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a b s t r a c t

A coloring of a graph is an assignment of colors to its vertices such that adjacent vertices
have different colors. Two colorings are equivalent if they induce the same partition of
the vertex set into color classes. We study the average number A(G) of colors in the
non-equivalent colorings of a graph G. We conjecture several lower bounds on A(G),
determine the value of this graph invariant for some classes of graphs and give general
properties of A(G) which we will use for proving the validity of the conjectures for
specific families of graphs, namely chordal graphs and graphs with maximum degree at
most 2.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

A coloring of a graph G is an assignment of colors to its vertices such that adjacent vertices have different colors. The
hromatic number χ (G) is the minimum number of colors in a coloring of G. The total number B(G) of non-equivalent
colorings (i.e., with different partitions into color classes) of a graph G is the number of partitions of the vertex set of
G whose blocks are stable sets (i.e., sets of pairwise non-adjacent vertices). This invariant has been studied by several
authors in the last few years [1,7–9,11,12] under the name of (graphical) Bell number.

Recently, Hertz et al. [10] have defined a new graph invariant A(G) which is equal to the average number of colors in
the non-equivalent colorings of a graph G. It can be seen as a generalization of a concept linked to Bell numbers. More
precisely, the Bell numbers (Bn)n≥0 count the number of different ways to partition a set that has exactly n elements. The
2-Bell numbers (Tn)n≥0 count the total number of blocks in all partitions of a set of n elements. Odlyzko and Richmond [14]
have studied the average number An of blocks in a partition of a set of n elements, which can be defined as An =

Tn
Bn

.
he graph invariant A(G) that we study in this paper generalizes An. Indeed, when constraints (represented by edges in
) impose that certain pairs of elements (represented by vertices) cannot belong to the same block of a partition, A(G) is
he average number of blocks in the partitions that respect all constraints. Hence, for a graph of order n, A(G) = An if G
s the empty graph of order n.

The close link between Bell numbers and graph colorings indicates that it is possible to use graph theory to discover
ontrivial inequalities for the Bell numbers. For example, as shown in [10], A(Pn) =

Bn
Bn−1

and A(Pn) < A(Pn+1) for n ≥ 1,
here Pn is the path on n vertices. This immediately implies B2

n < Bn−1Bn+1, which means that the sequence (Bn)n≥0 is
trictly log-convex. This result has also been proved recently by Alzer [2] using numerical arguments.
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Fig. 1. Three graphs that reach the lower bounds of Conjectures 1, 2 and 3.

Very little is known aboutA(G) and there is to date no study concerning extremal properties of this graph invariant. The
best possible upper bound for A(G) is clearly the order n of G since all colorings of G use at most n colors and A(Kn) = n
or the clique Kn of order n. It seems however much more complex to define a lower bound for A(G), as a function of n,
hich is reached by at least one graph of order n. We think that the best possible lower bound is reached by the empty
raph Kn of order n (i.e., the graph of order n with no edges).

onjecture 1. Let G be a graph of order n. Then,

A(G) ≥ A(Kn)

with equality if and only if G is isomorphic to Kn.

Note that despite the apparent simplicity of Conjecture 1, its validity cannot be proven by simple intuitive means such
s sequential edge removal. Indeed, there are graphs G for which the removal of any edge strictly increases A(G). This is
he case, for example, for the complete bipartite graph with two vertices in one set of the bipartition and four vertices in
he other set.

The next two conjectures are stronger in the sense that, as shown in Section 5, it suffices to show that one of them is
rue to prove the validity of Conjecture 1. Let G ∪ pK1 be the graph obtained from G by adding p isolated vertices, let Kn
e the clique of order n, and let K1,n−1 be the star of order n (i.e. the graph with one vertex of degree n − 1 and n − 1
ertices of degree 1).

onjecture 2. Let G be a graph of order n. Then,

A(G) ≥ A(Kχ (G) ∪ (n − χ (G))K1)

ith equality if and only if G isomorphic to Kχ (G) ∪ (n − χ (G))K1.

onjecture 3. Let G be a graph of order n. Then

A(G) ≥ A(K1,∆(G) ∪ (n − ∆(G) − 1)K1)

ith equality if and only if G is isomorphic to K1,∆(G) ∪ (n − ∆(G) − 1)K1, where ∆(G) is the maximum degree of G.

The three conjectures come from the discovery systems GraPHedron [13] and PHOEG [3]. For illustration, by exhaustive
numeration, we have checked that:

• the graph of Fig. 1(a) minimizes A(G) among all graphs G of order 7;
• the graph of Fig. 1(b) minimizes A(G) among all graphs G of order 7 and chromatic number χ (G) = 4;
• the graph of Fig. 1(c) minimizes A(G) among all graphs G of order 7 and maximum degree ∆(G) = 3.

In the next section we fix some notations, while Section 3 is devoted to basic properties of A(G). In Section 4, we give
alues of A(G) for some particular graphs G. We then explain in Section 5 the links between the three conjectures and
e establish their validity for chordal graphs and for graphs G with maximum degree ∆(G) ≤ 2.

