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1 Introduction

The study of the classical phase space of three-dimensional gravity in asymptotically anti-de
Sitter spacetimes has been a prolific research area since the eighties, with a revamped
interest in the early days of the AdS/CFT correspondence. Featuring the classical phase
space essentially amounts to impose boundary conditions on the metric, i.e., to select the
allowed metric fluctuations at infinity, as first discussed in the seminal paper by Brown and
Henneaux [1]. This choice does not require to fix any particular gauge for the metric, but it
is often convenient to opt for a given gauge and then discuss the behavior at infinity of a
reduced set of metric components only. A posteriori, the results of Brown and Henneaux
can indeed be recovered by fixing the Fefferman-Graham gauge [2, 3] and choosing the
boundary metric to be Minkowski: this leads to the well-known asymptotic symmetries
given by two copies of the Virasoro algebra with central charge c = 3 /̀2G, where G denotes
Newton’s constant and ` the AdS3 radius. The condition on the boundary metric was
relaxed in [4] to allow for fluctuations of its conformal factor that preserve the vanishing
of the corresponding curvature, a condition that ensures a well-posed variational problem.
This relaxation leads to an augmented asymptotic symmetry algebra that contains two
additional affine u(1) algebras. In [5], it was then proposed to allow for all possible values
of the conformal factor while still working in the Fefferman-Graham gauge. In that case
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the variational problem is ill-posed, which unveils the presence of the holographic Weyl
anomaly. Nevertheless, one can still compute surface charges that are integrable and that
belong to a representation of the conformal group together with Weyl rescalings.

Alternative boundary conditions in three dimensions have also been considered in [6–
9].1 The most general phase space for which the variational problem is well-posed was
identified in [15] by relaxing the Fefferman-Graham gauge. However, as we shall discuss
shortly, a well-posed variational principle renders the Weyl anomaly invisible in the residual
diffeomorphisms, contrary to the analyses in [5, 16–20]. In this work, we propose to abandon
the Fefferman-Graham gauge and explore an alternative setup, which has also the advantage
to allow for a smooth flat-space limit, thus making contact with the current efforts to identify
a holographic description of asymptotically flat spacetimes. More precisely, in [21–23],
another partial gauge fixing — originally motivated by fluid/gravity correspondence [24]
and not associated with a well-posed variational principle — was considered and its solution
space was shown to generalize that of the Bondi gauge by trading the boundary metric for
a Cartan frame. Here we go beyond the study of the solution space presented in [22, 23]
and complete the derivation of its associated symplectic structure only explored in some
specific examples in [21]. This effort will be shown to promote some of the additional free
functions in the bulk metric to new boundary degrees of freedom for both asymptotically
AdS and asymptotically flat spacetimes.

In order to illustrate the key features of our partial gauge fixing, let us recall the
corresponding relevant aspects of the Fefferman-Graham gauge. In that gauge, the solution
space is characterized by a boundary metric gµν and a boundary energy-momentum tensor
Tµν , and the variation of the on-shell action (properly renormalized) is

δS = 1
2

∫
∂M

dDx
√
−g Tµνδgµν (1.1)

in any dimension [25], see also [16, 26]. The bulk metric actually induces a conformal class of
metrics on the boundary as firstly shown in [2, 3, 27–30] and recently reconsidered, e.g., in [17,
31, 32]: the boundary metric that characterizes the solution space should be understood
as a representative of this conformal class. Moving from one representative to another is
not innocuous: when the spacetime dimension is odd, there exists a non-trivial surface
charge associated with bulk diffeomorphisms which are mapped to Weyl transformations on
the boundary [5, 18, 20]. This implies that a boundary Weyl transformation results in a
physically distinct solution. The associated surface charge is not conserved, but this does
not invalidate the option to use it in order to label distinguishable physical configurations.

Until now all considerations were purely gravitational, but one can reinterpret them
in a holographic language. Evaluating (1.1) on a bulk diffeomorphism inducing on the
boundary a Weyl rescaling generated by σ plus a diffeomorphism generated by ξµ gives, in
three bulk dimensions,

δ(ξ,σ)S ∼ c
∫
∂M

d2x
√
−g σ R . (1.2)

We recognize the usual boundary Weyl (also known as conformal) anomaly sourced by
the Brown-Henneaux central charge [33]. Moreover, the non-conservation of Weyl charges

1See also [10–14] for a recent account on the phase space for finite-distance boundaries.
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mentioned earlier can be interpreted, at least when D = 2, as an anomalous Ward identity
for the boundary Weyl symmetry [5].

In the Fefferman-Graham gauge, the bulk metric comprises a space-like radial coordinate,
along which one approaches the conformal boundary. Another class of gauges that has been
widely explored are those in which the boundary is approached along a null direction. The
best-known example is the Bondi gauge, originally introduced to study asymptotically flat
spacetimes at null infinity in the presence of gravitational radiation [34–36]. This gauge
also exists in asymptotically AdS spacetimes and, crucially, it admits a well-defined flat
limit as opposed to the Fefferman-Graham gauge [24, 37–42]. In three-dimensional gravity,
the option to take a flat limit was already successfully exploited to analyze some features of
a putative flat-space holographic duality [20–23, 37, 43–50]. In the following we shall focus
on this class of gauges.

In [22, 23, 39, 40], it was shown that the solution spaces of the Fefferman-Graham and
Bondi gauges are in one-to-one correspondence. This is achieved by exhibiting a rather
involved diffeomorphism that relates the two. The dictionary requires a choice of boundary
frame that is used to project the two independent data of the Fefferman-Graham gauge, i.e.
the metric and energy-momentum tensor, in order to relate them to Bondi data. This points
to a natural way to relax the Bondi gauge, which is to restore this broken frame covariance.
This is done by partially fixing the gauge in the bulk and, in particular, by letting the metric
component that mixes the null radial and the spatial directions be non-zero. For these
reasons, we refer here to this choice as covariant Bondi gauge, although it was originally
named derivative expansion in [21, 24], due to its interpretation within the fluid/gravity
correspondence (cf. [51–55]). The covariant Bondi gauge thus introduces a dependence
on the boundary Cartan frame as well as new residual symmetries corresponding to its
(hyperbolic) rotations. The group of residual bulk diffeomorphisms becomes a product of
boundary diffeomorphisms, Weyl rescalings and Lorentz boosts [22, 23].

A Cartan frame could certainly be introduced in the Fefferman-Graham gauge as an
alternative to the boundary metric. For instance, in three bulk spacetime dimensions, one
could express the boundary metric as

gµν = `2 (−uµuν + ∗uµ ∗uν) , (1.3)

with uµ and ∗uν the components of the two Cartan forms. However, the variation of the
action (1.1) would remain sensitive to the energy-momentum tensor and to the metric
variation, but not separately to δuµ and δ∗uµ. Therefore, no asymptotic charge could be
associated with the hyperbolic rotation of the frame: the symmetry is de facto pure-gauge.
This is not the case in our covariant Bondi gauge, where the bulk metric depends explicitly
on the boundary Cartan frame. In order to establish which residual symmetries are physical,
one needs to study the symplectic structure that gravity induces on the asymptotic data.
In the process, one can utilize the built-in ambiguities [56–58] to render that structure
finite [16, 18–20, 41, 59–62]; different choices may lead to different finite presymplectic
potentials and so to different surface charges.2 This also determines which symmetries are
anomalous as we shall appreciate in this work.

2Another worth exploring pattern is to consider the extended phase spaces recently proposed in [63–65],
which are similarly affected by ambiguities [66].
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A detailed analysis of the presymplectic potential associated with the covariant Bondi
gauge shows that there exists a prescription which leads to the usual Fefferman-Graham
symplectic potential Θ(r) ∼ Tµνδgµν . As explained above, this implies that the Lorentz
component of the residual symmetries is not a symmetry of the boundary theory, and thus
cannot acquire an anomalous contribution. This is not an issue in itself, nevertheless such a
choice has disadvantages when it comes to considering the flat limit, since the presymplectic
potential diverges for infinite `.

Remarkably, there exists another prescription giving a presymplectic potential that
remains finite in the flat-space limit. With this choice, rotations of the Cartan frame
are associated with non-trivial surface charges and the variation of the on-shell action is
sensitive to them:

δS =
∫
∂M

d2x
√
−g (Jµ δuµ + Jµ∗ δ∗uµ) . (1.4)

Here the couple of currents (Jµ, Jµ∗ ) plays a role analogous to the energy-momentum tensor
in the Fefferman-Graham gauge: the variation of the action has the familiar holographic
interpretation (vev)× δ(source). As we shall see, these currents combine in an energy-
momentum tensor which is traceless and skew-symmetric, thus providing compelling evidence
for the presence of an anomaly in the boundary Lorentz symmetry. This is confirmed by
evaluating (1.4) on a bulk diffeomorphism inducing on the boundary a Weyl rescaling and a
diffeomorphism, generated by σ and ξµ as in (1.1), together with a two-dimensional Lorentz
boost generated by η:

δ(ξ,σ,η)S ∼ c
∫
∂M

d2x
√
−g η F . (1.5)

Notice that the infinitesimal Lorentz boost η does not preserve the on-shell action, thus
disclosing a holographic anomaly, while the other symmetries of the theory do not appear
and therefore are not anomalous. The holographic anomaly is sourced by the field strength
of the Weyl connection, as introduced in [17].

The appearance of the anomaly in the Lorentz rather than Weyl symmetry calls for
a deeper understanding of the anomaly structure in the holographic boundary theory. It
is possible to classify the anomalies and central charges that a two-dimensional theory
possessing Weyl-Lorentz symmetry can admit.3 As we shall briefly discuss in appendix A,
the outcome is that there are three possible central charges in a two-dimensional Weyl-
Lorentz theory, and the two expressions (1.2) and (1.5) are shown to be cohomologically
equivalent.4 This proves that the ambiguities in the covariant phase-space formalism amount
to displace the central charge from one sector of the theory to another. It is noteworthy that
this simple three-dimensional setup highlights these rather generic features of the boundary
field theory.

3A forthcoming publication [67] will be mainly devoted to classify Weyl-Lorentz anomalies using BRST
techniques (see, e.g., [68] and references therein). These techniques have already been used to classify Weyl
anomalies in the second-order formalism in [69, 70].

4This is the reason why one should more properly refer to the holographic anomaly as a mixed Weyl-
Lorentz anomaly, but, to distinguish these two different representatives in the same cohomology, we will refer
to (1.2) as Weyl anomaly (or anomaly in the Weyl sector), and to (1.5) as Lorentz anomaly (or anomaly in
the Lorentz sector).

– 4 –



J
H
E
P
1
2
(
2
0
2
2
)
0
0
7

It is also remarkable that only one choice of ambiguities guarantees a finite flat limit.
In such a limit, the Weyl-Lorentz structure reduces to a Weyl-Carroll structure, related to
those that have been introduced in [71–73] generalizing the Carrollian structures of [74–77]
(see also [78, 79]). This prescription makes the anomaly explicit in the Lorentz sector,
and, in the flat limit, in the Carroll-boost sector. We indeed show in section 3 that in
the flat limit the phase-space mirrors its AdS counterpart in terms of surface charges and
symmetries, the main difference being that the boundary geometry is now encoded in
a Carroll frame and Lorentz boosts are replaced by ultra-relativistic Carroll boosts. A
classification of anomalies in bms3-invariant field theories5 is at present missing, albeit some
examples have been discussed in [88]. These differ however from our result, which is thus a
new holographic prediction, calling for further investigation.

The surface charges turn out to be non-integrable as well as non-conserved, for both
prescriptions for the symplectic potential. Integrability is however restored by tuning
the boundary metric into conformal gauge. When implementing this choice within the
prescription admitting a flat limit, Weyl transformations turn out to be pure-gauge while
Lorentz boosts are generated by integrable but non-conserved charges. The non-conservation
is another signal either of the Lorentz anomaly for finite ` or of the Carroll-boost anomaly at
infinite `, similarly to what happens in the Fefferman-Graham gauge for the Weyl anomaly [5].
Obtaining integrable charges allows for a detailed characterization of the algebras of
asymptotic symmetries. We study this in detail in section 4 by employing the Chern-
Simons formulation of three-dimensional gravity [89, 90]. Aside from the usual technical
simplifications brought by this setup, one can find a simple Chern-Simons connection that
gives rise to the set of surface charges associated with the symplectic structure admitting a
flat limit. Furthermore, in this formalism we establish the boundary terms to be added to the
bulk action, such that the variational principle correctly reproduces our symplectic structure.

