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Abstract—By sharing common assets such as the power grid,
prosumers are closely interrelated by their actions and interests.
Game theory provides powerful tools for increased coordination
among the prosumers to optimize the energy resources. However,
depending on the prosumer profiles and the market rules, the
individual bills may notably differ and prove to be unfair. In
this work, we analyze the outcomes of three relevant game-
theoretical billing methods, which are innovatively transposed to
the day-ahead scheduling of energy exchange within a liberalized
residential community dominated by distributed energy resources.
The first two approaches rely on a (static) daily billing scheme,
while the third considers a multi-temporal (continuous) billing.
The Nash equilibria are computed using distributed algorithms,
hence ensuring individual decision-making and avoiding third-
party dependencies. The cost distributions are assessed using both
a qualitative and a quantitative comparison based on various
prosumer profiles in a modern smart grid. It is shown that,
depending on the billing option, either the contribution towards
the entity (i.e., the ability to improve the global solution) or
the individual empowerment (i.e., the ability to bargain) can be
preferentially incentivized.

Index Terms—Billing, distributed algorithms, energy efficiency,
energy communities, fairness, game theory, renewable energy,
smart grid, energy storage, Vickey-Clarke-Groves.

I. INTRODUCTION

IN recent years, electricity systems have changed signifi-
cantly. The desired energy transition towards a decarbonized

system has led to the emergence of distributed energy resources
(DERs), with local generation and new flexibility mechanisms
at the end-user level, such as electric vehicles and energy
storage [1]. This transition opens the way to decentralized
operations with new strategies that proactively manage the
demand side and overall improve the system operations by
mitigating local grid constraints and empowering the prosumers
[2]. Future solutions to enhance coordination within distribution
systems may consider a more or less structured organization
of the prosumers [3].

In this regard, an increasingly popular solution is to turn
to collectives of prosumers. Much of the current literature on
this topic focuses on the design of various types of market
entities [4] that adopt local implementations of spot markets
or peer-to-peer mechanisms [5]–[10]. However, network costs
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are poorly accounted for, as they usually arise as an output
of the allocation mechanism to meet capacity constraints and
pose a major fairness problem [11], e.g., distribution locational
marginal prices, which discriminate prices based on the location
[12]–[14]. There are, however, developing endogenous grid fees
[15], [16], which are not directly based on physics. Moreover,
inherent market imperfections (such as market power) tend to
be exacerbated in such a context with a limited number of
participants, which may prevent the maximization of the actual
social welfare. Instead, it is possible to opt for a tariff structure
that better reflects the actual incurred costs. This takes into
account the use of resources, i.e., wear and tear as well as
power losses, and thus considers the costs as inputs. Naturally,
these costs are non-linear and the aggregate power flow scheme
should be considered to implement accurate billing.

Building on demand-side management mechanisms, im-
plementing billings that reflect the incurred costs arise as a
particularly appropriate denominator in local energy collectives
to engage individuals while taking advantage of local and
physical realities. In such an interdependent environment,
the cost allocation is challenging because it is subject to
strategy. Game theory is a convenient framework to enable fair
and efficient resource allocation under a controlled common
objective [17]. A number of contributions consider aggregative
cost functions for the operation of a bounded network. For
example, [18]–[24] formulate day-ahead energy consumption
scheduling games where each end-user optimizes its own costs.
An alternative approach is to enforce a predefined consensus on
the billing key through cooperative game-theoretical methods
[25]–[27]. Most of the literature on demand-side management
does not consider the current context of liberalized electricity
markets. In [28], an adaptation of the energy consumption
scheduling game to liberalized electricity markets is proposed.
Here, the prosumers retain the freedom to choose their retail
supplier and the costs of the common low-voltage network are
taken into account through a billing scheme that reflects the
incurred costs. However, [28] is limited to one type of cost
allocation and does not account for energy storage.

In addition to these methodological considerations, it is
essential to qualify and quantify the cost allocations with
respect to the prosumer profiles. Indeed, technological advances
have profoundly changed the nature of the energy load and
have transformed the end-users into full-fledged actors. Their
associated flexibility and the constraints they face have a
major impact on the outcomes of demand-side management
programs. Currently, there is a flagrant lack of perspective on
the application of one or another billing method in terms of
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cost allocation and load profiles. In this regard, most works
are limited to highlighting global performance and assessing
fairness in a single dimension. For example, [24] examines
daily and hourly billing using an elementary framework in
which only flexible equipment can be mobilized (ignoring
individual energy generation and storage resources) and in
which a single utility can be contracted.

In this paper, we study the day-ahead scheduling of energy
exchange in a residential community. In particular, we transpose
three billing schemes to the liberalized European context, taking
into account individual energy generation and storage. Particular
attention is paid to the faithful reproduction of the incurred
costs, i.e., commodity and grid costs. The main novelty lies
in combining these methods and their evaluation with a com-
parison of cost allocation among the prosumers. Furthermore,
we identify different incentives that target different objectives
and thus address fairness in different ways. Specifically, we
provide the following contributions.

• We propose three different billing methods in a liberalized
residential community. In such a context, each end-user
is free to choose its electricity supplier (contracted for a
defined period), while the network costs are charged by
the transmission and distribution system operators to the
community as a whole. This approach differs from most of
the literature, which assumes that a single utility charges a
single cost encompassing commodity and grid costs. The
first two billing methods use daily proportional billing
that considers a single distribution key for the entire time
horizon, i.e., one day: one of them uses a distribution
key that is directly proportional to the net load, while
the other passes on the relative contribution through a
Vickrey-Clarke-Groves (VCG) mechanism. In the third
billing method, the cost is distributed proportionally to
the net load in each time slot of the scheduling horizon.
The three billing methods offer different incentives to the
prosumers depending on their load profiles.