. Notation

For basic notions of graph theory that are not defined here, we refer to Diestel [4]. Let G = (V , E) be a simple undirected
raph. The order n = |V | of G is its number of vertices and the size m = |E| of G is its number of edges. We write G ≃ H
f G and H are two isomorphic graphs, and G is the complement of G. We denote by Kn (resp. Cn, Pn and Kn) the complete
raph (resp. the cycle, the path and the empty graph) of order n. We write Ka,b for the complete bipartite graph where a
nd b are the cardinalities of the two sets of vertices of the bipartition. Hence, as already mentioned, K1,n−1 is the star of

order n. For a subset S of vertices in a graph G, we write G[S] for the subgraph of G induced by S.
Let N(v) be the set of neighbors of a vertex v in G. A vertex v is isolated if |N(v)| = 0 and is dominant if |N(v)| = n− 1

(where n is the order of G). We write ∆(G) for the maximum degree of G. A vertex v of a graph G is simplicial if the induced
subgraph G[N(v)] of G is a clique. A graph is chordal if each of its induced subgraphs contains a simplicial vertex.

Let u and v be two vertices in a graph G of order n. We use the following notations:
2
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Fig. 2. The non-equivalent colorings of P5 .

• G|uv is the graph (of order n− 1) obtained from G by identifying (merging) the vertices u and v and, if uv ∈ E(G), by
removing the edge uv;

• if uv ∈ E(G), G − uv is the graph obtained by removing the edge uv from G;
• if uv /∈ E(G), G + uv is the graph obtained by adding the edge uv in G;
• G − v is the graph obtained from G by removing v and all its incident edges.

Given two graphs G1 and G2 (with disjoint sets of vertices), we write G1 ∪ G2 for the disjoint union of G1 and G2, while
the join G1 + G2 of G1 and G2 is the graph obtained from G1 ∪ G2 by adding all possible edges between the vertices of G1
and those of G2. Also, as already mentioned, G ∪ pK1 is the graph obtained from G by adding p isolated vertices.

A coloring of a graph G is an assignment of colors to the vertices of G such that adjacent vertices have different colors.
The chromatic number χ (G) of G is the minimum number of colors in a coloring of G. Two colorings are equivalent if they
induce the same partition of the vertex set into color classes. Let S(G, k) be the number of non-equivalent colorings of a
graph G that use exactly k colors. Then, the total number B(G) of non-equivalent colorings of a graph G is defined by

B(G) =

n∑
k=1

S(G, k) =

n∑
k=χ (G)

S(G, k),

and the total number T (G) of color classes in the non-equivalent colorings of a graph G is defined by

T (G) =

n∑
k=1

kS(G, k) =

n∑
k=χ (G)

kS(G, k).

The average number A(G) of colors in the non-equivalent colorings of a graph G can therefore be defined as

A(G) =
T (G)
B(G)

.

Note that B(Kn) = Bn, T (Kn) = Tn, and A(Kn) = An. As another example, consider the complement P5 of a path on 5
ertices. As shown in Fig. 2, there are three non-equivalent colorings of P5 with 3 colors, four with 4 colors, and one with
colors, which gives B(P5) = 8, T (P5) = 30 and A(P5) =

30
8 = 3.75.

3. Basic properties of A(G)

As for several other invariants in graph coloring, the deletion–contraction rule (also often called the Fundamental
Reduction Theorem [6]) can be used to compute B(G) and T (G). More precisely, let u and v be any pair of distinct vertices
of G. As shown in [8,12], we have

S(G, k) = S(G − uv, k) − S(G|uv, k) ∀uv ∈ E(G), (1)

S(G, k) = S(G + uv, k) + S(G|uv, k) ∀uv /∈ E(G). (2)

It follows that

B(G) = B(G − uv) − B(G|uv)
T (G) = T (G − uv) − T (G|uv)

}
∀uv ∈ E(G), (3)

B(G) = B(G + uv) + B(G|uv)
T (G) = T (G + uv) + T (G|uv)

}
∀uv /∈ E(G). (4)

Property 4. Given any two graphs G1 and G2, we have

A(G + G ) = A(G ) + A(G ).
1 2 1 2

3
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roof. As observed in [1], given any coloring of G1 + G2, none of the vertices of G1 can share a color with a vertex of
G2, which immediately gives B(G1 + G2) = B(G1)B(G2). For T (G1 + G2), assuming that G1 and G2 are of order n1 and n2,
espectively, we get

T (G1 + G2) =

n1∑
k=1

n2∑
k′=1

(k + k′)S(G1, k)S(G2, k′) =

n1∑
k=1

S(G1, k)
n2∑

k′=1

(k + k′)S(G2, k′)

=

n1∑
k=1

S(G1, k)

(
k

n2∑
k′=1

S(G2, k′) +

n2∑
k′=1

k′S(G2, k′)

)

=

n1∑
k=1

kS(G1, k)
n2∑

k′=1

S(G2, k′) +

n1∑
k=1

S(G1, k)
n2∑

k′=1

k′S(G2, k′)

= T (G1)B(G2) + B(G1)T (G2).

Hence,

A(G1 + G2) =
T (G1 + G2)
B(G1 + G2)

=
T (G1)B(G2) + B(G1)T (G2)

B(G1)B(G2)

=
T (G1)
B(G1)

+
T (G2)
B(G2)

= A(G1) + A(G2). □

The following Corollary is also proved in [10].

