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UMONS Research Institute for Complex Systems, 20 Place du Parc, 7000 Mons, Belgium
2CeREF Technique, Chaussée de Binche 159, 7000 Mons, Belgium

3Service de Physique de l’Univers, Champs et Gravitation, Université de Mons,
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We discuss the conditions under which static, finite-energy, configurations of a complex scalar field ϕ
with constant phase and spherically-symmetric norm exist in a potential of the form Vðϕ�ϕ;ϕN þ ϕ�NÞ
with N ∈ N and N ≥ 2, i.e., a potential with a ZN-symmetry. Such configurations are called ZN-balls. We
build explicit solutions in (3þ 1)-dimensions from a model mimicking effective field theories based on the
Polyakov loop in finite-temperature SUðNÞ Yang-Mills theory. We find ZN-balls for N ¼ 3, 4, 6, 8, 10, and
show that only static solutions with zero radial nodes exist forN odd, while solutions with radial nodes may
exist for N even.
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I. INTRODUCTION

Q-balls, originally introduced in [1], are nontopological
solitons with finite energy and size, typically obtained by
solving the equations of motion of a complex Klein-
Gordon field with U(1) invariance: L ¼ ημν∂

μϕ∂νϕ� −
vðϕ�ϕÞ with η ¼ diagðþ − −−Þ.
The U(1) symmetry allows for the ansatz

ϕðxÞ ¼ fðrÞeiωt; ð1:1Þ

with x the position 4-vector, r the radial coordinate and
ω ∈ R. Boundary conditions fð0Þ ≠ 0 and fðr → ∞Þ ¼ 0
are chosen. The equations of motion then reduce to

Δf þ ω2f −
1

2
∂fvðf2Þ ¼ 0: ð1:2Þ

This field equation allows for solitons called Q-balls in the
absence of coupling to gravity, see e.g., Refs. [1–6]
provided that a nonquadratic part is present in v. The
potential is often chosen to be of the form vðϕ�ϕÞ ¼
m2ϕ�ϕ − λ4ðϕ�ϕÞ2 þ λ6ðϕ�ϕÞ3 with λ4 and λ6 > 0. Due to
the U(1) symmetry of the Lagrangian, Q-balls have a
charge Q ∼ ω. The solitons are called boson star in the

presence of gravity, see e.g., the review [7]. More general
solutions than (1.1) can be found in Minkowski spacetime
for U(1)-symmetric potentials:

(i) Spinning Q-balls: ϕðxÞ ¼ fðr; θÞeiωtþiJφ [4], where
ðr; θ;φÞ are the spherical coordinates.

(ii) Multipolar solutions: ϕðxÞ ¼ fðr; θ;φÞeiωt [8].
(iii) Coupled Q-balls [9–11].
In the present paper we propose to break the con-

tinuous U(1) symmetry of potential vðϕ�ϕÞ by allowing
for terms depending on ϕN þ ϕ�N with an integer number
N ≥ 2, i.e., by studying a complex scalar field theory
with ZN-symmetry. To our knowledge, the influence
of such a breaking of U(1) symmetry on the solutions
has been poorly studied in general, but it is worth quoting
the Montonen-Sarker-Trullinger-Bishop (MSTB) model
[12–16] in which the potential can be written under the
form ð1 − ϕ�ϕÞ2 þ κ

2
ϕ�ϕþ κ

4
ðϕ2 þ ϕ�2Þ with κ ∈ R. The

solutions of this Z2-symmetric model have been well
studied in (1þ 1)-dimensions, including generaliza-
tions of the potential, see e.g., the recent work [17].
Here the potential under study will be of the form
Vðϕ�ϕ;ϕN þ ϕ�NÞ, and the field equations will be formu-
lated in (3þ 1)-dimensions. As argued in the next para-
graph, such a form may be of interest in the field on finite-
temperature gauge theories.
Solutions built from Z3-symmetric models have indeed

been studied in several works, see e.g., Refs. [18–22], in the
context of an effective model of SU(3) Yang-Mills theory at
nonzero temperature T. In the latter case, the scalar field ϕ
is identified with the mean value of the Polyakov loop,