• We charge prices for each billing that reflect the actual
incurred costs. Their inherent non-linearity creates in-
terdependence among the end-users and thus requires
coordinated load scheduling schemes. We adopt a game-
theoretical approach whereby each prosumer optimizes its
day-ahead energy consumption scheduling depending on
the applied billing. In this respect, the Nash equilibria are
computed using the asynchronous best-response algorithm
in presence of the first two billings methods (based on
daily proportional billing) and the proximal decomposition
algorithm in presence of the third billing method.

• We provide a comprehensive analysis of the above
billing methods and evaluate their performance in the
realistic context of a modern and liberalized residential
community. The prosumer profiles feature potential energy
generation and storage as well as electrical devices that
have significant scheduling flexibility, such as electric
vehicles and heat pumps. A qualitative comparison shows
how the prosumers are impacted depending on their load
profiles and billing methods. In addition, a benchmark
with a representative mix of prosumer profiles based on

a real-world database, i.e., the Pecan Street project [29],
provides a quantitative assessment.

Our results show that, for the three considered billing methods,
the degree of flexibility that characterizes a prosumer has a
strong impact on fairness and inefficiency, i.e., the deviation
from the social optimum. The billing method affects the way
flexibility is evaluated, either by focusing on individual empow-
erment (continuous proportional billing) or by considering the
entire unit under study (VCG mechanism). Moreover, the Nash
equilibrium of the continuous proportional billing does not
deviate significantly from the social optimum under expected
operating conditions.

The remainder of this paper is organized as follows. Sec-
tion II introduces the prosumer load model, pricing items, and
billing schemes. Section III characterizes the underlying energy
consumption scheduling games and provides insights into the
computation of their Nash equilibria. Section IV analyzes
the cost allocation under the different billing schemes for
different prosumer profiles and evaluates the fairness and cost
effectiveness in a typical test case. Finally, Section V provides
the concluding remarks.

II. SYSTEM STRUCTURE AND METHODOLOGY

This paper considers a modern power grid where each
prosumer is connected to a bi-directional communication infras-
tructure (using, e.g., a smart meter). We assume a liberalized
framework, i.e., the power generated by the electricity producers
flows through the transmission grid and the distribution network,
and is sold by an electricity supplier to the end-users. We focus
our attention on the demand side, where the prosumers are
connected to the distribution network. More specifically, we
consider a set of prosumers sharing the same low-voltage
network, i.e., located behind the same low-voltage distribution
transformer. These prosumers need to coordinate their energy
consumption scheduling with all the other end-users since they
share the same network and have interdependent costs (see
Section II-D). Together, they thus act as a community.

A. Demand-Side Model

Let N = {1, . . . , N} denote the set of prosumers of the con-
sidered network, i.e., the community, and let T = {1, . . . , T}
be the set of time slots in the time period of analysis, i.e.,
the next day. Here, each time slot t ∈ T has duration ∆τ ,
which depends on the time granularity adopted in the analysis.
Each prosumer n ∈ N is characterized by the net load vector
ln = (l1n, . . . , l

T
n ) that includes various load components, some

of which hold scheduling possibilities.
First, we describe the load of critical devices, for which

each prosumer n does not allow any time flexibility (e.g.,
kitchen appliances, lighting, and multimedia equipment) using
the non-flexible load vector kn = (k1n, . . . , k

T
n ). Second, each

prosumer n may allow a set An of its appliances (e.g., electric
vehicles and heat pumps) to operate with some time flexibility.
In this setting, each flexible appliance a ∈ An is characterized
by the scheduling vector xn,a = (x1

n,a, . . . , x
T
n,a) and the

resulting flexible load vector is given by xn =
∑

a∈An
xn,a

(see the flexible load model in Section II-B). Third, each
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Fig. 1. Demand-side model: prosumer n, who contracted supplier i, owns
an energy storage system (ST), flexible appliances (FA), and is characterized
by a baseload (BL) grouping non-flexible consumption and PV generation.
All the prosumers across all the suppliers behind the same transformer (TFO)
form the residential community.

prosumer n may own a photovoltaic (PV) system and the
related generation vector is denoted by gn = (g1n, . . . , g

T
n ).

Lastly, each prosumer n may have an energy storage system
whose charging and discharging schedule is described by the
storage vector sn = (s1n, . . . , s

T
n ) (see the storage load model

in Section II-C). The non-flexible load and the PV generation
cannot be controlled and, in the context of a deterministic
approach, they can thus be treated as state variables for the day-
ahead procedure, as further explained in Section III. Hence, we
group the state variables in the baseload vector dn = kn−gn

and express the net load vector as

ln = dn + xn + sn, (1)

where xn and sn represent the decision variables. Furthermore,
we use Λn to denote the set of decision variables of prosumer
n, including

⋃
a∈An

xn,a and sn, and Λt to denote the set
of decision variables at time slot t. Finally, the set of all the
decision variables across all the prosumers and time slots is
defined as Λ = {Λn}n∈N = {Λt}t∈T .