Corollary 5. If v is a dominant vertex of a graph G, then,

A(G) = A(G − v) + 1.

roof. If v is a dominant vertex of a graph G, then G ≃ (G − v) + K1, and since A(K1) = 1, Property 4 gives
(G) = A(G − v) + 1. □

We think that A(G′) < A(G) for all proper induced subgraphs G′ of a graph G, which is equivalent to state that
(G − v) < A(G) for any G and for any vertex v in G. While we failed to prove it, the following lemma is the key

ngredient in the proof of Property 7 and its two corollaries, which shows that A(G − v) is indeed strictly smaller than
(G) in some special cases. In the following, given a subset W of vertices in a graph G, we denote by SW ,i(G, k) the

number of non-equivalent colorings of G that use exactly k colors, and where exactly i of them appear on W . Hence,
(G, k) =

∑
|W |

i=0 SW ,i(G, k).

emma 6. Let v be a vertex in a graph G of order n and let N(v) be its set of neighbors in G. Then

• B(G) = B(G − v) +

n−1∑
k=1

|N(v)|∑
i=0

(k − i)SN(v),i(G − v, k), and

• T (G) = T (G − v) +

n−1∑
k=1

|N(v)|∑
i=0

(k(k − i) + 1)SN(v),i(G − v, k).

Proof. Since SN(v),i(G, k) = SN(v),i(G − v, k − 1) + (k − i)SN(v),i(G − v, k), we have

B(G) =

n∑
k=1

S(G, k) =

n∑
k=1

|N(v)|∑
i=0

SN(v),i(G, k)

=

n∑
k=1

|N(v)|∑
i=0

SN(v),i(G − v, k − 1) +

n−1∑
k=1

|N(v)|∑
i=0

(k − i)SN(v),i(G − v, k)

=

n−1∑
k=1

|N(v)|∑
i=0

SN(v),i(G − v, k) +

n−1∑
k=1

|N(v)|∑
i=0

(k − i)SN(v),i(G − v, k)

= B(G − v) +

n−1∑
k=1

|N(v)|∑
i=0

(k − i)SN(v),i(G − v, k)
4
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T (G) =

n∑
k=1

kS(G, k) =

n∑
k=1

|N(v)|∑
i=0

kSN(v),i(G, k)

=

n∑
k=1

|N(v)|∑
i=0

kSN(v),i(G − v, k − 1) +

n−1∑
k=1

|N(v)|∑
i=0

k(k − i)SN(v),i(G − v, k)

=

n−1∑
k=1

|N(v)|∑
i=0

(k + 1)SN(v),i(G − v, k) +

n−1∑
k=1

|N(v)|∑
i=0

k(k − i)SN(v),i(G − v, k)

=

n−1∑
k=1

|N(v)|∑
i=0

kSN(v),i(G − v, k) +

n−1∑
k=1

|N(v)|∑
i=0

(k(k − i) + 1)SN(v),i(G − v, k)

= T (G − v) +

n−1∑
k=1

|N(v)|∑
i=0

(k(k − i) + 1)SN(v),i(G − v, k). □

Property 7. Let v be a vertex in a graph G. If χ (G[N(v)]) ≥ |N(v)| − 3 then A(G) > A(G − v).

Proof. Let n be the order of G. We know from Lemma 6 that

A(G) − A(G − v) =
T (G − v) + a
B(G − v) + b

−
T (G − v)
B(G − v)

=
aB(G − v) − bT (G − v)

B(G)B(G − v)
where

• a =

n−1∑
k=1

|N(v)|∑
i=0

(k(k − i) + 1)SN(v),i(G − v, k), and

• b =

n−1∑
k=1

|N(v)|∑
i=0

(k − i)SN(v),i(G − v, k).

It suffices to show that aB(G−v)−bT (G−v) > 0. Let P be the set of pairs (k, i) such that SN(v),i(G − v, k)>0. Since
χ (G[N(v)]) ≥ |N(v)| − 3, we have k ≥ i ≥ |N(v)| − 3 for all (k, i) ∈ P . For two pairs (k, i) and (k′, i′) in P , we write
(k, i)>(k′, i′) if k>k′ or k=k′ and i>i′. Also, let f (k, k′, i, i′) = SN(v),i(G−v, k)SN(v),i′ (G−v, k′). We have

aB(G−v) − bT (G−v)

= a
n−1∑
k=1

|N(v)|∑
i=0

SN(v),i(G − v, k) − b
n−1∑
k=1

|N(v)|∑
i=0

kSN(v),i(G − v, k)

=

∑
(k,i)∈P

SN(v),i(G − v, k)2
(
(k(k − i) + 1) − (k − i)k

)
+

∑
(k,i)>(k′,i′)

f (k, k′, i, i′)
(
(k(k−i)+1)+(k′(k′

−i′)+1)−(k−i)k′
−(k′

−i′)k
)

=

∑
(k,i)∈P

SN(v),i(G−v, k)2+
∑

(k,i)>(k′,i′)

f (k, k′, i, i′)
(
(k−k′)2−(k−k′)(i−i′)+2

)
.

Note that P ̸= ∅ since SN(v),|N(v)|(G − v, n − 1) = 1. Hence,
∑

(k,i)∈P SN(v),i(G − v, k)2>0, and it is sufficient to prove that
(k− k′)2 − (k− k′)(i− i′)+ 2 ≥ 0 for every two pairs (k, i) and (k′, i′) in P with (k, i)>(k′, i′). For two such pairs (k, i) and
(k′, i′), we have i − i′ ≤ |N(v)| − (|N(v)| − 3) = 3. Hence,

• if k = k′, then (k − k′)2 − (k − k′)(i − i′) + 2 = 2 > 0;
• if k = k′

+ 1, then (k − k′)2 − (k − k′)(i − i′) + 2 = 3 − (i − i′) ≥ 0;
• if k = k′

+ 2, then (k − k′)2 − (k − k′)(i − i′) + 2 = 6 − 2(i − i′) ≥ 0;
• if k ≥ k′

+ 3, then (k − k′)2 − (k − k′)(i − i′) + 2 ≥ 2. □

Corollary 8. If v is a vertex of degree at most 4 in a graph G, then A(G) > A(G − v).