2 Covariant Bondi gauge in AdS and holographic frames

In this section, we first review the definition of the covariant Bondi gauge and identify the
residual diffeomorphisms preserving it, following [21–23]. We then compute the symplectic
form on the boundary phase space. The latter is sensitive to the choice of boundary
counterterms in the action or, equivalently, presents a well-known ambiguity when defined
starting from a bulk Lagrangian. We present two prescriptions for fixing these ambiguities
leading to a finite result: the first reproduces the usual symplectic form derived in the
Fefferman-Graham gauge, while the second promotes rotations of the boundary Cartan
frame into asymptotic symmetries of the theory. Only the second option admits a flat
limit, which will be discussed in section 3, and in this case the holographic Weyl anomaly is
displaced onto the Lorentz sector of the asymptotic symmetries. For a generic boundary
Cartan frame, the surface charges are neither integrable nor conserved, irrespective of the

5A concrete example of field theories with conformal Carroll symmetry is given by the scalar field theories
that have been recently considered in [80–84]. Other relevant works on Carrollian field theories include,
e.g., [85–87].
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prescription for the presymplectic potential. Still, we conclude this section showing that
integrability can be attained by restricting the boundary metric to the conformal gauge.

2.1 Relaxing the Bondi gauge

Solution space. The covariant Bondi gauge, firstly introduced in three dimensions in [21],
is defined by the line element

ds2
AdS = 2

k2 u (dr + rA) + r2gµν dxµdxν + 8πG
k4 u (ε u + χ ∗u) , (2.1)

where r is a null radial coordinate and {xµ, µ = 0, 1} = {ku, φ} are adimensional coordinates
charting the boundary. We have also introduced the inverse AdS radius k = `−1, so that
the flat limit is reached when k → 0, while G denotes Newton’s constant. The conformal
boundary is located at r →∞. Compared to the usual Bondi gauge [34–36], this partial
gauge fixing allows for a non-vanishing drdφ component.

The line element is parameterized in terms of the following boundary quantities: the
metric gµν , the couple of one-forms (u = uµdxµ, ∗u = ∗uµdxµ), the Weyl connection
A = Aµdxµ and the scalars ε and χ, such that the r dependence is explicit in (2.1).
However, not all boundary data are independent: ∗u is the Hodge dual6 of u (∗uµ = Eµνuν

and uµ = Eµν ∗uν). The boundary being two dimensional, one can equivalently consider
these one-forms as independent and use them to define a Cartan frame:

gµν = 1
k2 (−uµuν + ∗uµ∗uν) . (2.2)

This Cartan frame is not orthonormal since, by definition, uµ and ∗uµ are orthogonal but
normalized to −k2 and k2 instead of −1 and 1, respectively. In [21, 23], the background
metric and the normalized vector uµ were mainly chosen as independent boundary data, and
the vector congruence uµ was interpreted as the velocity of a two-dimensional fluid hosted
on a curved background metric gµν with local energy density ε and heat density χ. Here,
following [22], we mainly consider u and ∗u as the two independent one-forms of the boundary
dyad, while ε and χ specify the components of the boundary energy-momentum tensor.

The bulk metric also involves the Weyl connection A, introduced in the fluid/gravity
correspondence in [91] (see also [17]). It depends on the one-forms (u, ∗u) as follows,

A = 1
k2 (Θ∗∗u−Θ u) , (2.3)

where we introduced the expansion Θ = ∇µuµ and its dual Θ∗ = ∇µ∗uµ. Equivalently, these
quantities can be defined from the exterior derivative of the Cartan frame,

d ∗u = Θ
k2 ∗u ∧ u , du = Θ∗

k2 ∗u ∧ u . (2.4)

6Our conventions are: Eµν =
√
−g εµν with ε01 = +1 and E µρEρν = δµν . The Hodge dual of a one-form is

then defined as ∗vµ = Eµνv
ν . Notice that the convention for the Hodge dual differs from [21, 22], but agrees

with [23].
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The one-form A is dubbed Weyl connection because if one performs a Weyl rescaling on
the boundary frame — (u, ∗u) → B−1(u, ∗u), where B is a nowhere vanishing boundary
function — it transforms as a connection,

A→ A− d lnB . (2.5)

Requiring the bulk line element (2.1) be invariant under boundary Weyl transformations
induced by r → B r, one obtains that (ε, χ) → B2(ε, χ). In the covariant Bondi gauge,
differently from the Bondi or Fefferman-Graham gauges, but similarly to the Weyl-Fefferman-
Graham gauge [17], boundary Weyl transformations are thus induced by simple bulk
diffeomorphisms.7 The curvature of the Weyl connection is

Fµν = ∂µAν − ∂νAµ = 1
k2 (∂µΘ∗ ∗uν − ∂νΘ∗ ∗uµ − ∂µΘuν + ∂νΘuµ) , (2.6)

while its Hodge dual reads

F = 1
2 E µνFµν = 1

k2 (uµ∂µΘ∗ − ∗uµ∂µΘ) . (2.7)

The metric (2.1) solves Einstein’s equations only if the six independent boundary
functions in (u, ∗u) and ε, χ satisfy suitable differential equations. A relevant quantity for the
description of the equations of motion is the Brown-York energy-momentum tensor [25, 92].
It was shown in [21] that for the line-element (2.1) it reads

Tµν = 1
2k
(
T̃µν + T̂µν

)
, (2.8)

where

T̃= ε

k2 (u2+∗u2)+ χ

k2 (u∗u+∗uu)+ R

8πGk2 ∗u
2 , (2.9a)

T̂= 1
8πGk4

(
uµ∂µΘ+∗uµ∂µΘ∗− k

2

2 R
)

(u2+∗u2)− 1
4πGk4 ∗u

µ∂µΘ (u∗u+∗uu) , (2.9b)

and where R stands for the Ricci scalar of the boundary metric. Both contributions are
tensors decomposed in the basis (u, ∗u). The first clarifies the role of ε and χ as the energy
density and flow on the boundary.8 Moreover, the viscous stress tensor (also a scalar in two
dimensions) involves the energy density and the boundary scalar curvature. The second
contribution includes only the frame and derivatives thereof and induces corrections to the
energy density and energy flow.

The resulting Brown-York energy-momentum tensor is symmetric and Einstein’s equa-
tions imply

∇µTµν = 0 , Tµµ = R

16πGk . (2.10)

7The covariant Bondi gauge discussed here is a three-dimensional tayloring of the so-called derivative ex-
pansion, introduced in fluid/gravity correspondence [51–54], where Weyl covariance was a constructive motive.

8The boundary is two-dimensional, therefore the transverse momentum flow is carried by a scalar.

– 7 –



J
H
E
P
1
2
(
2
0
2
2
)
0
0
7

These equations can be spelled in terms of ε, χ, and the Cartan frame as

uµ (∂µ + 2Aµ) ε = − ∗uµ (∂µ + 2Aµ)
(
χ− F

4πG

)
, (2.11a)

uµ (∂µ + 2Aµ) χ = − ∗uµ (∂µ + 2Aµ) ε . (2.11b)

Recalling that uµ and ∗uµ are timelike and spacelike, the first equation shows that the
local energy density variation is dictated by the gradient of the energy flow and the Weyl
curvature. The second equation tells us that the local energy flow variation is controlled by
the gradient of energy density. We notice that all derivatives are Weyl-covariant, and so are
both equations (see [21] for details).

Symmetries. Diffeomorphisms preserving the line element (2.1) were already studied
in [22, 23]. They are generated by asymptotic Killing vectors depending on four parameters:
two are gathered into the generator of boundary diffeomorphisms ξµ(x), one, σ(x), induces
Weyl rescalings of the boundary geometry, and the last one, η(x), parameterizes local
Lorentz boosts of the boundary frame, which is the main novelty offered by the covariant
Bondi gauge. Asymptotic Killing vectors are expressed in closed form as follows:

v =
(
ξµ − 1

k2r
η ∗uµ

)
∂µ +

(
r σ + 1

k2 (∗uν ∂νη + Θ∗η) + 4πG
k2r

χ η

)
∂r . (2.12)

We observe that η appears only at subleading orders in r, in terms depending explicitly on
the solution — they involve χ and ∗u.

A bulk diffeomorphism generated by the vector (2.12) is reflected on the boundary
Cartan frame in a simple manner:

δ(ξ,σ,η)u = Lξu + σ u + η ∗u , (2.13a)

δ(ξ,σ,η)∗u = Lξ ∗u + σ ∗u + η u . (2.13b)

As anticipated, ξ generates a boundary diffeomorphism, while the η-transformation is the
infinitesimal version of the two-dimensional local Lorentz boost(

u′

∗u′

)
=
(

cosh η sinh η
sinh η cosh η

)(
u
∗u

)
. (2.14)

Finally, from (2.13) one obtains the variation of the boundary metric (2.2) as

δ(ξ,σ,η)gµν = Lξgµν + 2σ gµν , (2.15)

showing that σ acts as a Weyl rescaling.
Using the transformations of ε and χ available in [22, 23], we note that the Brown-York

energy-momentum tensor transforms as

δ(ξ,σ,η)Tµν = LξTµν + 1
16πGk

(
L∂σgµν − (gρλ L∂σgρλ) gµν

)
, (2.16)

where we have used the compact notation ∂σ ≡ gµν∂νσ∂µ. This quantity transforms like a
tensor under diffeomorphisms, non-linearly under a Weyl transformation, and it is insensitive
to Lorentz boosts.
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It should be emphasized that when working with the dyad instead of a boundary metric
the Weyl and Lorentz transformations acquire a certain resemblance, see eq. (2.13). This
similarity becomes even more striking when computing the algebra obtained using the
following modified Lie bracket of two asymptotic Killing vectors [93, 94]:

[v1, v2]M ≡ [v1, v2]− δv1v2 + δv2v1 , (2.17)

where [v1, v2] is the Lie bracket. This modified bracket takes into account the dependence of
the vectors on fields that transform themselves under the symmetry. We obtain the algebra

[(ξ1, σ1, η1) , (ξ2, σ2, η2)]M = (ξ12, σ12, η12) , (2.18)

with

ξ12 = [ξ1, ξ2] , σ12 = ξµ1 ∂µσ2 − ξµ2 ∂µσ1 , η12 = ξµ1 ∂µη2 − ξµ2 ∂µη1 . (2.19)

We observe that Weyl and Lorentz transformations form two Abelian sub-algebras while
diffeomorphisms act on them producing the semi-direct structure

Diff + (Weyl⊕ so(1, 1)) . (2.20)

Before moving to the study of the symplectic structure, we would like to further
comment on the similarity between the Weyl and Lorentz sectors. Both symmetries are
local and supplemented with gauge connections built out of the Cartan frame. The Weyl
connection is A, given in eq. (2.3), which transforms under Weyl infinitesimal rescalings
(B ' 1− σ) as

A→ A + dσ . (2.21)

The Lorentz (or spin) connection is encoded in the Hodge dual of the Weyl connection, i.e.
ω10 = ∗A in the orthonormal Cartan frame θ0 = u

k and θ1 = ∗u
k . Under an infinitesimal

Lorentz boost it transforms as
∗A→ ∗A− dη , (2.22)

where ∗A = 1
k2 (Θ∗u − Θ ∗u). Since we are in two dimensions, the curvatures of these

connections are encoded in their dual scalars:

∗ dA = F , ∗d ∗A = R

2 . (2.23)

This sort of duality between the two sectors will regularly appear in our analysis, and it is
ultimately rooted in their algebraic properties.