B. Flexible Load Model

The flexible devices can be controlled and scheduled at
the most opportune time within the time constraints dictated
by the individual requirements. In this regard, the prosumers
can specify one or more time ranges during which they allow
a possible operation. For each time slot t, we thus define
the binary parameter δtn,a ∈ {0, 1} indicating this possibility,
with δn,a = (δ1n,a, . . . , δ

T
n,a). Without loss of generality, we

consider only appliances that are flexible in both time and power
consumption level to avoid the introduction of binary decision
variables required by equipment with a fixed consumption cycle.
Hence, for a flexible appliance a ∈ An, the predetermined
energy En,a must be delivered within the permissible time
ranges, i.e.,

δTn,axn,a∆τ = En,a, (2)

and is subject to a maximum power level Mn,a, i.e.,

0 ≤ xn,a ≤Mn,aδn,a. (3)

Note that the constraint in (3) restricts the energy consumption
to permissible time slots.

C. Storage Load Model

We adopt a storage model that encompasses charging and
discharging efficiencies, leakage rate, capacity, and maximum
charging and discharging levels. Considering prosumer n, let
us express the charging and discharging efficiencies through
the vector βn = (β

(+)
n , β

(−)
n )T and write the charging and

discharging schedule at time slot t using the vector σt
n ≜(

max(stn, 0),min(stn, 0)
)
.1 Hence, the state of charge of the

battery is constrained as

0 ≤
t̄∑

t=1

αt̄−t
n βT

nσ
t
n∆τ + αt̄

nE
0
st ≤ Emax

st , ∀t̄ ∈ T , (4)

where αn is the leakage rate, E0
st is the initial state of charge,

and Emax
st is the storage capacity. In addition, the state of

charge of the battery is subject to maximum charging and
discharging levels, respectively denoted by M

(+)
n and M

(−)
n .

By considering the charging and discharging efficiencies, we
have

−M (−)
n 1 ≤ β(−)

n sn, (5)

β(+)
n sn ≤M (+)

n 1. (6)

D. Cost Structure and Billing Models

In the context of liberalized electricity markets, the cost of
electricity supply originates from the following two compo-
nents.
• Commodity costs. They are the costs billed by the

electricity supplier. To better reflect the incurred costs
deriving from the possible generation capacity and the
market position of the supplier for the next day, we
adopt a real-time pricing scheme [30]. In this context,
the suppliers can tailor their price each day and for each
time slot freely, although they have to guarantee some
limits (such as maximum price variations and preferred
time slots) to maintain legibility in their billing plan offer.
Hence, each prosumer can choose a supplier from the set
S = {1, . . . , S} that best corresponds to its consumption
habits. Accordingly, each supplier i ∈ S is associated
with a subset of customers Ni ⊂ N , with

⋃
iNi = N .

However, it is assumed that only the positive net load
lt+n = max(ltn, 0) is accounted for billing, i.e., the supplier
does not buy energy back from the prosumers. The
reasoning is that the prosumers usually own generation
systems that have close to zero marginal generation costs.
Therefore, the cost that supplier i applies to its customer
n ∈ Ni at time slot t is given by

Ct
supp,i(l

t
n) = γt

com,il
t+
n ∆τ , (7)

where γt
com,i is the corresponding price in e /kWh. It

should be noted that the choice of a suitable supplier for
each prosumer can benefit either the whole community
or a single individual depending on the billing method,
as discussed in Section IV. Alternatively, the commodity
costs could be easily substituted by the day-ahead spot

1Note that the charging and discharging operations are mutually exclusive.
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prices if the prosumers were connected to the wholesale
market, either through the supplier or directly without any
intermediary.

• Grid costs. They are the costs covering the use of the
transmission and distribution grids. It is essential to pass
on the incurred costs directly to the end-users because
system operators have very little control over the power
flows. We recall that the costs are accounted for based on
the use of physical resources, i.e., wear and tear as well as
power losses. Due to the inherent non-linear nature of these
costs, they can be determined only based on the aggregate
load of all the prosumers, denoted by Lt =

∑
n∈N ltn.

Without loss of generality, we apply the quadratic cost
function as in [18]–[21], i.e.,

Ct
grid = γgrid(L

t∆τ)2, (8)

where γgrid represents the grid cost coefficient in e /kWh2.
It allows us to express the non-linearity and the underlying
interdependence across the prosumers.

From the cost functions in (7) and (8), it is possible to establish
billing models that help to achieve specific performance
objectives, where efficiency and fairness occur to be among
the most commonly sought ones. In this paper, we use and
compare three different billing methods (see Section IV), each
holding advantages and drawbacks regarding these objectives.
They originate from the following two billing classes.
• Daily proportional billing. It consists in issuing bills pro-

portionally to the costs aggregated across both prosumers
and time (on a daily basis). The cumulative cost function
is denoted by

f(Λ) =
∑
t∈T

(∑
i∈S

γt
com,iL

t+
i ∆τ + γgrid(L

t∆τ)2

)
, (9)

where Lt+
i =

∑
n∈Ni

lt+n . This type of billing is optimal
from the system’s perspective in the sense that the
prosumers are incentivized to minimize the cumulative
cost f(Λ), as discussed in Section III. Under a daily
proportional distribution, the billing function is given by

bn(Λ) =
wn∑

m∈N wm
f(Λ), (10)

where wn represents the weight of prosumer n in the
bill. However, it is a challenging task to redistribute these
costs among the prosumers by implementing a fair set
of weights. Indeed, the aggregative nature of the grid
costs makes it difficult to fairly identify the individual
contributions. A straightforward choice of the weights
is obtained by considering the cumulative net positive
load of each prosumer n, i.e.,

∑
t∈T lt+n . Its minimum

possible value, denoted by L⋆
n, is considered so as to keep

the weight independent from the actual solution set Λ.
Such a weight choice ensures that there is no possible
strategy on the distribution key. The main flaw of this cost
distribution is that it does not link one’s bill directly to
its choice of supplier (i.e., the prosumers who negotiate
good contracts with their supplier are not incentivized)
and to its flexibility level. Another choice of the weights

is obtained by considering the relative contribution of
each prosumer using the normalized VCG mechanism
[23] or the Shapley value [31]. It is the first option that
is developed further in this paper because of its reduced
computation needs (see Section IV-A).