defined as ϕðT; x⃗Þ ¼ hPeig
R

1=T

0
dτA0ðτ;x⃗Þi, with A0 the
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temporal component of the Yang-Mills field and ðτ; x⃗Þ the
temporal and spatial coordinates, respectively. P is the path
ordering, g is the strong coupling constant and units where
ℏ ¼ c ¼ kB ¼ 1 are used. The gauge group SUðNÞ may be
considered to better outline our motivations. On the one
hand, under gauge transformations belonging to the centre
of the gauge group, i.e., ZN , the Polyakov loop is multiplied
by an overall factor. The ZN symmetry of Yang-Mills
theory is therefore broken (present) if ϕ ≠ 0 (¼ 0). On the
other hand, it is known that ϕ ≠ 0 (¼ 0) above (below)
the deconfinement temperature Tc [23–25]. Hence, it has
been conjectured that the confinement/deconfinement
phase transition might be driven by the breaking of a
global ZN symmetry [26,27]. In that framework, the shape
Vðϕ�ϕ;ϕN þ ϕ�NÞ should be typical of any effective model
of Yang-Mills theory based on the Polyakov loop [28]. It is
worth pointing out that such effective models are able to
accurately reproduce the Yang-Mills equation of state
provided potential parameters are temperature-dependent
and fitted on lattice QCD data [29,30]. Effective models are
still worthy of interest nowadays, e.g., in glueball dark
matter models [31,32] or in the phenomenology of ultra-
relativistic heavy ion collisions [33,34].
Our work is structured as follows. In Sec. II we discuss

the existence of static, spherically-symmetric, solitons with
finite energy in generic ZN-symmetric potentials. Such
solitons are called “ZN-balls" in the following. Then in
Sec. III we propose a model mimicking features of Yang-
Mills theory above deconfinement temperature. Numerical
solutions are constructed for several values of N in Sec. IV.
After a discussion of solutions going beyond ZN-balls in
Sec. V, concluding comments, including a remark on
solutions’ instability, are given in Sec. VI.

II. ZN-BALLS: DEFINITION AND EXISTENCE

As proposed in the Introduction, let us consider a
complex Klein-Gordon field ϕ with ZN-symmetric poten-
tial Vðϕ�ϕ;ϕN þ ϕ�NÞ, such that N ∈ N and N ≥ 2. The
Lagrangian reads

L ¼ ∂μϕ∂
μϕ� − Vðϕ�ϕ;ϕN þ ϕ�NÞ: ð2:1Þ

Using a polar decomposition of the complex field, i.e.,
ϕ ¼ feiδ, the equations of motion can be set in the form

□f − f∂μδ∂μδþ Vð1;0Þf þ Vð0;1ÞN cosðNδÞfN−1 ¼ 0;

ð2:2aÞ

f□δþ 2∂μf∂μδ − Vð0;1ÞN sinðNδÞfN−1 ¼ 0; ð2:2bÞ

with Vð1;0Þ ¼ ∂aVða; 2fN cosðNδÞÞja¼f2 and Vð0;1Þ ¼
∂aVðf2; aÞja¼2fN cosðNδÞ.

Setting δ ¼ 2πk
N with k ∈ Z, i.e.,

ϕ ¼ ϕkðxÞ ¼ fðxÞei2πkN with k ∈ Z; f ∈ R; ð2:3Þ

reduces Eqs. (2.2) to a single equation for f, reading

□f þ Vð1;0Þf þ Vð0;1ÞNfN−1 ¼ 0: ð2:4Þ

We define the ZN-ball ansatz as a solution with spherical
symmetry, that is

ϕ ¼ ϕkðrÞ ¼ fðrÞei2πkN ; ð2:5Þ

with r the radial coordinate. The conditions for a localized,
regular, solution imply the following boundary conditions

fð0Þ ¼ f0 > 0; f0ð0Þ ¼ 0; fðr → ∞Þ ∼ e−mr

r
→ 0:

ð2:6Þ

m is the mass term in the Lagrangian: Vðϕ�ϕ;ϕN þ ϕ�NÞ ∼
m2ϕ�ϕ in a power expansion in ϕ. The constraint f0 > 0 is
necessary to avoid the trivial solution fðrÞ ¼ 0 and
Eq. (2.4) with the ansatz (2.5) reads

f00 þ 2

r
f0 − ∂fUðfÞ ¼ 0; with UðfÞ ¼ 1

2
Vðf2; 2fNÞ:

ð2:7Þ

By comparison with Eq. (1.2), one sees that the ZN-ball
equation (2.7) is equivalent to that of a Q-ball with ω ¼ 0
and potential UðfÞ. According to the study [4], ω ¼ 0
Q-balls, hence ZN-balls in our study, may exist if