Proof. Since |N(v)| ≤ 4, we have:
• if N(v) = ∅, then χ (G[N(v)]) = 0 > −3 = |N(v)| − 3;

5
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• if N(v) ̸= ∅, then χ (G[N(v)]) ≥ 1 ≥ |N(v)| − 3.

n both cases, we conclude from Property 7 that A(G) > A(G − v). □

orollary 9. Let v be a simplicial vertex in a graph G. Then A(G) > A(G − v).

Proof. Since v is simplicial in G, we have χ (G[N(v)]) = |N(v)| > |N(v)| − 3. Hence, we conclude from Property 7 that
A(G) > A(G − v). □

As mentioned in Section 1, there are graphs G for which the removal of any edge strictly increases A(G). The next
property shows that all graphs G with a simplicial vertex of degree at least 1 contain at least one edge whose removal
stricly decreases A(G).

Property 10. Let v be a simplicial vertex of degree at least one in a graph G of order n, and let w be one of its neighbors in
G. Then A(G) > A(G − vw).

Proof. Let H = (G − v) ∪ K1. In other words, H is obtained from G − v by adding an isolated vertex. It follows from
Lemma 6 that

B(H) = B(G − v) +

n−1∑
k=1

0∑
i=0

(k − i)S∅,i(G − v, k)

= B(G − v) +

n−1∑
k=1

kS(G − v, k)

and

T (H) = T (G − v) +

n−1∑
k=1

0∑
i=0

(k(k − i) + 1)S∅,i(G − v, k)

= T (G − v) +

n−1∑
k=1

(k2 + 1)S(G − v, k).

Also, since SN(v),i(G−v, k)=0 for i ̸= |N(v)|, we have S(G−v, k)=SN(v),|N(v)|(G−v, k) and it follows from Lemma 6 that

B(G) = B(G − v) +

n−1∑
k=1

(k − |N(v)|)S(G − v, k)

=

(
B(G − v) +

n−1∑
k=1

kS(G − v, k)
)

− |N(v)|
n−1∑
k=1

S(G − v, k)

= B(H) − |N(v)|B(G − v)

and

T (G) = T (G − v) +

n−1∑
k=1

(
k(k − |N(v)|) + 1

)
S(G − v, k)

=

(
T (G − v) +

n−1∑
k=1

(k2 + 1)S(G − v, k)
)

− |N(v)|
n−1∑
k=1

kS(G − v, k)

= T (H) − |N(v)|T (G − v).

Let G′
= G − vw. Clearly, (G′

− v) ∪ K1 = (G − v) ∪ K1 = H , and since v is simplicial of degree |N(v)| − 1 in G − vw, we
have shown that

B(G′) = B(G − vw) = B(H) − (|N(v)| − 1)B(G − v)

and

′
T (G ) = T (G − vw) = T (H) − (|N(v)| − 1)T (G − v).

6



A. Hertz, H. Mélot, S. Bonte et al. Discrete Applied Mathematics xxx (xxxx) xxx

H
ence,

A(G) − A(G − vw) =
T (G)
B(G)

−
T (G − vw)
B(G − vw)

=
T (H)−|N(v)|T (G−v)
B(H)−|N(v)|B(G−v)

−
T (H)−(|N(v)|−1)T (G−v)
B(H)−(|N(v)|−1)B(G−v)

=
T (H)B(G−v)−B(H)T (G−v)

B(G)B(G−vw)
.

Since v is isolated in H , it is simplicial and we know from Corollary 9 that

A(H) > A(G − v) ⇐⇒
T (H)
B(H)

>
T (G − v)
B(G − v)

⇐⇒ T (H)B(G − v) − B(H)T (G − v) > 0

which implies A(G) − A(G − vw) > 0. □

As a final property, we mention one which is proved in [10]. For the sake of completeness, as it will be useful for
establishing results in Section 5, we rewrite the proof here.

Property 11 ([10]). Let G,H and F1, . . . , Fr be r + 2 graphs, and let α1, . . . , αr be r positive numbers such that

• B(G) = B(H) +

r∑
i=1

αiB(Fi),

• T (G) = T (H) +

r∑
i=1

αiT (Fi), and

• A(Fi) < A(H) for all i = 1, . . . , r.

Then A(G) < A(H).

Proof. Since A(Fi) < A(H), we have T (Fi) <
T (H)B(Fi)

B(H) for i = 1, . . . , r . Hence,

A(G) =
T (G)
B(G)

=
T (H) +

∑r
i=1 αiT (Fi)

B(H) +
∑r

i=1 αiB(Fi)

<
T (H) +

∑r
i=1 αi

T (H)B(Fi)
B(H)

B(H) +
∑r

i=1 αiB(Fi)
=

T (H)
(
B(H) +

∑r
i=1 αiB(Fi)

)
B(H)

(
B(H) +

∑r
i=1 αiB(Fi)

)
=

T (H)
B(H)

= A(H). □

4. Some values for A(G)

The value A(G) is known for some graphs G. We mention here some of them which are proven in [10] and determine
some others.

Proposition 12 ([10]).