• Continuous proportional billing. It consists in issuing
bills proportionally to the costs aggregated across pro-
sumers for each time slot t. The cost function is denoted by

f t(Λt) =
∑
i∈S

γt
com,iL

t+
i ∆τ + γgrid(L

t∆τ)2. (11)

Under a continuous proportional distribution, the billing
function is given by

bn(Λ) =
∑
t∈T

lt+n
Lt+

f t(Λt), (12)

which accounts for the amount of energy exchanged by
an individual and directly charges the underlying cost
[19]–[24]. Although it does not yield the social (global)
optimum, the inefficiency is expected to be more than
compensated by the higher overall flexibility, leading to
reduced costs. Indeed, the continuous proportional billing
tends to be more rewarding than the daily proportional
billing, since planning power exchanges at the preferential
times of the dynamic pricing is better valued in the
individual bills [32]. Incentivization is thus more effective
in this context.

III. ENERGY EXCHANGE SCHEDULING

Due to the competition arising from the shared use of
the network, it is appropriate to adopt a game-theoretical
formulation to characterize potential strategic behaviors. This
section introduces the game formulation and shows how the
underlying Nash equilibria are computed.

A. Game Formulation

Non-cooperative game theory is a powerful mathematical
framework for modeling the interactions between selfish
individuals competing for a common resource [33], [34]. It is
thus meaningful to formulate the energy exchange scheduling
problem under the conditions presented in Section II as a
non-cooperative game, independently of the chosen billing
method. In this context, each prosumer n ∈ N is a player who
competes against the others by choosing its strategy profile
Λn to minimize its objective function bn(Λ), which is defined
either as in (10) or as in (12).

Let Λ−n = {Λm}m∈N\{n} denote the set of all the strategy
profiles except those of player n. We formally define the
game by the tuple G = ⟨Ω,b⟩, where Ω =

∏
n∈N Ωn is the

joint strategy set, with Ωn being the individual strategy set of
prosumer n, and b =

(
b1(Λ1,Λ−1), . . . , bN (ΛN ,Λ−N )

)
is the

vector of all the objective functions. Hence, each player n aims
at solving the following optimization problem, given Λ−n:

minimize
Λn

bn(Λn,Λ−n)

s.t. Λn ∈ Ωn

∀n ∈ N . (13)
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The solution of G is given by the well-known concept of
Nash equilibrium, which is a feasible strategy profile Λ⋆ =
{Λ⋆

n}n∈N with the property that no single player n can benefit
by unilaterally deviating from Λ⋆ if all the other players act
according to Λ⋆

−n = {Λ⋆
m}m∈N\{n}.

Proposition 1. The game G has a non-empty and compact set
of Nash equilibria.

Proof: Building on [33], [34], the above is guaranteed
when the following conditions hold for each player n: i) , the
individual strategy set Ωn is compact and convex; and ii) the
objective function bn(Λn,Λ−n) is convex for any feasible Λ−n.
The first condition is easily verified since Ωn consists of the
linear equalities and inequalities (1)–(6), whereas the second
condition can be proved by showing that the Hessian matrix
of bn(Λ), defined either as in (10) or as in (12), is positive
semidefinite.

Proposition 2. All the Nash equilibria of G yield the same
values of the objective functions.

Proof: Building on [19], [20], it is easy to show that there
exists an infinity of strategy profiles producing the same net
load vectors ln.

B. Nash Equilibrium Computation

In the case of a daily proportional billing, if the strategy
of each prosumer n is computed by minimizing the billing
function (10) via the (asynchronous) best-response algorithm
(see, e.g., [18]), the cumulative cost (9) can either decrease
or remain constant. In this setting, the Nash equilibrium is
reached when no player can decrease its bill, i.e., when the
cumulative cost is minimized. Hence, in this specific case, it
is possible to consider the Nash equilibrium as the solution of
the system optimization problem

minimize
Λ

f(Λ) as in (9)

s.t. (1)–(5),
(14)

which can be solved either via a centralized algorithm or by
using a distributed implementation based, for instance, on the
alternative direction method of multipliers (ADMM) [35].

On the other hand, pure best-response algorithms cannot be
used in the case of continuous proportional billing because
minimizing the billing function in (12) for any prosumer
n cannot guarantee that the cumulative cost in (11) is not
increased. However, one can use more sophisticated distributed
schemes such as the proximal decomposition algorithm or the
proximal-point method [36], which are guaranteed to converge
under some technical conditions (the latter additionally requires
the strict monotonicity of the cost function). For instance, the
convergence conditions for the proximal decomposition algo-
rithm can be conveniently derived by resorting to variational
inequality theory, as done in [19]–[21] (see also [33], [34]).