U00ð0Þ > 0 and min
f

�
2UðfÞ
f2

�
< 0: ð2:8Þ

In the ZN-ball case, no continuum of solutions (para-
metrized by ω) is possible, basically because the phase of
ϕk is “locked”, see Eq. (2.3). This phase-locking also
forbids spinning ZN-balls, whose phase should be propor-
tional to eiJφ. For the same reason, multipole solutions as
those studied in [8] are not expected. The best that can be
found beyond the ground state is a discrete set of solutions
distinguished by the phase k ¼ 0;…; N − 1 in (2.3) and, if
radially excited states exist, by the number of nodes of the
scalar field.
Radially excited ZN-balls may exist but not necessarily.

The classical particle analogy sheds light on their existence.
We recall indeed that Eq. (2.7) can be interpreted as
Newton’s equation for a particle whose position if f and
for which r plays the role of time in the potential −UðfÞ.
This particle experiences a friction term 2

r f
0. The interested

reader will find a detailed description of this classical
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analogy for Q-balls, Q-holes, and Q-bulges in Ref. [6].
Figure 1 shows typical classical trajectories in effective
potentials with different N. When N is even, UðfÞ ¼
Uð−fÞ: Radially excited states a priori exist since the
particle may oscillate between the two maxima before
reaching f ¼ 0. WhenN is odd,UðfÞmay have no definite
parity, and potentials can be found where the particle
cannot reach an equilibrium position in f ¼ 0. In this case,
radially excited states will not exist. In [21] for example,
only a solution with zero node was found for a Z3-
symmetric potential. It is worth mentioning that potentials
with shapes similar to the presented odd-N case are also
found in some hairy black hole models [35].
Having in mind Eq. (2.7) and effective potentials of the

shape given in Fig. 1, it can be noted the ZN − ball equation
is—mutatis mutandis—similar to the bounce equation of
Coleman [36,37]. The bounce is a classical solution in four-
dimensional Euclidean space extrapolating between two
inequivalent vacua of a potential; the matching between our
equation and the bounce equation can be made by replacing
2=r by 3=r and by replacing r by ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ r2

p
, τ being the

Euclidean time and ρ being the radial coordinate in four-
dimensional spherical coordinates. After fixation of the
complex field phase in ZN − ball case, the physical
interpretation of f and of the Coleman bounce are obvi-
ously similar.
All the ZN-symmetric potentials reducing to the same

effective potential on the real axis will have the same radial
profiles. As an example we consider the N ¼ 4 potential

V ¼ m2ϕ�ϕ −
γ

2
ðϕ4 þ ϕ�4Þ þ ðϕ�ϕÞ3 ð2:9Þ

and the N ¼ 6 potential

V ¼ m2ϕ�ϕ − γðϕ�ϕÞ2 þ 1

2
ðϕ6 þ ϕ�6Þ: ð2:10Þ

Both are equivalent to a standard U(1)-symmetric potential
m2ϕ�ϕ − γðϕ�ϕÞ2 þ ðϕ�ϕÞ3 on the real axis. The latter
potential may admit ω ¼ 0 Q-balls; the effective potential
reads UðfÞ ¼ m2f2 − γf4 þ f6, and criterion (2.8) states
that ω ¼ 0 Q-balls, hence Z4-balls and Z6-balls, exist
for γ2 > 4m2.
In the following, solitons will be further characterized by

their mass M and mean radius hRi

M ¼ 4π

Z
∞

0

ϵdr; ϵðrÞ ¼ f02 þ UðfÞ; ð2:11Þ

hRi ¼ M1

M0

; Mj ¼
Z

∞

0

f2ðrÞr2þjdr: ð2:12Þ

In the above equations ϵðrÞ is the local energy density.