• A(Kn) = A(nK1) =
Bn+1 − Bn

Bn
for all n ≥ 1;

• A(T ∪ pK1) =

p∑
i=0

(
p
i

)
Bn+i

p∑
i=0

(
p
i

)
Bn+i−1

for all trees T of order n ≥ 1 and all p ≥ 0;

• A(Cn ∪ pK1) =

n−1∑
j=1

(−1)j+1
p∑

i=0

(
p
i

)
Bn+i−j+1

n−1∑
(−1)j+1

p∑(
p
i

)
Bn+i−j

for all n ≥ 3 and p ≥ 0.
j=1 i=0

7
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Since S(Kn, k) = 1 for k = n, and S(Kn, k) = 0 for k < n, we have A(Kn) = n. We prove here a stronger property which
e use in the next section. Let

{a
b

}
be the Stirling number of the second kind, with parameters a and b (i.e., the number

f partitions of a set of a elements into b blocks).

roposition 13. A(Kn ∪ pK1) =

n+p∑
k=n

k
n∑

j=0

(
k − j
n − j

)(
n
j

)
(n − j)!

{
p

k − j

}
n+p∑
k=n

n∑
j=0

(
k − j
n − j

)(
n
j

)
(n − j)!

{
p

k − j

} for all n ≥ 1 and all p ≥ 0.

roof. It is proved in [11] that given two graphs G1 and G2, we have

S(G1 ∪ G2, k) =

k∑
i=1

i∑
j=0

(
i
j

)(
k − j
i − j

)
(i − j)!S(G1, i)S(G2, k − j).

or G1 ≃ Kn and G2 ≃ pK1, we have S(G1, i) = 1 if i = n, and S(G1, i) = 0 otherwise. Also, S(G2, k − j) =
{ p
k−j

}
. Hence,

S(Kn ∪ pK1, k) =

n∑
j=0

(
k − j
n − j

)(
n
j

)
(n − j)!

{
p

k − j

}
.

he result then follows from the fact that

A(Kn ∪ pK1) =

n+p∑
k=n

kS(Kn ∪ pK1, k)

n+p∑
k=n

S(Kn ∪ pK1, k)

. □

We now determine A(G) for G equal to the complement of a path and the complement of a cycle. In what follows, we
write Fn and Ln for the nth Fibonacci number and the nth Lucas number, respectively.

Proposition 14. A(Pn) =
(n + 1)Fn+2 + (2n − 1)Fn+1

5Fn+1
for all n ≥ 1.

roof. The result is true for n ≤ 2. Indeed,

• For n = 1, we have P1 = K1 which implies A(P1) = 1 =
2F3+F2
5F2

;
• For n = 2, we have P2 = K 2 which implies A(P2) =

B3−B2
B2

=
3
2 =

3F4+3F3
5F3

.

For larger values of n, we proceed by induction. It is shown in [8] that B(Pn)=Fn+1. Also, it follows from Eqs. (4) that
(Pn) = T (Pn−1 + K1) + T (Pn−2 + K1). Moreover, as shown in the proof of Property 4, we have

T (G + K1) = T (G)B(K1) + B(G)T (K1) = T (G) + B(G).

Hence,

A(Pn) =
T (Pn−1) + B(Pn−1) + T (Pn−2) + B(Pn−2)

Fn+1

=
nFn+1 + (2n − 3)Fn

5Fn+1
+

Fn
Fn+1

+
(n − 1)Fn + (2n − 5)Fn−1

5Fn+1
+

Fn−1

Fn+1

=
nFn+1 + (3n + 1)Fn + 2nFn−1

5Fn+1
=

3nFn+1 + (n + 1)Fn
5Fn+1

=
(n + 1)Fn+2 + (2n − 1)Fn+1

5Fn+1
. □

Proposition 15. A(Cn) =
nFn+1

Ln
for all n ≥ 4.

Proof. It follows from Eqs. (4) that

T (C ) = T (P ) + T (P + K ).
n n n−2 1

8
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oreover, it is shown in [8] that B(Cn) = Ln. Since T (Pn−2 + K1) = T (Pn−2) + B(Pn−2), Proposition 14 implies

A(Cn) =
T (Pn) + T (Pn−2) + B(Pn−2)

Ln

=
(n + 1)Fn+2 + (2n − 1)Fn+1

5Ln
+

(n − 1)Fn + (2n − 5)Fn−1

5Ln
+

Fn−1

Ln

=
(n + 1)Fn+2 + (2n − 1)Fn+1 + (n − 1)Fn + 2nFn−1

5Ln

=
3nFn+1 + 2nFn + 2nFn−1

5Ln
=

5nFn+1

5Ln
=

nFn+1

Ln
. □

. Lower bounds on A(G)

In this section, we first establish links between the three conjectures of Section 1, and we then prove their validity for
hordal graphs and for graphs G with maximum degree ∆(G) ≤ 2.

.1. Links between the conjectures

The lower bounds we are interested in depend on two parameters n and r with 1≤r≤n. They are equal to A(G) for
ome specific graphs G. More precisely, with the help of Propositions 12 and 13, we define

• L1(n) = A(Kn) =
Bn+1 − Bn

Bn
,

• L2(n, r) = A(Kr ∪ (n−r)K1) =

n∑
k=r

k
r∑

i=0

(
k − i
r − i

)(
r
i

)
(r − i)!

{
n − r
k − i

}
n∑

k=r

r∑
i=0

(
k − i
r − i

)(
r
i

)
(r − i)!