Recovering the Bondi gauge. The Bondi gauge is reached by choosing a specific Cartan
frame for the boundary metric. This is performed by imposing the constraint uφ = 0. The
dictionary between u0, ∗u0, ∗uφ, ε and χ and the Bondi data is given in [22, 23]. The
previous constraint is not preserved by the residual symmetries (2.20), imposing thereof a
reduction of the symmetry group. From (2.13a) we see that uφ is left unchanged if Lorentz
boost and diffeomorphisms are related as

η = −u0 ∂φξ
0

∗uφ
. (2.24)

The symmetry group reduces to Diff n Weyl.
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2.2 Symplectic structure and boundary anomalies

Presymplectic potential. We now get into the core of this work, which is the analysis
of the symplectic structure associated with the covariant Bondi gauge (2.1). Calling the
bulk metric GMN , and starting from the bulk Einstein-Hilbert Lagrangian LEH[G], one can
extract the presymplectic potential ΘEH[G; δG] through the relation [56, 57]

δLEH[G] = δLEH[G]
δGMN

δGMN + dΘEH[G; δG] . (2.25)

It reads explicitly

ΘEH[G; δG] = 1
16πG

[
∇NδGPN GPM −∇MδGPN GPN

]
ΣM , (2.26)

where ΣM =
√
−G
2 εMNPdxN ∧ dxP . The presymplectic potential is defined up to two types

of ambiguities
ΘEH[G; δG]→ ΘEH[G; δG] + δZ[G]− dY [G; δG] , (2.27)

where Z[G] and Y [G; δG] are two- and one-forms on spacetime [56, 57]. The Y -ambiguity
stems from the fact that the variation of the Lagrangian defines only the exterior derivative
of the potential. The Z-ambiguity results from a different choice of boundary term in the
action.9 In this section we focus directly on the presymplectic potential, while in section 4
we associate a variational principle with it working in the Chern-Simons formulation of
three-dimensional gravity.

The conformal boundary being at r →∞, we focus on the r-component of the Einstein-
Hilbert presymplectic potential (2.26) in this limit:

Θ(r)
EH[G; δG] = r2 Θ(2) + rΘ(1) + Θ(0) +O

(
r−1

)
, (2.28)

where, in terms of boundary data, we have

Θ(2) = − k

8πG
(
δ ln
√
−g
)
Vol∂M , (2.29a)

Θ(1) = 1
16πGk

[
−2 δ(Θ

√
−g)√
−g

−∇µδuµ
]
Vol∂M , (2.29b)

Θ(0) =
(1

2 T
µνδgµν + 1

2k
√
−g

δ(
√
−g ε) + 1

16πGk3√−g
δ
[√
−g

(
Θ2 −Θ∗2

)]
− 1

16πGk
√
−g

δ(
√
−gR) + 1

8πGk3 ∇µ(δΘuµ)− 1
16πGk3 ∇µ [δ(Θ∗ ∗uµ)]

)
Vol∂M ,

(2.29c)

with Vol∂M =
√
−g
2 εrµνdxµ ∧ dxν being the boundary volume form. We also recall that Θ

and Θ∗ denote the expansion and its dual defined in (2.4).
9We should quote here that arguments have been proposed in the literature to extract the presymplectic

potential from the Lagrangian, fixing thereby both ambiguities — see e.g. [16, 18, 41, 59, 64–66, 95, 96].
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This potential diverges, but both divergent terms are pure-ambiguity, as in (2.27). We
can thus define the renormalized presymplectic potential of the theory as

Θren[G; δG] = Θ(r)
EH[G; δG] + δZ[G]− dY [G; δG] , (2.30)

where Z and Y have their own large-r expansions

Z[G] = r2 Z(2) + r Z(1) + Z(0) , Y [G; δG] = r Y(1) + Y(0) , (2.31)

whose divergent pieces are

Z(2) = k

8πG Vol∂M , Z(1) = 1
8πGk ΘVol∂M , Y(1) = 1

16πGk Eµαδu
αdxµ . (2.32)

At this stage, a choice is expected for the zeroth order of the ambiguities, that is for Z(0)
and Y(0) in (2.31). The condition we wish to satisfy — which is natural in holography — is
that the corresponding renormalized potential vanishes for Dirichlet boundary conditions
on the boundary geometry. In other words, Θren should be a linear combination of δu and
δ∗u, which ensures that its boundary value vanishes when the Cartan frame is fixed. The
two choices for the zeroth order ambiguity that we propose are

Weyl

Y(0) =− Eµα
8πGk3

(
uαδΘ− δ(∗u

αΘ∗)
2

)
dxµ, Z(0) =

(
− ε

2k−
Θ2−Θ∗2+k2R

16πGk3

)
Vol∂M ,

(2.33)

Lorentz

Y(0) = Eµα
16πGk3 (δ ∗uα Θ∗ − ∗uα δΘ∗) dxµ, Z(0) = − ε

2k Vol∂M , (2.34)

where we dubbed each choice according to which residual symmetry becomes an asymptotic
symmetry. This will become clear when we study the associated surface charges in section 2.3.

The key properties of the two choices in (2.33) and (2.34) are the following:

Weyl. This renormalized presymplectic potential matches that obtained in the Fefferman-
Graham gauge with the prescription for the boundary terms of [25, 26]:

ΘW
ren[G; δG]

∣∣∣
∂M

= 1
2 T

µνδgµνVol∂M = 1
k2 T

µν(− uµ δuν + ∗uµ δ ∗uν
)
Vol∂M . (2.35)

As required, the presymplectic potential is proportional to δu and δ ∗u and therefore
vanishes for Dirichlet boundary conditions on the Cartan frame. But it vanishes
also for milder boundary conditions, since it is proportional to the variation of the
boundary metric, meaning that one has to fix the Cartan frame only up to Lorentz
transformations.

Since this presymplectic potential is the same as the usual one obtained in the
Fefferman-Graham gauge, several results follow through. In particular, one can
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compute the surface charges associated with each residual symmetry in (2.12) using
the presymplectic current δΘW

ren. The charges are the same as those obtained in [5, 18]
and the boundary Weyl anomaly is shown to lead to non-trivial but non-conserved
Weyl charges. No charges are instead associated with Lorentz boosts, because δηTµν =
δηgµν = 0 as shown in (2.15) and (2.16).

Lorentz. The prescription, on which we focus in the following, leads to the renormalized
presymplectic potential

ΘL
ren[G; δG]

∣∣∣
∂M

=
(
Jµ δuµ + Jµ∗ δ ∗uµ

)
Vol∂M , (2.36)

where we have introduced the currents

Jµ = − 1
k2 T

µνuν + 1
16πGk5 u

µ(Θ2 −Θ∗2)− 1
8πGk3 E µν∂νΘ∗ , (2.37a)

Jµ∗ = 1
k2 T

µν∗uν −
1

16πGk5 ∗u
µ(Θ2 −Θ∗2) + 1

8πGk3 E µν∂νΘ . (2.37b)

The presymplectic potential is again proportional to δu and δ∗u and therefore vanishes
for Dirichlet boundary conditions on the Cartan frame. Similarly to the previous case,
a milder condition can be imposed to get stationarity of the action: this time it is the
conformal class of the Cartan frame that needs to be fixed, as will become clear in the
remainder of this section. Most importantly, and this will be the subject of section 3,
this potential admits a flat limit that will naturally endow the asymptotically flat
covariant Bondi gauge with a symplectic structure.

Holographic interpretation of the Lorentz presymplectic potential. The pre-
scription (2.33) must be associated with suitable boundary terms to be added to the bulk
action in order to reproduce the given presymplectic potential. We postpone the discussion
of boundary terms in the action to section 4, where the issue will be approached within
the Chern-Simons formulation. Here we simply assume that such an action (with specific
boundary contributions) exists and denote it as SL. By definition, its on-shell variation
corresponds to the boundary integral of the pull-back of ΘL

ren to the boundary defined
in (2.36), that is to

δSL =
∫

(Jµ δuµ + Jµ∗ δ∗uµ)Vol∂M . (2.38)

This variation has the familiar form (vev)× δ(source). The two currents (J, J∗) can be
packaged into a energy-momentum tensor

T µ
ν = Jµuν + Jµ∗ ∗uν = Tµν −

1
16πGk3 δ

µ
ν

(
Θ2 −Θ∗2

)
− 1

8πGk3 E µρ
(
∂ρΘ∗uν − ∂ρΘ ∗uν

)
,

(2.39)
which should not be confused with the Brown-York energy-momentum tensor Tµν . When
Einstein’s equations are satisfied, this new energy-momentum tensor satisfies the identities

∇µT µν = − 1
8πGk F

µνAµ , T µ
µ = 0 , T[µν] = 1

16πGk Fµν , (2.40)
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where Aµ is the Weyl connection (2.3) and Fµν its curvature (2.6). These relations,
interpreted as holographic Ward identities, signal the presence of an anomaly in the Lorentz
symmetry in the dual theory (see, e.g., section 12.5 of [97]).

When evaluated on a Weyl transformation of the dyad, the variation of the on-shell
action (2.38) is proportional to the trace of the energy-momentum tensor introduced
in (2.39):

δσSL =
∫
σT µ

µVol∂M = 0 . (2.41)

Equation (2.40) thus implies that it is sufficient to fix the conformal class of the bound-
ary dyad in order to impose Dirichlet boundary conditions, as anticipated. Considering
the variation of the on-shell action under a general residual symmetry generated by the
asymptotic Killing vector (2.12), we obtain:

δ(ξ,σ,η)SL =
∫ [
−ξν

(
∇µT µ

ν + 1
8πGkFµνA

µ
)

+ σT µ
µ + η E µνT[µν]

]
Vol∂M

= 1
8πGk

∫
η F Vol∂M .

(2.42)

Consistently with the holographic Ward identities (2.40), we conclude that the only anoma-
lous symmetry is Lorentz, with an anomaly weighted by the Weyl curvature, as opposed
to the standard setup, in which the Weyl anomaly is weighted by the curvature of the
boundary metric. As we shall discuss shortly, the displacement of the anomaly from the
Weyl to the Lorentz symmetry can be seen as specifying two different representatives in the
same cohomology class for the boundary theory. Indeed, the presence of an anomaly is a
cohomological statement: the true information is encoded in the presence — and value —
of central charges, which can appear in different places.

Holographic anomaly. We now discuss the cohomological equivalence between the
holographic anomalies induced by ΘW defined in (2.35) and ΘL defined in (2.36). As it
will be shown in detail in a forthcoming publication [67] and as resumed in appendix A for
the sake of clarity, a classification of the anomaly structure of field theories possessing a
Weyl-Lorentz frame bundle symmetry gives three inequivalent contributions:10

a(1,2) = c1
2 η R+ c2 σF + c3

24π σR . (2.43)

In this expression, {c1, c2, c3} are three central charges, and η and σ are the Lorentz
and Weyl symmetry generators, see appendix A. We observe that c1 is a pure Lorentz
central charge (it corresponds to an anomaly involving the Lorentz symmetry generator and
curvature), c2 a pure Weyl central charge (Weyl symmetry generator and curvature), while
c3 is a mixed central charge (Weyl symmetry generator and Lorentz curvature). The mixed
term c3σR is proven in appendix A to be cohomologically equivalent to 2c3ηF so that

c1
2 η R+ c2 σF + c3

24π σR ∼
c1
2 η R+ c2 σF + c3

12π η F . (2.44)

This means that σR and 2 ηF source the same central charge, called here c3.
10The numerical factor in front of c3 originates from the relationship Tµµ = c3

24πR, see [33]. Note also
that we denote by a(1,2) the object involving the Hodge dual of the curvature two-forms appearing in (A.8).
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We can now read off the central charge sourced in our holographic setup. From the
choice (2.35) for the presymplectic potential we get

δ(ξ,σ,η)SW = 1
16πGk

∫
σR Vol∂M , (2.45)

while the choice (2.36) gives

δ(ξ,σ,η)SL = 1
8πGk

∫
η F Vol∂M , (2.46)

where we stressed once again that our two prescriptions for the presymplectic potential
must correspond to suitable choices of boundary terms to be added to the bulk action (see
also section 4). Comparing these results with (2.43), and taking into account (2.44), we
obtain that the holographic central charges are, in both instances,

c1 = 0 , c2 = 0 , c3 = 3
2kG . (2.47)

The central charge c3 is the well-known Brown-Henneaux central charge [1], related to
the Weyl anomaly with holographic methods in [33]. We conclude that our displacement
of the anomaly from the Weyl to the Lorentz symmetry corresponds to moving from one
representative to the other in the cohomological class. The two corresponding presymplectic
potentials are related by a (Z, Y )-ambiguity (2.27) while their anomalies are related by a
BRST co-boundary term. It would be interesting to prove this interplay between bulk ambi-
guities and different representatives on the boundary in a wider class of theories. In section 3,
starting from the prescription displaying the central charge in the Lorentz sector, we shall
perform the flat limit k → 0, and reach a concrete holographic prediction for asymptotically
flat gravity, where the boundary Carroll boost symmetry turns out to be anomalous.