III. THE MODEL

SUðNÞ Yang-Mills theories at finite temperature are
fields where ZN-symmetric effective theories seem particu-
larly relevant. We therefore propose a potential mimicking
key features of such effective theories and numerically
solve the field equation for the latter potential. We
previously made a proposal of U(1)-symmetric potential
focusing on the N → ∞ limit of Yang-Mills theories [38];
here we propose a potential relevant for finite values, i.e.,
N ≥ 3. We refer the reader to the aforementioned MSTB
model in the case N ¼ 2.
The potential under study will be the ZN-symmetric

power-law potential

Vðϕ�ϕ;ϕN þ ϕ�NÞ

¼ m2

2

�
ϕ�ϕ − ð1þ βÞðmlÞ2−NðϕN þ ϕ�NÞ

þ ðmlÞ4−2N
N − 1

ðNð1þ βÞ − 1Þðϕ�ϕÞN−1
�
;

with m; β; l ∈ Rþ
0 ; N ∈ N; N ≥ 3: ð3:1Þ

m has the dimension of energy and β, l are dimensionless.
According to Eq. (2.7), it corresponds to the effective
potential

UðfÞ ¼ m2

2

�
f2 − 2ð1þ βÞðmlÞ2−NfN

þ ðmlÞ4−2N
N − 1

ðNð1þ βÞ − 1Þf2N−2
�
: ð3:2Þ

The latter potential is such that:

FIG. 1. Mechanical analogy in (3þ 1)-dimensions for ZN-balls
with the ansatz (2.5) and the effective potential (2.7). Typical
plots corresponding to N even (sold line) and odd (dashed line)
are shown, and arrows indicate the trajectory of the equivalent
classical particle. More precisely, the case N even is obtained by
plotting (4.4) and the case N odd is obtained by plotting (4.3),
with the horizontal axis in units of l and the vertical axis in units
of m2l2=2.
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(i) f ¼ 0 is a local minimum: Uð0Þ ¼ U0ð0Þ ¼ 0

and U00ð0Þ ¼ m2 > 0;
(ii) f ¼ ml is a global minimum: UðmlÞ ¼ m4l2

2
×

β 2−N
N−1 < 0, U0ðmlÞ ¼ 0 and U00ðmlÞ ¼ m2ðN − 2Þ×

ðNð1þ 2βÞ − 2Þ > 0;

(iii) minf>0ð2Uf2 Þ ¼ m2β βð1−NÞþð2−NÞ
Nð1þβÞ−1 < 0.

Hence, it admits ZN-balls according to the criterion (2.8).
The shape of potential (3.1) has the generic features of

Polyakov-loop effective models of SU(N) Yang-Mills
theory at finite temperature [28]. In our potential, l can
be related to the nonzero average norm of the Polyakov
loop at a given temperature T > Tc, showing the breaking
of ZN-symmetry and deconfinement. In this picture, f=m is
the norm of the Polyakov loop. Note that if β goes to
a small but negative value, the absolute minimum
becomes f ¼ 0. The case β < 0 would correspond to
T < Tc. A U(1)-symmetric potential similar to (3.1), i.e.,
Vðϕ�ϕ; ðϕ�ϕÞN=2Þ, has been investigated in [39], where
analytical formulas for solitons in (1þ 1)-dimensions have
been found. The replacement N → nþ 2 transforms our
potential into that of [39].
It is known that the pressure of Yang-Mills matter is

given by p ¼ −minðVÞ, V being the considered effective
potential. In our case,

p ¼ −minðUÞ ¼ m4l2

2
β
N − 2

N − 1
: ð3:3Þ

The value of m4 can be matched with the typical pressure
scale, that is the Stefan-Boltzmann pressure for a gas of
massless gluons. The equality

m4 ¼ pSB ¼ π2ðN2 − 1Þ
45

T4 ð3:4Þ

leads to the pressure

p ¼ pSB
N − 2

2ðN − 1Þ l
2β: ð3:5Þ

As shown by lattice simulations, p < pSB for T ≳ Tc In the
limit T → þ∞, p → pSB [40] and l → 1 by definition. It
can be concluded that the “physical” values for β are
bounded in the range

0 < β ≤
2ðN − 1Þ
N − 2

; ð3:6Þ

or 0 < β ≤ 4 at most, the maximal upper bound being
reached when N ¼ 3.
The functions lðTÞ, βðTÞ could be found by fitting the

Polyakov loop and pressure computed in lattice QCD, see
e.g., Refs. [41] but it is out of the scope of our paper, where
we aim at a general discussion of ZN-balls.