In the case of daily proportional billing, we adopt the
asynchronous best-response algorithm described in Algorithm 1.
At each iteration, player n either computes Λ⋆

n according to
(13) or keeps the previous solution Λ

(q)
n . The iterations at which

player n computes a new solution are specified by the set Qn.

Algorithm 1 Asynchronous Best-Response Algorithm
Data: Choose a feasible starting point Λ0. Set q = 0.

1: while a suitable termination criterion is not satisfied do
2: for n ∈ N do
3:

Λ(q+1)
n =

Λ⋆
n ∈ argmin

Λn∈Ωn

bn(Λn,Λ
(q)
−n), if q ∈ Qn

Λ
(q)
n , otherwise

(16)

4: end for
5: q ← q + 1.
6: end while

Algorithm 2 Proximal Decomposition Algorithm

Data: Choose a feasible starting point Λ(0). Set q = 0, κ > 0,
and the initial centroid Λ̄ = {Λ̄n}n∈N = 0.

1: while a suitable termination criterion is not satisfied do
2: for n ∈ N do
3:

Λ(q+1)
n ∈ argmin

Λn∈Ωn

{bn(Λn,Λ
(q)
−n) +

κ

2
∥Λn − Λ̄n∥2}

(17)

4: end for
5: if the Nash equilibrium has been reached then
6: each player n ∈ N updates its centroid: Λ̄n = Λ

(q+1)
n .

7: end if
8: q ← q + 1.
9: end while

In the case of continuous proportional billing, we adopt the
proximal decomposition algorithm described in Algorithm 2,
which is based on the regularized game

minimize
Λn

bn(Λn,Λ−n) +
κ

2
∥Λn − Λ(q)

n ∥2

s.t. Λn ∈ Ωn

∀n ∈ N .

(15)

For a sufficiently large regularization parameter κ > 0, (15) has
a unique solution that can be computed in the same way as in
the best-response algorithm. Both Algorithm 1 and Algorithm 2
have desirable privacy-preserving properties, since only the
aggregate load is necessary for each prosumer to compute its
solution at each iteration. Furthermore, the distributed nature of
the algorithms does not require the intervention of a third party.
The analysis of the convergence of the proposed algorithms
is beyond the scope of this paper; we refer to [18]–[21] for
more details.

IV. COMPARATIVE STUDY

As a basis for our different test cases, we use residential
consumption data from the Pecan Street project [29]. The
dataset covers 6 months of electricity consumption and PV
generation of 25 homes in the state of New York, USA.
For illustrative purposes, the test cases consider two energy
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suppliers offering opposite daily price profiles. Depending on
the prosumer characteristics, one may opt for overall cheaper
night or day rates. In practice, however, there may be more
possible suppliers meeting more specific energy consumption
and generation profiles. In this respect, guided selection may
be considered to further optimize the bill, e.g., based on the
consumption history through a recommendation algorithm.

A. Billing and Prosumer Loads

In our comparative study, we use three different cost distri-
bution schemes, each holding different interesting properties.
The first two are variant of the daily proportional billing, for
which the asynchronous best-response algorithm described in
Algorithm 1 is adopted. The third is a variant of the continuous
proportional billing, for which the proximal decomposition
algorithm described in Algorithm 2 is adopted.

1) Net load proportional billing [Net]. The first variant of
the daily proportional billing distributes the bill propor-
tionally to the minimum possible cumulative positive net
load L⋆

n. In fact, using this quantity instead of the actual
cumulative positive net load ensures that an individual
cannot be penalized for improving the social cost. For
example, a prosumer may be asked to inject its PV
generation into the network instead of storing the energy
for future personal use in order to prevent load peaks in
the grid and decrease the overall bill. Hence, we choose
each weight such that wn = L⋆

n, ∀n ∈ N , which yields
(cf. (10))

bNet
n =

L⋆
n∑N

m=1 L
⋆
m

f(Λ). (18)

Note that accounting for the positive net load encourages
the self-consumption of locally produced electricity. This
is in line with the costs structure that assumes no
purchasing price for the injection.

2) Marginal cost billing [VCG]. The second variant of
the daily proportional billing is shown to be the only
VCG mechanism ensuring a dominant truthful strategy
[37], i.e., that is independent of the other participants’
strategies. Like all VCG mechanisms, it achieves a socially
optimal solution. Here, we choose each weight such that
wn = C⋆

N −C⋆
N\{n}, ∀n ∈ N , where C⋆

N is the optimal
cost achieved by the whole set of prosumers by solving
(14), which yields (cf. (10))

bVCG
n =

C⋆
N − C⋆

N\{n}∑
m∈N C⋆

N − C⋆
N\{m}

f(Λ). (19)

This scheme requires the additional solution of N opti-
mization problems to obtain each C⋆

N\{n}, i.e., the optimal
cost achieved by all the prosumers except n. This can be
conveniently done in a distributed fashion via ADMM,
as in the sharing problem presented in [35]. Note that
the marginal cost pricing can also be formalized as a
cooperative game. Indeed, in such a VCG mechanism, a
predefined consensus can be reached and the maximum
value (i.e., the savings) is achieved when the grand
coalition (i.e., the whole community) cooperates.

3) Continuous proportional billing [CP]. The variant of
the continuous proportional billing integrates the cost
considerations inherent to a liberalized context, which
yields (cf. (12))

bCP
n =

∑
t∈T

(
γt
com,il

t+
n ∆τ + γgridl

t
nL

t(∆τ)2
)
. (20)

Unlike the first two methods, this billing directly accounts
for the contracted supplier through γt

com,i (see (7)).
In addition, for each of the scenarios described above, the

prosumers can own one or more of the following devices.
• Photovoltaic facility (PV): it is considered as a negative

non-flexible load.
• Energy storage system (ST): it can store possible individual

surplus PV generation or store energy during cheaper
hours.