Presymplectic form. Considering the field variation of the presymplectic potential gives
the renormalized presymplectic two-form on the boundary phase space, namely ωren = δΘren.
This yields

ωL
ren

∣∣∣
∂M

= 1√
−g

(
δ(
√
−g Jµ) ∧ δuµ + δ(

√
−g Jµ∗ ) ∧ δ∗uµ

)
Vol∂M

= ωW
ren

∣∣∣
∂M

+ 1
8πGk3 ∇µ

[
δ(
√
−g uµ)√
−g

∧ δΘ− δ(
√
−g ∗uµ)√
−g

∧ δΘ∗
]
Vol∂M ,

(2.48)

where
ωW

ren

∣∣∣
∂M

= 1
2
√
−g

δ
(√
−g Tµν

)
∧ δgµνVol∂M (2.49)

is the presymplectic two-form associated with ΘW
ren. With the prescription for the ambiguities

leading to ωW
ren the conjugate variables are thus the boundary metric and the Brown-York

energy-momentum tensor, while with that leading to ωL
ren the conjugate variables are

(u, J) and (∗u, J∗). We also observe that the presymplectic forms associated with our two
prescriptions are related by an exact term. The latter corresponds to the δ-variation of
the difference between the two Y(0)-ambiguities associated with the two choices in (2.33)
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and (2.34). Furthermore, this exact term is anti-symmetric under the exchange u ↔ ∗u.
As we shall see in section 3, it is this corner term that renders the presymplectic form
finite in the k → 0 limit, while in section 4 we shall show that it arises naturally in the
Chern-Simons formulation, which further justifies this heuristic prescription. With the
presymplectic form at hand we can now compute the surface charges associated with the
residual symmetries generated by the asymptotic Killing vectors (2.12). For simplicity, we
shall do this in the next section choosing the conformal gauge for the boundary metric. This
will make the discussion on conservation/integrability more tractable and the interpretation
of the holographic anomaly more transparent.

2.3 Conformal gauge

The surface charges associated with the presymplectic current are generically non-integrable
and non-conserved. While these features are common in the presence of gravitational
radiation (see e.g. [57, 58, 98]) they might look awkward in a context without propagating
degrees of freedom, as is three-dimensional gravity. Actually, the non-conservation can be
interpreted holographically in three bulk dimensions as an anomalous Ward identity for the
boundary Weyl symmetry [5]. In the present section, we make use of the new symplectic
form ωL

ren to compute the charges after imposing the conformal gauge on the boundary
metric, which makes their integrability manifest.

Since any two-dimensional metric is conformally flat, one can always choose a gauge in
which the boundary metric reads

ds2 = e2ϕdx+dx− , (2.50)

where ϕ(x+, x−) is an arbitrary function and x± = φ± k u are light-cone coordinates. We
choose the following parameterization for the corresponding Cartan frame (u, ∗u):

u = −k2 eϕ
(
eζ dx+ − e−ζ dx−

)
, ∗u = k

2 eϕ
(
eζ dx+ + e−ζ dx−

)
, (2.51)

where ζ(x+, x−) is also an arbitrary boundary function. On the one hand, although this
parameterization is always achievable locally, it could affect the global properties of the
solution space. On the other hand, in this case it still allows to discuss all qualitative
features of the asymptotic symmetries for the Lorentz presymplectic current (2.48).

According to eq. (2.15), demanding that the asymptotic Killing vectors (2.12) preserve
the conformal gauge reduces the Diff symmetry to the set of conformal transformations. The
latter is parameterized infinitesimally by a holomorphic and an anti-holomorphic function
Y ±(x±). The symmetry parameters of the asymptotic Killing vector (2.12) become

ξµ∂µ = Y +∂+ + Y −∂−, (2.52a)

η = −h+ 1
2
(
∂+Y

+ − ∂−Y −
)

+ Y +∂+ζ + Y −∂−ζ , (2.52b)

σ = $ − 1
2
(
∂+Y

+ + ∂−Y
−
)
− Y +∂+ϕ− Y −∂−ϕ , (2.52c)
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where we have purposefully implemented a field-dependent shift for the Lorentz and Weyl
symmetry transformations and defined h(x+, x−) and $(x+, x−) respectively.11 This shift
is such that the transformations of the Weyl factor ϕ and Lorentz factor ζ in (2.51) become
very simple. Indeed, under (2.52) we obtain

δ(ξ,$,h)ϕ = $ , δ(ξ,$,h)ζ = h . (2.53)

Both ϕ and ζ are shifted under the gauge transformation and, as we shall see, acting on
global AdS3 with the corresponding symmetry does not change its energy. For these reasons
we refer to them as Goldstone modes for the Lorentz and Weyl symmetry. It turns out that
this choice of parameters will render the charges integrable. This type of field-dependent
redefinitions of the parameters have been exploited in the literature to find integrable
slicings for the charges, see e.g. [5, 12–14, 19, 20].

In the conformal gauge, we can solve the conservation equations for the Brown-York
energy-momentum tensor, whose components are given by

T+− = − 1
8πGk ∂+∂−ϕ , T±± = 1

8πGk
(
`±(x±) + ∂2

±ϕ− (∂±ϕ)2
)
, (2.54)

where `± are defined from ε and χ via

ε+ χ = e−2(ϕ−ζ)

2πG
(
`−(x−)− (∂−ζ)2 − ∂2

−ζ − e−2ζ∂−∂+ζ
)
, (2.55a)

ε− χ = e−2(ϕ+ζ)

2πG
(
`+(x+)− (∂+ζ)2 + ∂2

+ζ + e2ζ∂−∂+ζ
)
. (2.55b)

Using again the results in [22, 23], we compute the variation of the new fields `±,

δ(ξ,$,h)`± = Y ±∂±`± + 2 ∂±Y ±`± −
1
2 ∂

3
±Y
± . (2.56)

Starting from the modified Lie bracket (2.17), one can deduce that the algebra of residual
symmetries is given by (Witt⊕Witt)⊕Weyl⊕ so(1, 1), that is,[(

Y ±1 , $1, h1
)
,
(
Y ±2 , $2, h2

)]
M

=
(
Y ±12 , $12, h12

)
, (2.57)

with
Y ±12 = Y ±2 ∂±Y

±
1 − Y

±
1 ∂±Y

±
2 , $12 = 0 , h12 = 0 . (2.58)

When choosing the conformal gauge for the boundary metric, the presymplectic potential
and the presymplectic current (2.48) read

ΘL
ren|∂M= e−2ϕ

8πGk ζ δ
(
e2ϕF

)
Vol∂M , ωL

ren|∂M= e−2ϕ

8πGk
[
δζ∧δ

(
e2ϕF

)]
Vol∂M , (2.59)

with
F = −4 e−2ϕ∂+∂−ζ . (2.60)

11Comparing with [22, 23], our new symmetry parameter h is related to the old one through h =
2
k
e−ϕ−ζH+ −$.
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We observe that the Lorentz Goldstone mode is the conjugate variable of the Weyl curva-
ture (2.7). The charges can be computed using the codimension-two form K(ξ,$,h) [57, 58]
satisfying

ωren[G; δG, δ(ξ,$,h)G]|∂M = dK(ξ,$,h)[G; δG]|∂M . (2.61)

Assuming that the parameters Y ±, $ and h are field-independent, we find that the charges
are integrable, that is, K(ξ,$,h) = δH(ξ,$,h) and

Q(ξ,$,h) =
∫ 2π

0
H(ξ,$,h) . (2.62)

The Virasoro charges are given by the usual Brown-Henneaux expression

QY ± = 1
8πGk

∫ 2π

0
dφ
(
Y +`+ − Y −`−

)
, (2.63)

while the charges associated with the Weyl and Lorentz symmetries read:

Q($,h) = 1
8πGk2

∫ 2π

0
dφ
(
ζ ∂uh− h ∂uζ

)
, (2.64)

where we stressed that the final results only contains the combination of derivatives
∂u = k (∂+ − ∂−). One thus finds that the charges associated with pure Weyl symmetries
vanish identically. This implies that the Weyl symmetry is pure-gauge.

Using the variations (2.53) and (2.56), one can compute the charge algebra. It is a
representation of the asymptotic symmetry algebra, up to central extensions:

δ(ξ1,h1)Q(ξ2,h2) = Q[(ξ1,h1),(ξ2,h2)]M +K(ξ1,h1),(ξ2,h2) , (2.65)

where we recall that [ , ]M stands for the modified Lie bracket defined in (2.17). The two
copies of the Witt algebra are promoted to a Virasoro algebra with central extension

KY1,Y2 = 1
16πGk

∫ 2π

0
dφ
(
Y +

2 ∂3
+Y

+
1 − Y

−
2 ∂3
−Y
−

1

)
, (2.66)

while the Abelian so(1, 1) algebra in (2.20) is promoted to an affine algebra with central
extension

Kh1,h2 = 1
8πGk2

∫ 2π

0
dφ
(
h2 ∂uh1 − h1 ∂uh2

)
. (2.67)

This concludes the study of the asymptotic charges associated with our new proposal
of presymplectic potential (2.36) in conformal gauge. This prescription gives a physical
meaning to the Lorentz factor ζ, which has an associated non-vanishing, integrable and
non-conserved charge. The Lorentz boosts form an affine so(1, 1) that is classically centrally
extended with central extension given in (2.67).
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3 Flat limit and boundary Carroll frames

Null gauges in AdS — i.e. gauges whose constant-r lines are null — admit a proper flat-space
limit [24, 37–42]. It is also the case for the covariant Bondi gauge as was shown in [21–23].
This amounts to taking the large-` (or small-k) limit, which turns the timelike AdS boundary
into a null manifold, the null infinity of an asymptotically flat spacetime. The metric induced
on the boundary becomes degenerate and therefore the geometry Carrollian. We will see
that the flat-space symplectic structure mimics its AdS counterpart, and in particular
an ultra-relativistic version of the frame rotation will be charged. We also comment on
anomalies for the putative holographic dual.

3.1 Asymptotically flat covariant Bondi gauge

Solution space. Our goal is to take the flat limit of the two symplectic structures
defined by (2.35) and (2.36). As we shall see only the second admits a proper flat limit.
Following [21–23], we prescribe the following small-k behavior for the various quantities
appearing in the line element (2.1):

µ= lim
k→0

u
k2 , µ∗= lim

k→0

∗u
k
, υ= lim

k→0
u, υ∗= lim

k→0

∗u
k
, α= lim

k→0

χ

k
, ε= lim

k→0
ε, (3.1)

where (u = uµdxµ, u = ∗uµdxµ), while (u = uµ∂µ, ∗u = ∗uµ∂µ). With this choice, the
boundary metric becomes

d`2 = lim
k→0

gµν dxµ dxν = (µ∗)2 , (3.2)

which is manifestly degenerate. The degenerate direction corresponds to the span of
the vector υ, therefore the pair (υ, d`2) forms a (weak) Carrollian structure [72]. The
couple (µ,µ∗) forms a dyad for this Carrollian structure while the couple of vectors (υ, υ∗)
corresponds to the dual basis:

µ(υ) = −1 , µ∗(υ∗) = 1 , µ(υ∗) = 0 , µ∗(υ) = 0 . (3.3)

Notice that, due to the degeneracy of the metric, forms and vectors are not related to each
other by lowering/raising indices, and this is why we have assigned different symbols to
them. In analogy with the relativistic case, Carrollian expansions θ and θ∗ can be defined
via

d ∗µ = θ ∗µ ∧ µ , dµ = θ∗ ∗µ ∧ µ , (3.4)

or, equivalently, via the Lie bracket of the Carrollian vectors υ and υ∗,

[υ, υ∗] = θ∗υ − θ υ∗. (3.5)

These are related to the relativistic expansions, defined in eq. (2.4), as

θ = lim
k→0

Θ , θ∗ = lim
k→0

Θ∗

k
. (3.6)
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With the scalings (3.1), the Weyl connection and its curvature also admit a flat limit

A = lim
k→0

A = µ∗ θ∗ − µ θ , F = lim
k→0

k F = υµ∂µθ
∗ − υµ∗ ∂µθ . (3.7)

The Carrollian connection A also transforms like a connection under Weyl rescalings of the
Carrollian structure.