IV. NUMERICAL RESULTS

We first perform the scalings

f → mlf; r →
r
m
; ð4:1Þ

so that Eq. (2.7) becomes

f00 þ 2

r
f0 − fþ ð1þ βÞNfN−1 − ðNð1þ βÞ− 1Þf2N−3 ¼ 0:

ð4:2Þ

β andN are the remaining parameters. Boundary conditions
(2.6) are searched for. The three boundary conditions
exceed the two conditions associated with the second-
order field equation. The possibility to get nontrivial
solutions will then consist to fine-tune one of the coupling
constants (in our case β) in function of the control para-
meter f0. A numerical resolution of Eq. (4.2) can then be
performed. We use a collocation method for boundary-
value ordinary differential equations, equipped with an
adaptive mesh-selection procedure [42].
The Z3-ball is displayed in Fig. 2 for various values of

β ∈ ½0; 4� according to the upper bound (3.6). We notice
that fð0Þ → 1 when β → 0: In this case the effective
potential is proportional to f2ð1 − fÞ2, namely with two
degenerate minima in f ¼ 0 and f ¼ 1. The more β is
small, the more the mean radius is large. At β ¼ 0.5, M ¼
1.6 and hRi ¼ 2.7. The typical energy scale associated with
Yang-Mills theory is the deconfinement temperature, Tc ∼
0.3 GeV [43]. Setting T ¼ 0.3 GeV and N ¼ 3 in (3.4)
leads to m ¼ 345 MeV and to M ∼ 0.552 GeV and
hRi ∼ 7.83 GeV−1 ¼ 1.54 fm. The latter radius is of the
same order of magnitude than the profile found in [22] with
a potential containing the same powers of ϕ, and the mass is
typical of what is observed in [21] for temperatures
between 1.1 and 1.2 Tc. The effective potential reads,
for N ¼ 3 and with the rescaled parameters,

UN¼3ðfÞ ¼
m4l2

2

�
f2 − 2ð1þ βÞf3 þ 2þ 3β

2
f4
�
: ð4:3Þ

No solution with radial node was found, in agreement with
the picture of Fig. 1: The shape of the effective potential
when f < 0 makes impossible for the soliton to reach a
zero value at infinity.
Z4-balls are displayed in Fig. 3 for various values of β.

As for N ¼ 3, we notice that fð0Þ → 1 when β → 0: In this
case the effective potential is proportional to f2ð1 − f2Þ2,
again with two degenerate minima in f ¼ 0 and f ¼ 1. The
mass and mean radius have similar trends as in the N ¼ 3
case for the state with zero node. This time, a solution with
one radial node has been found. The effective potential
reads, for N ¼ 4 and with the rescaled parameters,
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UN¼4ðfÞ ¼
m4l2

2

�
f2 − 2ð1þ βÞf4 þ 3þ 4β

3
f6
�
: ð4:4Þ

A comparison with Fig. 1 shows that the parity of UðfÞ
indeed allows for radially excited states. We searched for
solutions with two radial nodes but did not find any.
The evolution of the zero-node ZN-balls versus N is

displayed in Fig. 4. It can be seen that the plateau of the
soliton is larger at larger N, with an energy density more
peaked around its maximal and minimal values.

V. FURTHER SOLUTIONS:
NONCONSTANT PHASE

All solutions discussed so far trivialize Eq. (2.2b) and the
question to deform the ZN balls by means of a nonconstant
phase δðxÞ raises naturally. As a first step in this direction, it
is instructive to study the linearized version of Eq. (2.2b)
for a radial phase, i.e., for δðrÞ. With the potential (3.1) it
reduces to

FIG. 3. Left panel: Z4-balls profiles computed from Eq. (4.2) with N ¼ 4 and β ¼ 3. The profile with 0 node and its derivative are
displayed (solid lines) as well as the profile with 1 node (dashed lines). Right panel: Mass (blue line), mean radius (red line) and value at
origin (black line) of the Z4-ball for various values of β:f, r and M are expressed in units of ml, 1=m and m respectively.

FIG. 4. ZN-balls profiles computed from Eq. (4.2) with β ¼ 2
for N ¼ 4 (black), N ¼ 6 (blue), N ¼ 8 (red) and N ¼ 10
(purple). The profiles with zero nodes are displayed (solid lines)
as well as the local energy density (dashed lines). f, r, and ϵ are
expressed in units of ml, 1=m, and m2, respectively.