• Electric vehicle (EV): two time windows (morning and
evening) are made available for charging, each with its
energy constraint; thus, it is considered as a partially
flexible load.

• Heat pump (HP): for simplicity, and without loss of
generality, it is considered as a fully flexible load.

The parameters considered for each of the above flexible
devices are based on modern specifications and can be found
in [38].

B. Profiles and Cost Allocation

In this section, we aim at characterizing how the nature of
the load impacts the allocation of the electricity bill. Based on
the flexible devices detailed in the previous section, i.e., PV,
ST, EV, and HP, we define four different qualitative scenarios
and compare their billing outcomes for each billing scheme.
Each scenario considers a reference consumer, whose baseload
corresponds to the average load over the dataset, and a prosumer
with the same baseload who additionally owns one or more
flexible devices. Both are assumed to have contracted a supplier
that offers a cheaper night rate for the commodity. Note that
this setting aims at providing a generic and simple comparison,
whereas a more representative and detailed benchmark is
presented in Section IV-C.

Fig. 2 considers the scenarios where the prosumer is equipped
with: (a) PV, (b) EV+HP+ST, (c) PV+EV+HP+ST, and (d)
PV+EV+HP+ST. Each subplot shows the different billing
schemes in the x-axis and the prices or costs in the y-axis
obtained by the consumer (left bar) and the prosumer (right
bar). Here, the prices are obtained as the division of the cost by
the respective minimum positive net load L⋆

n, which is detailed
for each scenario in Table. IV-B. Furthermore, we explicitly
show the prices and costs associated with the grid components
(dark color) and the commodity components (light color).

Fig. 2(a) depicts the outcome of a scenario with no flexible
loads and for which the prosumer is distinguished only by the
presence of a PV system generating the average production
obtained on the dataset. As expected, the net load proportional
billing bNet

n in (18) features the same price for both the
consumer and the prosumer, which in turn leads to a significant
cost reduction for the PV holder because of the reduced
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Fig. 2. Comparison of the prices (top figures) and costs (bottom figures) for the three considered billing methods, i.e., bNet
n in (18), bVCG

n in (19), and bCP
n in

(20). Each subplot considers a reference consumer (left bar) and a prosumer (right bar) equipped with: (a) PV, (b) EV+HP+ST, (c) PV+EV+HP+ST, and (d)
PV+EV+HP+ST (with different supplier). The prices and costs are divided into grid components (dark color) and commodity components (light color).

[kWh] (a) (b) (c) (d)

Consumer (left bars) 20.185
Prosumer (right bars) 10.545 40.185 12.792 12.792

TABLE I
Minimum positive net load L⋆

n (imports) of the consumer and the prosumer
for each scenario illustrated in Fig. 2.

expected net load. This cost reduction is less pronounced
for the other two discriminative cost distributions and their
incurred price is therefore higher. Note that such a higher price
originates from an increase in both commodity and grid prices
for the marginal cost billing bVCG

n in (19), whereas it is due
only to an increased grid price for the continuous proportional
billing bCP

n in (20). The latter billing scheme represents the
only cost distribution where the commodity and grid costs
are individually computed. By consuming little energy from
imports during the day and benefiting from cheaper night rates,
the prosumer can directly assert a claim on the reduction of
the commodity costs. However, it is penalized in terms of grid
costs by the overall higher impact on the network. In general,
the absence of flexibility negatively impacts the outcomes of
PV holders under bVCG

n and bCP
n .

In Fig. 2(b), the prosumer holds flexible devices, namely an
EV, a HP, and an ST (but no PV), and the price obtained with
the discriminative billings is lower than the one applied to the
reference consumer. This is expected because the flexibility of
these DERs, which help to avoid consumption peaks, is valued
through a lower price. Since the cost function is increasing
and convex, the prices and the costs are all higher than in the
previous scenario because of the increased load.

In Fig. 2(c), PV and flexible loads are combined and the
resulting total cost is notably reduced. This is even more evident
for the prosumer as its energy needs are partially covered by
the PV. Indeed, the discriminative billings reward the efforts
of the prosumer by producing lower prices for its remaining
imports. As previously discussed, the continuous proportional
billing directly reflects the higher impact of the prosumer on
the reduction of the commodity costs and the increase of the
grid costs.

[%] PV HP ST All Day rate

Net High PV (15.0 cC/kWh)
VCG 0.2 -7.0 -11.3 -8.5 -2.6
CP -4.6 -6.1 -6.7 -3.9 0.7

Net Low PV (22.4 cC/kWh)
VCG 1.6 -0.5 0.8 0.6 -3.1
CP 0.6 -1.5 -0.2 -0.4 -2.1

TABLE II
Variation of the mean energy price for the three considered billing methods in
function of the load characteristics and suppliers for days with high and low

PV generation.

Lastly, Fig. 2(d) illustrates the major role played by the
choice of the supplier. Here, we assume the same setting as
in Fig. 2(c) except that a supplier offering cheaper day rates
is chosen instead of one offering cheaper night rates. Indeed,
while the choice of Fig. 2(c) leads to cheaper prices for the
prosumer, the choice of Fig. 2(d) results in increased prices.
Here, we assume 0.08 e /kWh and 0.16 e /kWh for the cheap
and normal commodity prices, respectively.