Using these ingredients, the flat limit of the line element (2.1) is well-defined and reads

ds2
Flat = lim

k→0
ds2

AdS = 2µ (dr + rA) + r2µ∗µ∗ + 8πG µ (εµ+ αµ∗) . (3.8)

For instance, the values of the various Carrollian quantities for the rotating cosmology
of [37] are

µ = −du , µ∗ = dφ , A = 0 , ε = M, α = −J , (3.9)

where M and J are the mass and the angular momentum of the cosmological solution. The
one-form µ is aligned with the retarded time while µ∗ is aligned with the angular direction.
The metric (µ∗)2 = dφ2 covers only spatial sections of null infinity.

Coming back to the general case, the zero-k limit of the conservation equation ∇µTµν =
0, as written in (2.11), is readily finite and gives the residual Ricci-flat Einstein equations
for (3.8):

υµ(∂µ + 2Aµ) ε = 1
4πG υ

µ
∗ (∂µ + 2Aµ)F , υµ(∂µ + 2Aµ)α = −υµ∗ (∂µ + 2Aµ) ε . (3.10)

These equations are Weyl-covariant because ε and α are scalars of Weyl-weight two. We
refer to [21–23] for more details on the Weyl-Carroll geometry induced on null infinity in
the covariant Bondi gauge.

Symmetries. The asymptotic Killing vectors preserving the line element (3.8) are ob-
tained as the flat limit of the AdS Killing vectors (2.12). They are parameterized by a
boundary diffeomorphism and a boundary Weyl rescaling, ξµ(x) and σ(x), which are the
same as in AdS, and a boundary local Carroll boost

λ(x) = lim
k→0

η(x)
k

, (3.11)

leading to
v =

(
ξµ − 1

r
λ υµ∗

)
∂µ +

(
r σ + υν∗∂νλ+ θ∗λ+ 4πG

r
α λ

)
∂r . (3.12)

Under the action of these asymptotic symmetries, the Carroll dyad (µ,µ∗) transforms as

δ(ξ,σ,λ)µ = Lξµ+ σ µ+ λµ∗, δ(ξ,σ,λ)µ
∗ = Lξµ∗ + σ µ∗ , (3.13)

which justifies the names assigned to the symmetry parameters. We observe that µ∗ is not
affected by the Carroll boost. This is the main difference with respect to the Lorentzian case,
Carrollian frame rotations preserve the spatial metric d`2 = (µ∗)2 but affect the temporal
part µ of the dyad. Finite Carroll boosts are coordinate transformations t→ t+~λ ·~x, where
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~λ is a constant spatial vector. The infinitesimal version in two dimensions is δt = λ δx,
which indeed implies δλµ = λµ∗.

We can also compute the variations of the Carrollian energy density and energy flow

δ(ξ,σ,λ)ε = Lξε− 2σ ε− 1
4πG

(
θ υµ∗ ∂µλ+ υµ ∂µ(υν∗ ∂νλ)−F λ

)
, (3.14a)

δ(ξ,σ,λ)α = Lξα− 2σ α− 2λ ε+ 1
4πG

(
θ∗ υµ∗ ∂µλ+ υµ∗ ∂µ(υν∗ ∂νλ)

)
. (3.14b)

These transformations contain a linear part, where we see that ε and α transform like
scalars under diffeomorphisms and weight-two quantities under Weyl rescalings. The action
of the Carroll boost is not symmetric and contains non-linear pieces.

Symplectic structure. We now perform the limit k → 0 at the level of the presymplectic
potential, using the same scalings in k for the boundary data as in (3.1). As stated earlier, the
finiteness of this limit is a consequential criterion for fixing the ambiguities in the definition
of the presymplectic potential. The necessity to play with corner terms is reminiscent of
the procedure applied in four-dimensional gravity to obtain a well-defined flat limit of the
symplectic structure starting from the Λ-BMS phase space [41] (see also [42]). The method
was later applied in three bulk dimensions to obtain a finite symplectic structure in Bondi
gauge [19, 20]. Here, compared to the latter works, we must take care of the boundary
Carroll boost symmetry, which is absent in the regular Bondi gauge, where the spatial part
of µ is required to vanish.

The flat limit of the renormalized presymplectic potential (2.36) reads

ΘC
ren[G; δG]|∂M = lim

k→0
ΘL

ren[G; δG]|∂M =
(
jµ δµµ + jµ∗ δµ

∗
µ

)
vol∂M , (3.15)

where the superscript C stands for “Carrollian”. In this expression, we have introduced the
components of the flat-space versions of the AdS holographic currents (2.37), which are the
Carrollian vectors

j = lim
k→0

k3J = 1
2 ε υ + 1

8πG υ∗F , (3.16a)

j∗ = lim
k→0

k2J∗ = 1
2 ε υ∗ + 1

2 αυ , (3.16b)

and defined
vol∂M = lim

k→0

Vol∂M
k

, (3.17)

as the volume form on null infinity. Again, the potential vanishes when one imposes
Dirichlet boundary conditions on the Carroll dyad (µ,µ∗). We stress that the flat limit
of the presymplectic potential renormalized as in (2.35) diverges when employing the
scalings (3.1) and thus we work exclusively with the flat limit of (2.36) in the remaining of
this section.

We can use the two currents to construct the Carrollian energy-momentum tensor

tµν = jµ µν + jµ∗ µ
∗
ν , (3.18)
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which can be equivalently defined as the limit of the relativistic energy-momentum ten-
sor (2.39) as

tµν = lim
k→0

kT µ
ν . (3.19)

The remaining Ricci-flat Einstein equations in the covariant Bondi gauge, i.e. eqs. (3.10),
imply that tµν must satisfy the following Ward identities:

Dµt
µ
ν = − 1

8πG Fµν A
µ , tµµ = 0 , tµνµ

∗
µ υ

ν = − F8πG , (3.20)

where
Dµt

µ
ν = lim

k→0
∇µT µ

ν . (3.21)

These equations can also be obtained as the k → 0 limit of the holographic Ward identi-
ties (2.40).

In terms of the energy-momentum tensor, the variation of the on-shell action (with
appropriate boundary terms) becomes

δ(v,σ,λ)SC =
∫ [
−ξν

(
Dµ t

µ
ν + 1

8πGFµν A
µ
)

+ σ tµµ − λ tµν µ∗µ υν
]
vol∂M

=
∫ (

λ
F

8πG

)
vol∂M ,

(3.22)

which reveals that the only anomalous symmetry is the Carroll boost, as was the Lorentz
boost in (2.46).

The aftermath is engaging. If a holographic dictionary persists in the flat limit, i.e. a
matching between the bulk action with prescribed boundary conditions and the partition
function of a boundary theory, then the above result predicts an anomaly for the field
theory dual. The latter should be conformally coupled to a Carrollian dyad and is therefore
an ultra-relativistic theory, naturally called Carrollian CFT. The flat background structure
in this case is obtained by fixing the dyad to be µ = −du, µ∗ = dφ. In this particular case,
as we shall see in section 3.2, the asymptotic symmetry group includes the usual BMS3
group, which is in line with the fact that in three dimensions Carrollian Weyl-covariant
theories are BMS3-invariant. The Weyl anomaly was studied in [88] for such theories, while
no results were provided for a possible Carroll boost anomaly. Our computation can be
seen as a gravitational prediction for a boost anomaly in BMS3-invariant theories.

Similarly, the presymplectic current (2.48) is finite in the limit k → 0 and is given
explicitly by

ωC
ren|∂M = lim

k→0
ωL

ren|∂M = D−1
(
δ(D jµ) ∧ δµ∗µ + δ(D jµ∗ ) ∧ δµµ

)
vol∂M , (3.23)

where we have introduced the density

D = |εµνµµµ?ν | = lim
k→0

√
−g
k

. (3.24)

The holographic currents are the conjugate variables of the dyad. This symplectic form will
be used in the next section to compute charges in the conformal gauge.
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3.2 Flat-space charges in conformal gauge

Our goal is here to go farther in the computation of charges in flat space. For that purpose
we will extend the conformal gauge of section 2.3 to the Carrollian framework. This amounts
to making a choice of coordinates (u, φ) such that the one-form µ∗ is aligned with the angular
coordinate. This choice can also be recovered from the AdS conformal gauge imposing the
scaling ζ = k β in (2.51) and taking the k-to-zero limit. We obtain the following expressions
for the forms µ and µ∗:

µ = −eϕ (du+ β dφ) , µ∗ = eϕ dφ . (3.25)

The asymptotic symmetry algebra is reduced to those vectors that preserve the conformal
gauge. They are obtained by taking the flat limit of their AdS counterparts (2.52) with the
following scalings for the symmetry parameters

Y ±(x±) = Y (φ)± k (H(φ) + u ∂φY (φ)) , h(x+, x−) = k h̃(u, φ) , (3.26)

while $ is unaffected. The variations of ϕ and β defined in (3.25) are

δ(H,Y,$,h̃)ϕ = $ , δ(H,Y,$,h̃)β = h̃ , (3.27)

where, in analogy with our discussion of the conformal gauge in AdS, we dub the conformal
factor ϕ and the field β as Goldstone modes of the Weyl and Carroll boost symmetry,
respectively. In this gauge one can completely solve the residual Ricci-flat equations (3.10)
for the energy density and the energy flow, obtaining

ε = e−2ϕ

8πG
(
8πG ε0 − (∂uβ)2 + 2 ∂u∂φβ − 2β ∂2

uβ
)
, (3.28a)

α = e−2ϕ

4πG
(
4πG(α0 − u ∂φε0 + 2βε0)− β

[
(∂uβ)2 − 2 ∂u∂φβ + β ∂2

uβ
]
− ∂2

φβ + ∂uβ ∂φβ
)
,

(3.28b)

where ε0 = ε0(φ) and α0 = α0(φ). These are linked to the `± fields of AdS by the following
scalings:

ε0(φ) = 1
4πG lim

k→0

(
`+ + `−

)
, α0(φ)− u ∂φε0(φ) = − 1

4πG lim
k→0

`+ − `−
k

. (3.29)

The infinitesimal variations of the on-shell boundary data read

δ(H,Y,$,h̃)ε0 = Y ∂φε0 + 2 ε0 ∂φY −
1

4πG ∂
3
φ Y , (3.30a)

δ(H,Y,$,h̃)α0 = Y ∂φα0 + 2α0 ∂φY −H ∂φε0 − 2 ε0 ∂φH + 1
4πG ∂

3
φH , (3.30b)

δ(H,Y,$,h̃)ϕ = $ , (3.30c)

δ(H,Y,$,h̃)β = h̃ . (3.30d)
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Using these transformations, one shows that the residual-diffeomorphism algebra is a direct
sum of three-dimensional BMS transformations, Weyl rescalings, and Carroll boosts, which
are local R-transformations: BMS3 ⊕Weyl⊕ R.12

We now have all ingredients for computing the asymptotic charges. The BMS charges
read:

Q(H,Y ) = 1
2

∫ 2π

0
dφ
(
H ε0 − Y α0

)
, (3.31)

as firstly obtained in [99]. The novelty comes from the new factors in our algebra of
residual diffeomorphisms, i.e. the Carroll boosts. The charge associated with Weyl and
boost transformations is integrable and reads

Q($,h̃) = 1
8πG

∫ 2π

0
dφ
(
β ∂uh̃− h̃ ∂uβ

)
. (3.32)

On the one hand, as in the anti-de Sitter framework, the Weyl parameter does not appear,
meaning that Weyl rescalings are pure-gauge with this choice of symplectic structure.
Therefore we can quotient them out. On the other hand, Carroll boosts are not pure-gauge
and, since both the symmetry parameter h̃ and its Goldstone mode β are unconstrained
functions of (u, φ), the charge is manifestly not conserved. This is the avatar of the
Carroll-boost anomaly.