FIG. 2. Left panel: Z3-ball profile computed from Eq. (4.2) with N ¼ 3, β ¼ 0.2 (black lines) or β ¼ 2.0 (red lines). The profile f is
displayed (solid lines) as well as its derivative (dashed lines). Right panel: Mass (red line), mean radius (blue line) and value at origin
(black line) of the Z3-ball for various values of β:f, r and M are expressed in units of ml, 1=m and m respectively.
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δ0 þ 2

�
1

r
þ f0

f

�
δ0 − ð1þ βÞN2δfN−2 ¼ 0: ð5:1Þ

Using the asymptotic decay (2.6) of fðrÞ in rescaled units where m ¼ 1, the dominant terms in the asymptotic region
reduces to

δ0 − 2δ0 ¼ 0 → δðr → þ∞Þ ¼ δ0 þ δ1e2r: ð5:2Þ

On the other hand the solutions of Eq. (5.1) can be expanded around the origin

δðrÞ ¼ δ̃0

�
1þ N2ð1þ βÞfN−2

0

12
r2þN2ð1þ βÞfN−4

0 ðN2fN0 ð1þ βÞ þ ð6N − 20Þf0f00ð0ÞÞ
480

r4
�
þ oðr6Þ; ð5:3Þ

where δ̃0 is an arbitrary constant. Note that only the
presence of the last term in (5.1), which in due to the
Uð1Þ-breaking term, leads to the condition (5.3) and allows
for a nonconstant and regular δ at the origin. The U(1)
symmetry is recovered for β ¼ −1 and only allows for a
constant δ.
Our numerical integration gave strong evidence that

solutions of Eq. (5.1) extrapolating between the behaviors
(5.3) and (5.2) exist for generic values ofN and β. Solutions
of the full system (2.2), if they exist, would be specific to
the ZN symmetry of the potential and will be addressed in a
forthcoming paper.

VI. CONCLUDING COMMENTS

We have shown that spherically-symmetric solitons
with finite energy may exist in a complex Klein-Gordon
model with ZN-symmetric potential. The existence of such
ZN-balls in potential Vðϕ�ϕ;ϕN þ ϕ�NÞ is guaranteed
provided thatQ-balls with zero charge exist in the potential
Vðϕ�ϕ; 2ðϕϕ�ÞN=2Þ. As an illustration, we have built
solutions in a potential inspired by finite-temperature
SUðNÞ Yang-Mills theory. We found solitons with zero
radial node for all values of N, and states with one radial
node for even N. In the latter case indeed, the parity of the
potential allows for radially excited states.
Our solutions escape Derrick’s nonexistence argument

[44] because our effective potential is nonpositive definite
for some values of the scalar field. However, the scaling
argument of Derrick leads to an instability. The unstable
mode under scaling of the radial variable can be isolated by
perturbating our solution, say f0, according to fðrÞ ¼
f0ðrÞ þ ηðrÞ and examining the quadratic term in η of
the perturbated energy. It turns out that ηðrÞ ¼ f00ðrÞ
constitutes an unstable mode with eigenvalue ω ¼ −2,

independently of N and β. Keeping in mind the inter-
pretation of ZN-balls as possible “plasma bubbles” of
deconfined Yang-Mills matter, their instability against
fluctuations must not be regarded as unphysical. An
illustration of bubble instability is given in [22], where
profiles similar to our Z3 − balls are first obtained with
an effective potential fitted on quark-gluon plasma
lattice QCD equation of state. Then, the time evolution
of a set of such bubbles, with randomly chosen initial
phase, initially spatially separated, is computed. It is
shown that bubbles tend to disappear at the confinement-
deconfinement phase transition while Z3-walls and strings
appear. Even though the single-bubble case is not
separately investigated in [22], the instability of one
single bubble is clearly numerically demonstrated since
there is no extra bubble-bubble interaction that could
generate instability but only superposition principle
between different bubbles.
As an outlook, we mention that more general solutions

that those originating in the ZN-ball ansatz we proposed
may a priori be found to solve (2.2). Kink solutions have
indeed been shown to exist in MSTB model (Z2-symmetry)
in (1þ 1)-dimensions since the pioneering works [12–15].
The case N ¼ 3 has been recently studied [19] with the
construction of bounce solutions in a Z3-symmetric
Polyakov-Nambu-Jona-Lasino model in (3þ 1)-dimen-
sions, i.e., where the Polyakov loop is coupled to a quark
matter field. In that spirit, we hope to build solutions of the
field equations (2.2) with position-dependent phase δ for
arbitrary N in future works.
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