C. Case Study

For a more quantitative and representative assessment of how
the considered billing schemes can impact a modern smart grid,
we present the following case study considering a combination
of profiles. These are based on various projections of the
expected load characteristics of a modern residential community
within a decade. We consider 50 prosumers corresponding to
residential homes whose loads are sampled from the dataset
[38]. Here, each prosumer can be equipped with PV, ST, EV,
and HP. Besides, they are assigned to a supplier offering cheaper
night or day rates. The 20 days with highest and lowest PV
generation are considered to resemble sunny and cloudy days,
respectively. The mean prices obtained through the global
optimization, i.e., γ = C⋆

N /
∑

t∈T Lt, are 15.0 ce /kWh and
22.4 ce /kWh, respectively.

For the days with high and low PV generation, Table II
summarizes the variation of the mean price obtained depending
on their profile. For instance, the first column compares the
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Fig. 3. Histogram of the inefficiency for the 20 days with highest PV generation
(dark color) and lowest PV generation (light color).

difference between the mean prices obtained by the prosumers
with a PV (γPV) and without a PV (γnoPV), i.e., (γPV −
γnoPV)/γnoPV. The remaining columns show the variation
depending on whether the prosumers do or do not own an
HP, an ST, or all these devices. The difference between the
prosumers who have contracted a supplier offering cheaper
night or day rates is also shown. We recall that the prices
obtained with a net load proportional billing remain equal
regardless of the conditions.

The most striking feature is the considerable impact of the
PV generation. For the days with low PV generation, the billing
schemes are very weakly discriminating. This is expected as
the potential extra load tends to increase the grid costs because
of the higher imports, even though it can be scheduled at
the most opportune time, i.e., during the hours with cheaper
commodity costs. It is only by contracting the supplier with
cheaper day rates that the prosumers can obtain better mean
prices. They are indeed less numerous (see [38]) and tend to
cancel out the negative impact on the grid costs caused by the
preferred scheduling of the flexible appliances during night
hours.

The discriminative billing schemes exhibit their characteris-
tics mostly in the days with high PV generation. The marginal
cost billing (VCG mechanism) rewards the flexibility mobilized
by the prosumers as a whole. Indeed, the flexible loads and
energy storage allow to shave off the backflows that would
be generated by surplus PV generation, hence resulting in
significant grid costs savings. Interestingly, the prosumers
equipped with PV benefit from lower mean prices with respect
to their counterparts only if continuous proportional billing is
considered. In fact, through a VCG mechanism, the prosumers
equipped with PV cannot claim any contribution in the decrease
of the total bill as PV on its own is not a source of flexibility.
On the other hand, the continuous proportional billing gives
more space for strategy and leads to some inefficiency.

As the continuous proportional billing yields a suboptimal
solution, it is interesting to quantify the inefficiency expressed
as (

∑
n∈N bCP

n − C⋆
N )/C⋆

N . Fig. 3 depicts the histogram of
this metric for the same 20 days with highest and lowest PV
generation considered above. The right tail of the histogram
results from the days with high PV generation (dark color)
whereas the days with low PV generation lead to very little
inefficiency (light color). This is further verified by considering
no PV generation at all under the same conditions: in this case,

[cC/kWh] High PV Low PV

As in Section IV-C 15.0 22.4
Reduced price gap 15.7 21.6
Flat rate 16.8 21.4

TABLE III
Mean energy price for different supplier rates.

the inefficiency is smaller than 0.01%. The reason for the
decreased efficiency during the days with high PV generation
is that the grid component of (20) is subject to strategy. For
instance, the PV owners, in comparison with a socially optimal
billing, tend to increase their self-consumption by just the
right amount in order not to cancel the aggregate net load and
remain positive. By doing so, they benefit from a payment, i.e.,
negative cost, because of their individual negative net load. The
days with high PV generation thus provide more bargaining
power to the PV owners. Note that the mean daily inefficiency
for the entire dataset is 1.97%.

D. Impact of Supplier Rate Schemes

In the previous case study, we considered two simple rate
schemes for the commodity, i.e., cheaper night or day rates, to
emphasize the role of PV generation. Indeed, this represents a
major non-flexible power source and the associated power flows
have a notable impact on the network (and thus on the costs).
As shown in the previous section, cheaper night rates lead
to lower overall energy prices because the energy is cheaper
when the PV panels cannot produce.

Here, we reproduce the case study of Section IV-C with two
different tariff schemes. The first considers a lower night-day
gap with 0.10 e /kWh and 0.14 e /kWh for the cheap and
normal commodity prices, respectively, whereas the second
consists in a flat rate with a price of 0.12 e /kWh for the whole
day. Table III shows that both the alternative tariff schemes
lead to an overall increase in the mean energy price. Indeed,
the days with high PV generation are affected by the more
expensive night rates and the days with low PV generation
tend to cancel out such an increase because of the reduced day
prices. Besides, it can be observed that the bargaining power
of the PV owners is reduced since their relative weight in the
bill is higher. All the other observations remain similar.