{
n − r
k − i

} ,

• L3(n, r) = A(K1,r−1 ∪ (n−r)K1) =

n−r∑
i=0

(
n−r
i

)
Br+i

n−r∑
i=0

(
n−r
i

)
Br+i−1

.

Hence, for a graph G of order n,

• Conjecture 1 states that A(G) ≥ L1(n), with equality if and only if G is isomorphic to Kn;
• Conjecture 2 states that A(G) ≥ L2(n, χ (G)), with equality if and only if G is isomorphic to Kχ (G) ∪ (n−χ (G))K1;
• Conjecture 3 states that A(G) ≥ L3(n, ∆(G)+1), with equality if and only if G is isomorphic to K1,∆(G)∪(n−∆(G)−1)K1.

Given a graph G of order n, we are interested in the following inequalities, one of them being a conjecture, the other
nes being proved here below:

L1(n)≤min
{
L2(n, χ (G)), L3(n, ∆(G)+1)

}
≤max

{
L2(n, χ (G)), L3(n, ∆(G)+1)

}
≤A(G).

The first inequality follows from Property 10 since Kn is obtained from Kr∪(n−r)K1 and from K1,r−1∪(n−r)K1 by
repeatedly removing edges incident to simplicial vertices. The second inequality is trivial. The last inequality is an open
problem stated in Conjectures 2 and 3. Since L1(n) ≤ min{L2(n, χ (G)), L3(n, ∆(G)+1)}, it suffices to show that one of these
wo conjectures is true to prove that Conjecture 1 is also true.

As mentioned in Section 1, the validity of Conjecture 1 cannot be proven by simple intuitive means such as sequential
dge removal since there are graphs, for example K2,4, for which the removal of any edge strictly increases A(G). Also,
e cannot proceed by induction on the number of connected components of G. Indeed, there are pairs of graphs G1,G2
uch that A(G1) < A(G2) while A(G1∪K1) > A(G2∪K1). For example, for G1 = K2,3 and G2 = K3∪2K1, we have

A(G1) = 3.5 < 3.529 = A(G2) and A(G1∪K1) = 3.867 > 3.831 = A(G2∪K1).

Note that proving that Conjecture 3 is true for all graphs G of order n and maximum degree ∆(G) = n−1 is as difficult
as proving Conjecture 1. Indeed, let v be a vertex of degree n − 1 in a graph G of order n. Since v is a dominant vertex
of G, we know from Corollary 5 that A(G) = A(G − v)+1. Hence, minimizing A(G) is equivalent to minimizing A(G − v),
with no maximum degree constraint on G − v. We show in the next section that Conjectures 2 and 3 (and therefore 1)
are true for graphs of maximum degree at most 2.
9
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.2. Proof of the conjectures for graphs G with ∆(G) ≤ 2

We start this section with a simple proof of the validity of Conjectures 2 and 3 when ∆(G) = 1.

heorem 16. Let G be a graph of order n and maximum degree ∆(G) = 1. Then,

L2(n, χ (G)) = L3(n, ∆(G)+1) ≤ A(G),

ith equality if and only if G ≃ K2∪(n−2)K1.

roof. Since ∆(G) = 1, we have χ (G) = 2, which implies

L2(n, χ (G)) = L2(n, 2)
= A(K2∪(n−2)K1)
= A(K1,1∪(n−2)K1)
= L3(n, 2)
= L3(n, ∆(G)+1).

ote also that ∆(G) = 1 implies G ≃ pK2∪(n−2p)K1 for p ≥ 1. Hence, all vertices in G are simplicial. We can thus
equentially remove all edges of G, except one, and it follows from Property 10 that A(G) ≥ A(K2∪(n−2)K1), with equality
f and only G ≃ K2∪(n−2)K1. □

The proofs that Conjectures 2 and 3 are true when ∆(G) = 2 are more complex. We first prove some intermediate
esults in the form of lemmas.

emma 17. A(G ∪ Cn) > A(G ∪ Pn) for all n ≥ 3 and all graphs G.

roof. Let H ≃ P2 if n = 3 and H ≃ Cn−1 if n > 3. We know from Eqs. (3) that B(G ∪ Cn) = B(G ∪ Pn) − B(G ∪ H)
nd T (G ∪ Cn) = T (G ∪ Pn) − T (G ∪ H). Since Pn is a proper spanning subgraph of Cn, we have B(G ∪ Cn) < B(G ∪ Pn).
ltogether, this gives

A(G ∪ Cn) − A(G ∪ H) =
T (G ∪ Cn)
B(G ∪ Cn)

−
T (G ∪ H)
B(G ∪ H)

=
T (G ∪ Pn) − T (G ∪ H)
B(G ∪ Pn) − B(G ∪ H)

−
T (G ∪ H)
B(G ∪ H)

=
T (G ∪ Pn)B(G ∪ H) − T (G ∪ H)B(G ∪ Pn)

B(G ∪ Cn)B(G ∪ H)

>
T (G ∪ Pn)B(G ∪ H) − T (G ∪ H)B(G ∪ Pn)

B(G ∪ Pn)B(G ∪ H)

=
T (G ∪ Pn)
B(G ∪ Pn)

−
T (G ∪ H)
B(G ∪ H)

= A(G ∪ Pn) − A(G ∪ H)
⇐⇒ A(G ∪ Cn) > A(G ∪ Pn). □

For n ≥ 3, let Qn be the graph obtained from Pn by adding an edge between an extremity v of Pn and the vertex at
distance 2 from v on Pn.