We can also compute the classical central charges of the resulting BMS3⊕R asymptotic
symmetry algebra. They come in couple, the first being the usual central extension of the
BMS3 algebra

K(H1,Y1),(H2,Y2) = 1
16πG

∫ 2π

0
dφ
(
H2 ∂

3
φ Y1 + Y2 ∂

3
φH1

)
. (3.33)

The second is a central extension of the Abelian ultra-relativistic boosts at the boundary:

Kh̃1,h̃2
= 1

8πG

∫ 2π

0
dφ
(
h̃2 ∂uh̃1 − h̃1 ∂uh̃2

)
. (3.34)

The latter has the same status as the Lorentz central extension in AdS, cf. eq. (2.67). The
only difference is that the symmetry parameter h is dimensionless in AdS, whereas the
flat-space symmetry parameter h̃ is dimensionful. This is specific to flat space, where the
only available scale is set by Newton’s constant G, which enters the central charges because
it is combined with a dimensionful parameter.

4 Conformal gauge in the Chern-Simons formulation

We now turn to the Chern-Simons formulation of three-dimensional Einstein’s gravity [89, 90].
After briefly reviewing it to fix conventions, we move to the computation of surface charges
and their algebras for both asymptotically AdS and flat spacetimes, in the conformal gauge
introduced in sections 2.3 and 3.2. An advantage of revisiting our previous discussion in
this first-order formalism is that the calculation of surface charges is more straightforward

12Akin to the AdS case, the field-dependent replacement (λ, σ)→ (h̃,$) makes the sum be direct.

– 23 –



J
H
E
P
1
2
(
2
0
2
2
)
0
0
7

than in the metric formulation: it does not require any sort of holographic renormalization
because the dependence of the solutions on the null radial coordinate is encoded into a
gauge transformation and it factors out from the charges at a very early stage. Moreover,
there exists a simple choice for the Chern-Simons connection such that the computation of
surface charges in AdS directly leads to those associated with the “Lorentz” presymplectic
potential (2.36), hence admitting a smooth flat limit. This gives further support to that
choice for fixing the ambiguities appearing in the metric formulation. In the present section,
we also clarify an issue that remained open up to now: any prescription for the Z-ambiguity
in (2.27) must correspond to a specific boundary term to be added to the bulk action. The
existence of such a boundary term was assumed in the previous sections, but no explicit
realization was proposed. Here we provide a closed expression for the boundary term to be
added to the bulk first-order action in order to obtain the presymplectic potential (2.36).

4.1 Asymptotically AdS spacetimes

Chern-Simons formulation. The isometry algebra of AdS3, i.e. the algebra so(2, 2),
reads:

[MB,MC ] = εBCDM
D, [MB, PC ] = εBCDP

D, [PB, PC ] = (k G)2 εBCDM
D , (4.1)

where PB and MB are the translation and Lorentz generators (the latter are related to
the customary Lorentz generators as MB = 1

2εBCDM
CD). We recall that G is Newton’s

constant and k denotes the inverse of the AdS radius. In the vanishing-k limit, which will
be discussed in section 4.2, one recovers the isometry algebra iso(1, 2) of three-dimensional
Minkowski space. We introduce a differential one-form, valued in the algebra (4.1):

A = 1
G

(
EN

BPB + ωN
BMB

)
dxN , (4.2)

where ENB is the bulk triad and ωNB is its associated dualized spin connection (we label
withM,N, . . . the bulk base-manifold indices as in previous sections). Up to boundary terms,
one can rewrite the three-dimensional Einstein-Hilbert action as the following Chern-Simons
action [89, 90]:

SEH = 1
16π

∫
Tr
(

A ∧ dA + 2
3 A ∧A ∧A

)
, (4.3)

where we introduced the Killing metric

Tr (MBMC) = Tr (PBPC) = 0 , Tr (MBPC) = ηBC , (4.4)

with ηBC the Minkowski metric whose signature is (−,+,+) (we choose the convention
ε012 = 1 for the Levi-Civita symbol). For k 6= 0 we can take advantage of the isomorphism
so(2, 2) ∼= sl(2,R) ⊕ sl(2,R) to rewrite the action (4.5) as the difference of two sl(2,R)
Chern-Simons actions:

SEH = SCS
[
A
]
− SCS

[
Ã
]
, (4.5)

with
SCS[A] = 1

16πGk

∫
Tr
(
A ∧ dA+ 2

3 A ∧A ∧A
)
. (4.6)
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We have introduced the gauge connections13 A = ABJB and Ã = ÃBJB , which take values
in the algebra sl(2,R). For the latter, we use here the conventions

[JB, JC ] = εBC
D JD , Tr(JBJC) = 1

2 ηBC . (4.7)

The triad and the spin connection are related to the Chern-Simons forms A and Ã as

AB = ωB + k EB , ÃB = ωB − k EB . (4.8)

In the following, we compute the surface charges associated with the solution space
determined by the line element (2.1) (together with the differential conditions (2.10) or,
equivalently, (2.11)) as well as their algebra using the methods of, e.g., [100–105]. For
simplicity, we cover only the case in which the boundary metric is in the conformal gauge
and we compare with previous results in the literature.

Solution space in the first-order formalism. In the conformal gauge, the bulk met-
ric (2.1) reads

ds2
AdS = GMN dxM dxN = 2

k2 u (dr + rA) + r2 e2ϕdx+dx− + 8πG
k4 u (ε u + χ ∗u) , (4.9)

where we have used the light-cone coordinates x± = φ± k u. In these coordinates, u and
∗u can be parameterized as in eq. (2.51),

u = −k2 eϕ
(
eζ dx+ − e−ζ dx−

)
, ∗u = k

2 eϕ
(
eζ dx+ + e−ζ dx−

)
, (4.10)

while ε and χ are given by eq. (2.55),

ε± χ = e−2(ϕ±ζ)

2πG
(
`∓(x∓)− (∂∓ζ)2 ∓ ∂2

∓ζ ∓ e∓2ζ∂−∂+ζ
)
. (4.11)

A natural, manifestly Weyl-invariant, choice for the triad associated with the metric (4.9)
would be

E1 = r u
k
, E−1 = − 1

4rk

(
−r2 u + 2 dr + 2 rA + 8πG

k2 (ε u + χ ∗u)
)
, E0 = r ∗u

k
,

(4.12)
where we selected the components of the triad according to the Minkowski metric

ηBC =

 0 −2 0
−2 0 0
0 0 +1

 , (4.13)

so that GMN = EM
BηBCEN

C with B,C ∈ {−1, 0, 1}. For the sake of computing the
surface charges, it is however more convenient to perform a bulk Lorentz transformation
and parameterize the connections appropriately. Let us introduce the sl(2,R) basis

[Jm, Jn] = (m− n) Jm+n , m, n ∈ {−1, 0, 1} , (4.14)
13This connection should not be mistaken with the Weyl connection A = k−2 (Θ∗∗u−Θ u). The meaning

and distinction will always be clear from context.
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and implement the radial dependence of the connections A and Ã as a gauge transformation:

A(x+, x−, r) = b−1(r) aµ(x+, x−) b(r) dxµ + b−1(r)∂r b(r) dr , (4.15a)

Ã(x+, x−, r) = b̃−1(r) ãµ(x+, x−) b̃(r) dxµ + b̃−1(r) ∂r b̃(r) dr , (4.15b)

with b(r) and b̃(r) suitable SL(2,R) group elements. Such a parameterization is always
reachable, at least locally, see e.g. [106]. We also recall that the indices µ, ν, . . . label
boundary coordinates. In the specific case of the metric (4.9), one can choose

b(r) = exp (r k J−1) (4.16)

and

a+ = eϕ+ζ J1 − e−(ϕ+ζ)
(
`+ − (∂+ζ)2 + ∂2

+ζ
)
J−1 + ∂+(ϕ− ζ) J0 , (4.17a)

a− = −e−(ϕ+ζ) ∂+∂−ζ J−1 + ∂−(ϕ+ ζ) J0 (4.17b)

for the first gauge copy. The boundary connection thus depends on both the Weyl Goldstone
mode ϕ and the Lorentz Goldstone mode ζ, and the integration constants that characterize
the energy density and energy flow (see (2.55)).

For the second gauge copy one can choose, correspondingly,

b̃ = 1 ⇒ Ãr = 0 , (4.18)

and

ã+ = −e−(ϕ−ζ) ∂+∂−ζ J−1 + ∂+(ϕ− ζ) J0 , (4.19a)

ã− = −eϕ−ζ J1 + e−(ϕ−ζ)
(
`− − (∂−ζ)2 − ∂2

−ζ
)
J−1 + ∂−(ϕ+ ζ) J0 . (4.19b)

Notice that the radial gauge fixing for the two connections introduced here differs from
the standard literature on surface charges in the Chern-Simons formulation. Our unusual
choice is locally legitimate (starting from the previous definitions together with (4.8) one
reproduces the line element (4.9)) and simplifies the technical analysis, while leading to the
same charges as in section 2.3. This matching excludes any possible global issue.

Charges. Once the boundary values of the gauge fields in a given radial gauge are set,
one identifies the residual symmetries and computes the associated surface charges. The
computation for the two Chern-Simons gauge connections is similar. We will therefore
display some details for A, while keeping the presentation minimal for Ã.

The first step in the agenda is to identify the gauge transformations, of the kind
dA = dΛ + [A,Λ], which preserve the form of the connection detailed above. To this end,
we consider gauge parameters of the type

Λ(x+, x−, r) = b−1(r)

 +1∑
m=−1

εm(x+, x−) Jm

 b(r) , (4.20)
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where b(r) is the SL(2,R) group element (4.16), and the Lie-algebra-valued function of the
boundary coordinates is decomposed in the basis (4.14). This expression guarantees that
the gauge transformations preserve the radial gauge fixing (4.19). Preserving the form of
the boundary connection (4.17) then fixes the components of the gauge parameter to

ε1 = eϕ+ζ Y + , (4.21a)

ε0 = h+$ − ∂+Y
+ − 2Y + ∂+ζ , (4.21b)

ε−1 = −e−(ϕ+ζ)
(
`+ Y

+ − 1
2 ∂

2
+Y

+ + ∂+h− ∂+Y
+ ∂+ζ − Y +(∂+ζ)2

)
, (4.21c)

where $ and h are arbitrary functions of the boundary coordinates, while Y + = Y +(x+).
These are precisely the symmetry parameters of the asymptotic Killing vectors (2.52).
The variations of the boundary data — namely `+, ζ and ϕ — under the above gauge
transformations read

δΛ`+ = Y +∂+`+ + 2 `+∂+Y
+ − 1

2 ∂
3
+Y

+ , δΛϕ = $ , δΛζ = h , (4.22)

in agreement with eqs. (2.53) and (2.56).14

Next, the associated surface charges are obtained by integrating, if possible, the following
variations calculated at fixed value of the coordinate u [101]:

δQ[Λ] = − 1
8πGk

∫ 2π

0
dφTr [Λ δAφ] = − 1

8πGk

∫ 2π

0
dφTr

[
bΛ b−1 (δa+ + δa−)

]
. (4.23)

The last rewriting is manifestly independent of the null radial coordinate r thanks to the
cyclicity of the trace. Implementing the radial dependence as a gauge transformation
(see (4.15)) thus makes the charges finite in the infinite-r limit. Substituting the explicit
parameterization of the generators of residual gauge transformations one obtains

δQ[Λ] =− 1
8πGk

∫ 2π

0
dφ
[
δ`+Y

++ 1
2 (h+$)

(1
k
∂uδζ+∂φδϕ

)
+∂+h(δζ+δϕ)

]
. (4.24)

This expression is linear in the boundary data. Hence δQ[Λ] is manifestly integrable, and
gives the surface charges

Q[Λ] = − 1
8πGk

∫ 2π

0
dφ
[
`+Y

+ + 1
2 (h+$)

(1
k
∂uζ + ∂φϕ

)
+ ∂+h (ζ + ϕ)

]
. (4.25)

This is the contribution to the total surface charges originating from the first gauge
connection.