E. Discussion

VCG mechanisms, when used for distributing costs, are often
presented as intrinsically fair [24], [39]. In reality, this claim
is highly dependent on the context and the adopted framework,
e.g., possible cooperative mechanisms. The marginal cost
billing, although ensuring a truthful dominant strategy, does not
give much decision-making power. Indeed, the social optimum
is imposed and mobilizes more or less the resources of each
individual without any further consideration. This may be
little stimulating for the prosumers to increase their maximal
flexibility. On the other hand, the continuous proportional
billing gives direct negotiation power to the prosumers, which
leads to a deviation from the social optimum. However, it
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Efficiency Empowerment Tractability

Net + Neutral ++
VCG + + Neutral
CP Neutral ++ +

TABLE IV
Summary of the advantages (+) and strong advantages (++) of the three

considered billing methods.

is reasonable to assume that such a billing would generate
higher flexibility levels, which more than compensates for
the inherent inefficiency. Another issue is that, although the
true cost philosophy is preserved at the aggregated level, it
is not the case at the individual level where some prosumers
can benefit from payments while their marginal cost is zero.
An interesting framework adaptation, in line with our goal
of optimizing the use of physical resources (see Section II),
consists in considering the surplus PV generation as free energy
made available locally to a defined community [31]. In this
context, the PV owners are regarded as positive contributors,
whereas the recipients are regarded as having a neutral impact
even though they benefit from reducing their overall demand.
However, the game-theoretical framework required for such
a decentralized approach is more demanding and beyond the
scope of this paper. On another note, the net load proportional
billing does not discriminate against individuals at all, which
might lead to little incentivization of flexibility.

Table IV summarizes the important considerations high-
lighted throughout this paper for the three considered billing
methods. Here, efficiency refers to the definition provided in
Section IV-C; in this context, a billing is fully efficient if the
social optimum is reached. Empowerment indicates if the billing
tends to reward proactive behaviors by the prosumers allowing
more flexibility. Lastly, tractability evaluates qualitatively
the computation burden and the mathematical complexity
underlying each billing method. As shown in Section IV-C, the
continuous proportional billing leads to very little inefficiency
compared to the social optimum, which is featured by the two
other methods. The marginal cost billing appears to be the one
with the best potential for mobilizing individual efforts, which
justifies the strong advantages in terms of empowerment. On
the other hand, the flexibility is poorly incentivized under a net
proportional billing, which is, however, the least demanding
solution in terms of computational complexity. The marginal
cost billing requires a significantly higher computational burden
because it needs to solve N+1 optimization problems, while the
distributed algorithms of the continuous proportional billing
need more attention for their convergence. Recall that all the
distributed implementations have the advantage to enforce
privacy by requiring to share only the aggregate load.

V. CONCLUSION

Acknowledging the modern context of liberalized electricity
networks and increased penetration of DERs, this paper
proposes and analyzes three different game-theoretical billing
methods for the day-ahead scheduling of flexible appliances
in a residential community. The applied cost structure that

is used for billing the prosumers intends to reflect an accu-
rate image of the mobilized energy resources. We present
the game formulation for each billing method, namely, the
net proportional billing, the marginal cost billing, and the
continuous proportional billings, which can be solved using
efficient distributed algorithms. Then, the results obtained from
solving the games allow to derive qualitative and quantitative
considerations highlighting various efficiency and fairness
features.

The net load proportional and marginal cost billings are both
socially efficient as they distribute the optimal aggregate cost
of the whole low-voltage entity. The first does not discriminate
the prosumers according to their load profile, which may be
perceived as little stimulating for consenting to a significant
level of maximal flexibility, whereas the second is sensitive
to the cost structure and the characteristics of the individual
load. The continuous proportional billing, although not socially
optimal, shows very little inefficiency. Besides, it accounts
for their waiver of empowerment at the benefit of the global
solution.

The net load proportional billing is the most straightforward
cost distribution. Although it has very limited incentive to con-
sent flexibility, it has the advantage to be the most egalitarian.
The marginal cost billing is highly relevant when the effective
contribution towards the entity is promoted. Under such a
scheme, the interaction framework would be more relevant if
cooperation is taken a step further by considering community
resources (e.g., mutualization of excess resources) so as to
have more representative distributions. On the other hand, the
continuous proportional billing represents a good trade-off
between higher coordination needs and self-determination.

An interesting prospect for future work is to address the
constraints of partially or entirely meshed networks. Evaluating
power flows in such a context becomes essential because the
congestions may affect one or several branches. Note that
the underlying shared constraints introduced by the power
flow equations would lead to a generalized Nash equilibrium
problem [9], [21].
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Zacharie De Grève (M’12) received the Electrical
and Electronics Engineering degree from the Faculty
of Engineering, University of Mons, Mons, Belgium,
in 2007. He was a Research Fellow of the Belgian
Fund for Research (F.R.S/FNRS) until 2012, when
he got the Ph.D. degree in electrical engineering
from the University of Mons, where he is currently
an Associate Professor with the Electrical Power
Engineering Unit. His main research interests deal
with the application of Machine Learning and Op-
erations Research to electric power systems, and

energy systems more generally. He also develops an expertise in computational
electromagnetics.

François Vallée (M’09) received the degree in civil
electrical engineering and the Ph.D. degree in elec-
trical engineering from the Faculty of Engineering,
University of Mons, Belgium, in 2003 and 2009,
respectively. He is currently a Professor and leader
of the “Power Systems and Markets Research Group”
at the University of Mons. His Ph.D. work has been
awarded by the SRBE/KBVE Robert Sinave Award
in 2010. His research interests include PV and wind
generation modeling for electrical system reliability
studies in presence of dispersed generation.

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2022.3206912

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Olivier Deblecker. Downloaded on September 21,2022 at 07:39:03 UTC from IEEE Xplore.  Restrictions apply. 