Lemma 18. If n ≥ 3, 0 ≤ x ≤ p and 1 ≤ k ≤ n, then

S(Qn ∪ pK1, k) =

x∑
i=0

(
x
i

)
S(Qn+i ∪ (p − x)K1, k).

Proof. The result is clearly true for p = 0. For larger values of p, we proceed by induction. Since the result is clearly true
for x = 0, we assume x ≥ 1. Eqs. (2) imply

S(Qn ∪ pK1, k) = S(Qn+1 ∪ (p−1)K1, k) + S(Qn ∪ (p−1)K1, k)

=

x−1∑
i=0

(
x−1
i

)
S(Qn+i+1 ∪ (p−x)K1, k) +

x−1∑
i=0

(
x−1
i

)
S(Qn+i ∪ (p−x)K1, k)

=

x∑(
x−1
i−1

)
S(Qn+i ∪ (p−x)K1, k) +

x−1∑(
x−1
i

)
S(Qn+i ∪ (p−x)K1, k)
i=1 i=0

10
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=S(Qn+x∪(p−x)K1, k)+S(Qn∪(p−x)K1, k)

+

x−1∑
i=1

((
x−1
i−1

)
+

(
x−1
i

))
S(Qn+i∪(p−x)K1, k)

=

x∑
i=0

(
x
i

)
S(Qn+i ∪ (p−x)K1, k). □

Lemma 19. If n ≥ 3 is an odd number and 1 ≤ k ≤ n, then

S(Cn ∪ pK1, k) =

(n−3)/2∑
i=0

S(Q2i+3 ∪ pK1, k).

Proof. The result is clearly true for n = 3 since C3 ≃ Q3. For larger values of n, we proceed by induction. It follows from
Eqs. (1) and (2) that

S(Cn ∪ pK1, k) = S(Pn ∪ pK1) − S(Cn−1 ∪ pK1, k)
= (S(Qn∪pK1, k)+S(Pn−1∪pK1, k))−(S(Pn−1∪pK1, k)−S(Cn−2∪pK1, k))
= S(Qn ∪ pK1, k) + S(Cn−2 ∪ pK1, k)

= S(Qn ∪ pK1, k) +

(n−5)/2∑
i=0

S(Q2i+3 ∪ pK1, k)

=

(n−3)/2∑
i=0

S(Q2i+3 ∪ pK1, k). □

emma 20. If n and x are two numbers such that 5 ≤ x ≤ n and x is odd, then

S(C3 ∪ (n − 3)K1, k) = S(Cx ∪ (n − x)K1, k) +

x−5∑
i=0

αiS(Qi+4 ∪ (n − x)K1, k)

here

αi =

⎧⎪⎪⎨⎪⎪⎩
(
x − 3
i + 1

)
− 1 if i is even(

x − 3
i + 1

)
if i is odd.

roof. Since Q3 ≃ C3 we know from Lemma 18 that

S(Q3 ∪ (n − 3)K1, k) =

x−3∑
i=0

(
x − 3

i

)
S(Qi+3∪(n − x)K1, k)

=

(x−3)/2∑
i=0

(
x−3
2i

)
S(Q2i+3∪(n−x)K1, k)

+

(x−5)/2∑
i=0

(
x−3
2i + 1

)
S(Q2i+4 ∪ (n−x)K1, k).

t then follows from Lemma 19 that

S(Q3∪(n−3)K1, k)=S(Cx∪(n−x)K1, k)+
(x−5)/2∑

i=1

((
x−3
2i

)
−1
)
S(Q2i+3∪(n−x)K1, k)

+

(x−5)/2∑
i=0

(
x − 3
2i + 1

)
S(Q2i+4 ∪ (n − x)K1, k)

=S(Cx ∪ (n − x)K1, k) +

x−5∑
αiS(Qi+4 ∪ (n − x)K1, k). □
i=0

11
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emma 21. If n ≥ 5 and 3 ≤ i < n then

A(Qi ∪ pK1) < A(Cn ∪ pK1)

roof. Since Qn−1 ∪ pK1 is obtained from Qi ∪ pK1 by iteratively adding vertices of degree 1, we know from Corollary 8
hat A(Qi ∪ pK1) ≤ A(Qn−1 ∪ pK1). Moreover, it is proved in [10] that A(Qn−1 ∪ pK1) < A(Pn ∪ pK1) for all n ≥ 5 and
≥ 0. It then follows from Lemma 17 that

A(Qi ∪ pK1) ≤ A(Qn−1 ∪ pK1) < A(Pn ∪ pK1) < A(Cn ∪ pK1). □

orollary 22. If n ≥ 5, x is odd and 5 ≤ x ≤ n, then

A(C3 ∪ (n − 3)K1) < A(Cx ∪ (n − x)K1).

roof. Lemma 20 implies

• B(C3 ∪ (n − 3)K1) = B(Cx ∪ (n − x)K1) +

x−5∑
i=0

αiB(Qi+4 ∪ (n − x)K1), and

• T (C3 ∪ (n − 3)K1) = T (Cx ∪ (n − x)K1) +

x−5∑
i=0

αiT (Qi+4 ∪ (n − x)K1),

where

• αi =

(
x − 3
i + 1

)
− 1 ≥ 0 if i is even, and

• αi =

(
x − 3
i + 1

)
> 0 if i is odd.

Also, we know from Lemma 21 that A(Qi+4∪pK1)<A(Cx∪(n−x)K1) for i = 0, . . . , x−5. Hence, it follows from Property 11
that A(C3 ∪ (n − 3)K1) < A(Cx ∪ (n − x)K1). □

We are now ready to prove the validity of Conjectures 2 and 3 when ∆(G) = 2.