14The algebra of residual gauge transformations generated by (4.21) can be computed in analogy with the
metric formulation. Since the generators are field-dependent, one has to use a modified bracket, similarly
to (2.17):

[Λ1,Λ2]M ≡ [Λ1,Λ2]− δΛ1 Λ2 + δΛ2 Λ1 ,

where δΛ1 Λ2 stands for the variation of Λ2 under Λ1. Under the residual gauge transformations (4.21), the
Lie algebra closes as [Λ1,Λ2]M = Λ12, where Λ12 is built on Y +

12 = Y +
2 ∂+Y

+
1 −Y

+
1 ∂+Y

+
2 with $12 = h12 = 0

as in eq. (2.58).
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We now turn to the second Chern-Simons copy. The gauge field Ã depends on the
same functions of the boundary coordinates ϕ and ζ already appearing in A, together with
the chiral function `− that was absent in (4.17). Correspondingly, gauge parameters Λ̃
generating variations preserving the conditions (4.15) and (4.19) depend on the functions
$ and h already introduced in (4.21), together with the chiral parameter Y − = Y −(x−).
In addition to the variations of the boundary data summarized in (4.22), we obtain

δΛ̃`− = Y −∂−`− + 2 `−∂−Y − −
1
2 ∂

3
−Y
− , (4.26)

and, altogether, the generators of residual gauge transformations in the Chern-Simons
formulation are related to the asymptotic Killing vectors (2.52) as

ξM = 1
2 k EB

M
(
ΛB − Λ̃B

)
, (4.27)

where EBM is the inverse of the triad. The surface charges are finite and integrable also for
the second gauge copy:

Q̃[Λ̃] = − 1
8πGk

∫ 2π

0
dφ
[
`−Y

− − 1
2 (h−$)

(
∂φϕ−

1
k
∂uζ

)
+ ∂−h (ζ − ϕ)

]
. (4.28)

The total surface charges are then, up to integration by parts,

Qtot[Λ, Λ̃] =Q[Λ]−Q̃[Λ̃] =− 1
8πGk

∫ 2π

0
dφ
[
`+Y

+−`−Y −−
1
k

(h∂uζ−ζ ∂uh)
]
, (4.29)

which are identical to those obtained in the metric formulation (cf. (2.63) and (2.64)).
It should be emphasized that the Weyl Goldstone mode and its associated shift param-

eter $ are absent. Consequently the Weyl symmetry is pure-gauge and can be modded out.
This is to compare with [19], where the charge associated with the Weyl sector is zero in
Bondi gauge, contrary to the Fefferman-Graham gauge (see e.g. [4, 5]). We also observe that
the charges (4.29) are not conserved in time, signaling the existence of a Lorentz anomaly
associated with the shift of ζ, thus confirming the analysis of section 2.

Asymptotic symmetry algebra. The algebra of asymptotic symmetries is the canonical
algebra of the charges (4.29). We now discuss its relation with some results in the literature [4,
5, 15] and we show how to recover the two particular cases already analyzed in [21]. The
charges generate global symmetries when acting on a generic functional F of the phase space
as δ(Λ,Λ̃)F = {Qtot[Λ, Λ̃], F} and this determines their Poisson brackets on the solution
space. In order to simplify the comparison with previous literature, we introduce the
following rescalings:

L±(x±) = ∓1
8πGk `±(x±) , Z(x+, x−) = − 1

8πGk2 ζ(x+, x−) . (4.30)

We recall that the gauge variations of these functions are:

δ(Λ,Λ̃)L± = ±Y ± ∂±L± ± 2L± ∂±Y ± ±
1

16πGk ∂
3
±Y
± , (4.31a)

δ(Λ,Λ̃)Z = − 1
8πGk2 h , (4.31b)
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and the surface charges (4.29) can be recast as

Qtot[Λ, Λ̃] =
∫ 2π

0
dφ

[
L+ Y

+ + L− Y
− + Z ∂uh− h ∂uZ

]
. (4.32)

Notice that the charges are computed at fixed value of time u. Therefore, the two last terms
are independent contributions. Nonetheless, in order to compare with previous accounts [5],
we choose to expand the boundary data as

L± = − 1
2π
∑
p∈Z

L±p e−ipx±
, Z = − 1

2π
∑
p,q∈Z

Zpq e−ipx+ e−iqx−
. (4.33)

We thus obtain the non-vanishing Poisson brackets

i
{
L±p , L

±
q

}
= (p− q)L±p+q + c

12 p
3 δp+q,0 , (4.34a)

i {Zpq, Zrs} = − c3 (r − q) e2ik(q+s)u δp+r,q+s , (4.34b)

where all central charges are proportional to the Brown-Henneaux central charge

c = 3
2kG . (4.35)

This algebra has appeared in [5], where the centrally extended local Abelian factor was due to
the Weyl symmetry. In the present approach Weyl symmetry is pure-gauge, and the asymp-
totic symmetry originates from Lorentz boosts — a manifestation of the two-dimensional
Lorentz-Weyl duality interplay. The central extension in the Lorentz sector depends ex-
plicitly on the time coordinate u, hence it depends on the point of the solution space one
is considering. The above asymptotic symmetry algebra is rather a one-parameter family
of algebras, the parameter being the value of u at which the surface charges are determined.
One could have chosen instead to treat functions and their u-derivatives as independent
variables in (4.32), with independent mode expansions in the variable φ. Then, the Poisson
brackets become independent by u, at the price of doubling of the phase space functions.

If we further impose that the curvature of the Weyl connection vanishes, that is the extra
boundary condition F = 0, we obtain an (anti-)chiral splitting of the Lorentz Goldstone
mode

Z±(x±) = ∓1
4πGk ∂±ζ

±(x±) . (4.36)

The gauge parameter that preserves this condition also splits as

h = h+(x+) + h−(x−) , (4.37)

so that
δ(Λ,Λ̃)Z± = ∓1

4πGk ∂±h
± . (4.38)

The surface charges (4.29) then take the form

Qtot[Λ, Λ̃] =
∫ 2π

0
dφ
[
L+ Y

+ + L− Y
− + Z+ h

+ + Z− h
−
]
, (4.39)
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and are now conserved. By decomposing these (anti-)chiral fields into Fourier modes,

Z± = − 1
2π
∑
p∈Z

Z±p e−ipx±
, (4.40)

the charge algebra then reads

i
{
L±p , L

±
q

}
= (p− q)L±p+q + c

12 p
3 δp+q,0 , (4.41a)

i
{
Z±p , Z

±
q

}
= c

3 p δp+q,0 . (4.41b)

In this case, the Poisson brackets do not depend on u anymore. Henceforth, the algebra is
the same at all values of time. The boundary condition imposed here is the equivalent in
the Lorentz sector to what was done in [4] in the Weyl sector. There, the Weyl symmetry
was charged and the condition R = 0 allowed for the (anti-)chiral split of the modes. Our
algebra (4.41) is indeed isomorphic to the one found in [4], but it is now associated with
the Lorentz instead of Weyl symmetry. The same algebra was also obtained as a subcase of
the analysis of the most general boundary conditions for asymptotically three-dimensional
AdS spacetimes admitting a well-posed variational principle [15].

From this algebra, one can recover the two special cases anticipated in [21], where the
algebra of asymptotic symmetries was computed only for reduced phase spaces, in which the
boundary conformal factor was turned off and only one of the pairs of functions `± or ζ±

appeared. This supports the claim made in [21] concerning the fluid/gravity correspondence:
changing hydrodynamic frame influences the surface charges and thus the global properties
of the boundary fluid.

Boundary anomaly. In the first order formulation we can go a step further and propose
an expression for the action, including its boundary term, whose variation reproduces the
presymplectic potential discussed in section 2.3. The on-shell variation of the Chern-Simons
action (4.6) reduces to the boundary term

δSCS[A] = − 1
8πGk

∫
d2xTr

(
Au δAφ

)
. (4.42)

To determine the variation of the Einstein-Hilbert action, we must subtract the contribution
of the right sector from the left sector which yields

δSEH = δSCS[A]− δSCS[Ã] = − 1
8πGk

∫
d2xTr

(
Au δAφ − Ãu δÃφ

)
. (4.43)

For the Brown-Henneaux boundary conditions one can obtain a well-posed variational prob-
lem by adding to the bulk action the Coussaert-Henneaux-Van Driel boundary term [102]:

SCHVD = − 1
16πG

∫
d2xTr

(
A2
φ + Ã2

φ

)
. (4.44)

In our case, adding this boundary term the on-shell variation of the total action would
not reproduce that in eq. (2.46), which is associated with the “Lorentz” presymplectic
potential (2.36). We observe that the surface charges computed in the Chern-Simons
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formulation are insensitive to the boundary terms added to the bulk action, needed to fully
specify the variational principle. Nonetheless, the latter gives rise to the presymplectic
structure of the theory, thus controlling the well-definiteness of the variation problem and
consequently the appearance of anomalies.

We can however choose a different boundary term, such that the total action reads

Stot
[
A, Ã

]
= SEH + 1

16πGk

∫
d2xTr

(
AuAφ − Ãu Ãφ

)
, (4.45)

and its on-shell variation gives

δStot
[
A, Ã

]
= 1

2πGk

∫
δζ e−2ϕ ∂+∂−ζ Vol∂M , (4.46)

where Vol∂M is the boundary volume form. We recognize the variation of the action in
eq. (2.46) that corresponds to the “Lorentz” presymplectic potential (2.36) in conformal
gauge. This remainder15 is not integrable, implying that, without further constraints on the
solution space, no additional boundary term can make the variational problem well-defined,
as in [5]. A sufficient boundary condition here is to fix the Lorentz Goldstone mode ζ by
solving F = 0. Doing so, one goes back to the (anti-)chiral split of the Lorentz sector, and
retrieve the analogue of the results obtained in [4] for the Weyl sector, which were indeed
derived by requiring a well-posed variational problem.

4.2 Asymptotically flat spacetimes

When the cosmological constant vanishes, i.e. in the flat limit k → 0, it is still possible
to write the Einstein-Hilbert action in the Chern-Simons form (4.3) with a iso(1, 2) gauge
algebra [90]. The rewriting (4.5) as the difference of two simpler Chern-Simons action is
not available anymore, but one can apply the same techniques as in the previous section to
compute asymptotic symmetries, surface charges and their algebra directly in the iso(1, 2)
Chern-Simons theory.

Solution space in the first-order formalism. In the case of asymptotically flat spaces,
in the conformal gauge the bulk metric (3.8) reads

ds2
Flat = 2µ (dr + rA) + r2µ∗µ∗ + 8πG µ (εµ+ αµ∗) , (4.47)

where the values of the Carrollian Cartan frame are given in eq. (3.25),

µ = −eϕ (du+ β dφ) , µ∗ = eϕ dφ , (4.48)

while the Carrollian energy density ε and energy flow α can be parameterized as in eq. (3.28),

ε = e−2ϕ

8πG
(
8πG ε0 − (∂uβ)2 + 2 ∂u∂φβ − 2β ∂2

uβ
)
, (4.49a)

α = e−2ϕ

4πG
(
4πG(α0 − u ∂φε0 + 2βε0)− β

[
(∂uβ)2 − 2 ∂u∂φβ + β ∂2

uβ
]
− ∂2

φβ + ∂uβ ∂φβ
)
,

(4.49b)

with ε0 = ε0(φ) and α0 = α0(φ).
15Note that it has the same structure as the non-integrable term in equation (B.16) of [5].
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Also in this case, we can encode the dependence on the null radial coordinate r in a
gauge transformation:

A = b−1 [a + d] b , (4.50)

where a = aµ(u, φ)dxµ and b is the ISO(1, 2) group element

b(r) = exp
(
r

2 P−1

)
. (4.51)

We expressed the latter using the following convenient basis of the iso(1, 2) algebra:

[Mm,Mn] = (m− n)Mm+n , [Mm, Pn] = (m− n)Pm+n , [Pm, Pn] = 0 , (4.52)

with m,n ∈ {−1, 0, 1}. In the same basis, the components of the boundary connection can
be chosen as

aφ = e−ϕ√
2

(
4πGε0−

1
2(∂uβ)2+∂u∂φβ

)
M1−

(
∂φϕ−∂uβ

)
M0−

eϕ√
2
M−1+ eϕβ√

2
P−1

+ e−ϕ√
2

(
4πG(α0−u∂φε0)−∂2

φβ+∂uβ∂φβ+β

2
(
8πGε0−(∂uβ)2+2∂u∂φβ

))
P1 ,

(4.53a)

au = e−ϕ√
2

[
∂2
uβM1−

(
4πGε0−

1
2(∂uβ)2+∂u∂φβ−β∂2

uβ

)
P1

]
−∂uϕM0+ eϕ√

2
P−1 . (4.53b)

Charges. We now consider gauge parameters of the form

Λ(r, u, φ) = b−1(r)
+1∑

m=−1

[
εm(u, φ)Mm + σm(u, φ)Pm

]
b(r) , (4.54)

where b(r) is the ISO(1, 2) group element (4.51). Gauge transformations preserving the
form (4.53) of the boundary connection are generated by

