature based approach (spectral features, cyclostationarity combined

with Machine learning (ML): KNN SVM GA)
4 Deep learning (CNN, LSTM, Transformers, ...)

How AMR has been achieved here:
→ Fusion of signal decomposition and Convolutional Neural Networks
(CNN)
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What is BEMD

EMD:
stands for Empirical Mode Decomposition

invented by N.Huang in 1998 [1]
no predetermined basis function
we obtain Intrinsic Mode Functions (IMFs) → sifting process
applications: biomedical, natural phenomena analysis, mechanical,
image and speech processing
scarcely used in telecoms → opportunity in AMR

In digital telecoms: 2 variables → complex signal (IQ)
→ justifies the use of Bivariate EMD (BEMD): [2]
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Example: QAM16 decomposition
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What is a Convolutional Neural Network (CNN)

Figure: Kernel convolution [3]

feed forward neural networks
convolving feature maps from previous layers with trainable
kernels/filter
mainly used for image classification (mono and RGB)
contains dense layer → permits multi class decision
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Process flows
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Reference CNN architecture, IQ signal as input [4]

→ O’Shea’s RadioML2016a dataset ([4]) is used
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2D mode: place the IMFs one below each other
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3D mode: place the IMFs into the channels (depth)
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Overall accuracy improvement for each mode and w./w.o.
original signal

2D mode 3D mode
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Classification accuracy (%) depending on SNR
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Confusion matrices

original result using IQ signal new method using IMFs

A.Gros | UMONS FPMs IEEE PIMRC 2022 September 13, 2022 19 / 24



Accuracy improvement (%) for all modulations depending
on SNR

2 % overall accuracy improvement
up to 4.4 % improvement
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Conclusion

used an existing DB [4]

applied BEMD decomposition on the data
used a CNN classifier
established improvement compared to the "golden standard" results
[4]
placing the IMFs into channels (data input depths) increases the
classification quality compared to placing them one below each other
(data input height)
the paper also contains a discussion about complexity and
decomposition times
none of the CNN architectures have been optimized specifically for
the use of the decomposed data
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Thank you
for your attention

Any question ?
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