Theorem 23. Let G be a graph of order n with ∆(G) = 2. Then,

A(G) ≥ L2(n, χ (G)),

with equality if and only if G ≃ Kχ (G) ∪ (n−χ (G))K1.

Proof. Since ∆(G) = 2, G is the disjoint union of paths and cycles. If G does not contain any odd cycle, then χ (G) = 2. It
then follows from Property 10 and Lemma 17 that the edges of G can be removed sequentially, with a strict decrease of
A(G) at each step, until we get K2 ∪ (n−2)K1.

If χ (G)=3, then at least one connected component of G is an odd cycle Cx with x≤n. Again, we know from Property 10
and Lemma 17 that the edges of G can be removed sequentially, with a strict decrease of A(G) at each step, until we get
x ∪ (n−x)K1. It then follows from Corollary 22 that A(G) ≥ A(Cx ∪ (n−x)K1) ≥ A(C3 ∪ (n−3)K1), with equalities if and
nly if G ≃ C3 ∪ (n−3)K1 ≃ K3 ∪ (n−3)K1. □

heorem 24. Let G be a graph of order n with ∆(G) = 2. Then,

A(G) ≥ L3(n, ∆(G) + 1),

ith equality if and only if G ≃ K1,2 ∪ (n−3)K1.

roof. Since ∆(G) = 2, G is the disjoint union of paths and cycles. Also, G contains at least one vertex u of degree 2.
et v and w be two neighbors of u in G. It follows from Property 10 and Lemma 17 that the edges of G can be removed
equentially, with a strict decrease of A(G) at each step, until the edge set of the remaining graph H is {uv, uw}. But H is
hen isomorphic to K1,2 ∪ (n−3)K1. □

.3. Proof of the conjectures for chordal graphs

In this section, we establish the validity of the three conjectures for chordal graphs.

heorem 25. Conjectures 2 and 3 (and therefore 1) are true for chordal graphs.
12
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roof. Let us first observe that removing an edge incident to a simplicial vertex in a chordal graph gives another chordal
raph. So let G be a chordal graph. Since G is perfect, it contains a clique K of order |K | = χ (G). It is well known that
hordal graphs that are not a clique contain at least two non-adjacent simplicial vertices [5]. Hence, G can be reduced to
χ (G) ∪ (n−χ (G))K1 by repeatedly removing edges incident to simplicial vertices. We know from Property 10 that each
f these edge removals strictly decreases A(G). We thus have A(G) ≥ A(Kχ (G) ∪ (n−χ (G))K1), with equality if and only if
≃ Kχ (G) ∪ (n−χ (G))K1. Conjecture 2 is therefore true for chordal graphs.
Let us now deal with Conjecture 3. Let v be a vertex of degree ∆(G) in G. We consider the partition (N1(v),N2(v)) of

he neighborhood N(v) of v, where N1(v) contains all vertices of N(v) of degree 1 in G (i.e., v is the only neighbor of every
ertex of N1(v)). Also, we consider the partition (N1(v),N2(v)) of the set N(v) of vertices of G that are not adjacent to v,
here N1(v) contains all vertices of N(v) of degree 0 in G. If N2(v) ∪ N2(v) ̸= ∅ then G[N2(v) ∪ N2(v) ∪ {v}] contains a
implicial vertex w ̸= v (since it is also a chordal graph). Clearly, w is simplicial in the whole graph that includes N1(v)
nd N1(v). Then:

• If w ∈ N2(v), we can remove all edges incident to w, except the one that links w with v. We thus get a new chordal
graph in which at least one vertex has been transferred from N2(v) to N1(v), vertices of N2(v) may have transferred
to N1(v), but no vertex has undergone the reverse transfers.

• If w ∈ N2(v), we can remove all edges incident to w. We thus get a new chordal graph in which at least one vertex has
been transferred from N2(v) to N1(v), vertices of N2(v) may have transferred to N1(v), but no vertex has undergone
the reverse transfers.

ote that in both cases, no vertex has been transferred from N(v) to N(v) or vice versa. Hence, by repeatedly applying the
bove mentioned edge removals, we get N2(v) = N2(v) = ∅, which means that the resulting graph is K1,∆(G) ∪ (n−∆(G)−
)K1. Again, we know from Property 10 that each of the edge removals performed strictly decreases A(G), which proves
hat A(G) ≥ A(K1,∆(G) ∪ (n−∆(G) − 1)K1), with equality if and only if G ≃ K1,∆(G) ∪ (n−∆(G) − 1)K1. □

6. Concluding remarks

We have established several properties for a recently defined graph invariant, namely the average number A(G)
of colors in the non-equivalent colorings of a graph G. We then looked at bounds for A(G). It is easy to prove that
A(G) ≤ A(Kn) = n for all graphs of order n, with equality if and only if G ≃ Kn. Hence, n is the best possible upper
bound on A(G) for a graph G of order n. We think that the best possible lower bound on A(G) for a graph G of order n
is A(Kn) =

Bn+1−Bn
Bn

. We have shown that despite its apparent simplicity, this conjecture cannot be proven using simple
techniques like sequential edge removal. We have then refined this conjecture by proposing lower bounds related to the
chromatic number χ (G) and to the maximum degree ∆(G) of G. We have thus stated three open problems. We have
shown that these three conjectures are true for chordal graphs and for graphs with maximum degree at most 2.
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