ε1 = e−ϕ

2
√

2

(
Y
(
8πG ε0 − (∂uβ)2)− 2

(
∂φY ∂uβ − ∂uh̃+ ∂2

φY
))
, (4.55a)

ε0 = −$ + Y ∂uβ + ∂φY , (4.55b)

ε−1 = −Y eϕ√
2
, (4.55c)

σ1 = e−ϕ

2
√

2

(
β
(
− Y

(
(∂uβ)2 − 8πG ε0

)
+ 2

(
− ∂φY ∂uβ + ∂uh̃− ∂2

φY
))

+ 2Y
(
∂φβ ∂uβ + 4πG

(
α0 − u ∂φε0

))
− 2
√

2 ∂φH ∂uβ −
√

2H (∂uβ)2

+ 2u ∂2
φY ∂uβ + u ∂φY (∂uβ)2 + 2 ∂φY ∂φβ − 2 ∂φh̃

+ 8πG ε0
(√

2H − u ∂φY
)

+ 2u ∂3
φY − 2

√
2 ∂2

φH
)
,

(4.55d)

σ0 =
√

2H ∂uβ − u ∂φY ∂uβ − Y ∂φβ + h̃− u ∂2
φY +

√
2 ∂φH , (4.55e)

σ−1 =
√

2
2 eϕ

(
Y β −

√
2H + u ∂φY

)
, (4.55f)
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where Y = Y (φ), H = H(φ), $ = $(u, φ) and h̃ = h̃(u, φ) have the same properties as the
corresponding functions featuring residual diffeomorphisms in the metric formulation, see
eq. (3.30). Gauge transformations generated by parameters of the form (4.55) also imply
the same variations of the boundary data as in the latter equation. As in the AdS case,
these gauge parameters are field-dependent and thus define a Lie algebra under the modified
bracket defined in footnote 14 with

Y12 = Y2 ∂φY1 − Y1 ∂φY2 , (4.56a)
H12 = H2 ∂φY1 −H1 ∂φY2 + Y2 ∂φH1 − Y1 ∂φH2 , (4.56b)
$12 = 0 , (4.56c)
h̃12 = 0 . (4.56d)

This gives the algebra BMS3 ⊕ R⊕ R of residual gauge transformations, as anticipated in
section 3.2.

The charges are finally obtained as in the previous section by integrating the variation

δQtot[Λ] = − 1
8πGk

∫ 2π

0
dφTr

[
bΛ b−1 δaφ

]
=
∫ 2π

0
dφ
[1

2 (H δε0 − Y δα0) + 1
8πG

(
δβ ∂uh̃− h̃ ∂uδβ

)]
.

(4.57)

The result is manifestly integrable and, in analogy with the AdS case, gives charges that are
finite but non-conserved due to the arbitrary Carrollian boundary frame function β(u, φ).
We see that the charge associated with the Weyl symmetry, namely the variation of the
arbitrary conformal factor ϕ(u, φ), vanishes. Again, we can mod it out of the asymptotic
symmetry group. One can check that these charges are the flat limit of (4.29). We also
stress that the non-conservation driven by the term involving the parameter h̃ signals the
presence of an anomaly in the Carroll-boost sector.

Asymptotic symmetry algebra. In order to derive the charge algebra, it is useful to
rescale the fields ε0 → −2ε0, α0 → −2α0, H → −H and to introduce the function

B(u, φ) = 1
8πG β(u, φ) , (4.58)

which enable one to rewrite the charges as

Qtot[Λ] =
∫ 2π

0
dφ
(
H ε0 + Y α0 +B ∂uh̃− h̃ ∂uB

)
. (4.59)

These charges generate the following variations of the boundary data:

δ(H,Y,$,h̃)ε0 = Y ∂φε0 + 2 ε0 ∂φY + 1
8πG ∂

3
φY , (4.60a)

δ(H,Y,$,h̃)α0 = Y ∂φα0 + 2α0 ∂φY +H ∂φε0 + 2 ε0 ∂φH + 1
8πG ∂

3
φH , (4.60b)

δ(H,Y,$,h̃)ϕ = $ , (4.60c)

δ(H,Y,$,h̃)B = 1
8πG h̃ . (4.60d)
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In analogy with the expansions (4.33) that we employed in AdS, we expand the fields in
Fourier modes as

ε0(φ) = − 1
2π
∑
p∈Z

Tp e−ipφ , (4.61a)

α0(φ) = − 1
2π
∑
p∈Z

Yp e−ipφ , (4.61b)

B(u, φ) = − 1
2π

∑
p,q∈Z

Bpq e−i(p−q)φ e−i(p+q)u . (4.61c)

The non-vanishing Poisson brackets then read

i {Yp, Yq} = (p− q)Yp+q , (4.62a)

i {Yp, Tq} = (p− q)Tp+q + cM
12 p3 δp+q,0 , (4.62b)

i {Bpq, Brs} = −cM6 (r − q) e2i(q+s)u δp+r,q+s . (4.62c)

The Yp and Tp span a bms3 algebra with central charge

cM = 3
G
, (4.63)

where we borrowed the notation cM from the papers [107, 108] to which we shall compare our
outcome shortly. The central extension of the Carroll-boost sector depends explicitly on the
time coordinate u, as for the Lorentz boosts in the anti-de Sitter case, see eq. (4.34). Again,
as highlighted in the AdS analysis, the asymptotic symmetries of the case at hand realize a
one-parameter family of algebras. As for the AdS case, one could have chosen instead to
treat functions and their u-derivatives as independent variables, leading to u-independent
Poisson brackets.

Imposing that the Weyl-Carroll curvature defined in (3.7) vanishes, i.e. F = 0, the
Carroll-boost function becomes

β(u, φ) = βφ(φ) + uβu(φ) , (4.64)

and its associated shift parameter also splits as

h̃(u, φ) = h̃φ(φ) + u h̃u(φ) . (4.65)

Upon rescaling of the latter fields as

Bφ(φ) = − 1
8πG βφ(φ) , Bu(φ) = 1

8πG βu(φ) , (4.66)

we obtain the variations

δ(H,Y,$,h̃)Bφ = − 1
8πG h̃φ , δ(H,Y,$,h̃)Bu = 1

8πG h̃u . (4.67)

The total surface charges (4.57) are then conserved and assume the form

Qtot[Λ] =
∫ 2π

0
dφ
(
H ε0 + Y α0 + h̃uBφ + h̃φBu

)
. (4.68)
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Decomposing the boundary data into Fourier series

Bφ(φ) = − 1
2π
∑
p∈Z

Pp e−ipφ , Bu(φ) = − 1
2π
∑
p∈Z

Up e−ipφ , (4.69)

one obtains the following bms3 ⊕ û(1) ⊕ û(1) algebra:

i {Yp, Yq} = (p− q)Yp+q , (4.70a)

i {Yp, Tq} = (p− q)Tp+q + cM
12 p3 δp+q,0 , (4.70b)

i {Pp, Uq} = cM
12 p δp+q,0 , (4.70c)

with the same central charge as in eq. (4.63). The presence of two affine u(1) current
algebras can be made more explicit by redefining the modes

B±p = 1√
2

(Up ± Pp) , (4.71)

which brings the last Poisson bracket (4.70c) in the form

i
{
B±p , B

±
q

}
= cM

12 p δp+q,0 . (4.72)

This leads to the asymptotic symmetry algebra of [107], which is the generalization of
the analysis of [4] to asymptotically flat spacetimes. We should however emphasize that,
in analogy with the AdS case, this algebra is reached starting from different boundary
conditions. The two affine u(1)s originate from the infinite-dimensional extensions of the
boundary Carroll-boost symmetry, while in [107] they were associated with the boundary
Weyl-Carroll symmetry. The same asymptotic symmetry algebra appears in [108] — obtained
imposing a well-posed variational principle for gravity. One finally recovers the two special
instances treated in [21] for a reduced phase space, where only one of the pairs of functions
ε0, α0 or Bφ, Bu was considered, and the boundary conformal factor was turned off.

Boundary anomalies. The first-order formulation is appropriate for designing an action
that includes the necessary boundary term, reproducing the on-shell variation (3.22) in the
conformal gauge. This was performed in section 4.1 for anti-de Sitter. Here, the boundary
term to be added to the bulk action (4.3) is

Sbdy[A ] = 1
8πG

∫
d2xTr

(
Aφ Au

)
(4.73)

and the on-shell variation of the total action is

δStot[A ] = δSEH[A ] + δSbdy[A ] = − 1
8πG

∫
δβ e−2ϕ ∂2

uβ vol∂M , (4.74)

where vol∂M is the boundary volume form (3.17). Unsurprisingly, the remaining term is
not integrable and corresponds to the flat limit of (4.46). Hence, no further boundary term
could help making the variational principle well-posed. Setting the Weyl-Carroll curvature
to zero is instead a sufficient boundary condition for that purpose. In this case, the Carroll
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boost splits as in (4.64), and we are back to the analogue of the analysis performed in [107]
for the Weyl-Carroll sector.

In concluding the present analysis, let us emphasize that a non-trivial on-shell variation
of the action should not be banned ipso facto. It may betray an anomalous physical
contribution. This phenomenon is well-understood in anti-de Sitter holography [25, 33],
and is possibly of interest in the asymptotically flat context, where it emerges as a quantum
feature of the assumed conformal Carrollian field theory defined on the null boundary. This
is a notable prediction of our investigation.

5 Conclusion

The aim of the present article was to explore the charges of three-dimensional gravity in
a manifestly covariant gauge with respect to boundary diffeomorphisms, Weyl rescalings
and local frame boosts, whether Lorentz or Carroll — in AdS or flat spacetimes — all
rooted in the bulk residual diffeomorphisms. This has been elegantly achieved using
boundary Cartan dyads, which make the bulk gauge fixing incomplete with seemingly
more boundary degrees of freedom, and open the Pandora box for addressing related
questions: boundary conditions and boundary terms in the bulk action, variational principle,
integrability and conservation of surface charges, asymptotic symmetry algebras, anomalies
and their numerous manifestations, interplay between second-order metric and first-order
Chern-Simons approaches.

Our first task has been the determination of the presymplectic potential in asymptot-
ically anti-de Sitter spacetimes. This action raised immediately the question of treating
ambiguities. Two distinct prescriptions emerged, leading to finite results. The first repro-
duces the same outcome of the Fefferman-Graham gauge, and Weyl rescalings become part
of asymptotic symmetries while Lorentz boosts turn out to be pure gauge. The second
promotes the hyperbolic rotations of the Cartan frame to genuine asymptotic symmetries,
but Weyl rescalings become pure gauge. Differently from the previous one, this prescription
admits a finite flat limit, in which the Carrollian boosts of the frame become part of the
asymptotically flat symmetries.

Before pursuing the summary of our achievements, one should emphasize that the latter
result is rather intriguing. It seems indeed that the covariant, incomplete gauge we have set
departing from Bondi is tailor-made to fix the ambiguities of the presymplectic potential,
provided that one requires that the smoothness of the flat limit holds not only for the
solution space but also for its symplectic structure. Additionally, our partial gauge fixing
allows to understand the boundary conformal anomaly, appearing e.g. as an obstruction to
the vanishing of on-shell variations of the action, either from Weyl or from Lorentz/Carroll
perspectives, owing to the underlying cohomology properties. Notice however that these two
viewpoints exhibit, once promoted in the bulk, a striking dissymmetry, and it is not clear
whether a formulation — i.e. a gauge — exists, for which the presymplectic potential would
have a finite flat limit respecting the Weyl instead of Lorentz symmetry, without eliminating
the latter from the very beginning as in [107] or in its possible generalisation along the
lines of [5]. Finally, it is suggested that a new anomaly should exist in Carrollian conformal
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field theories, out of reach for the moment within a genuine quantum computation. How all
these issues should be understood in higher-dimensional theories, where boundary frames
transform with the Lorentz or Carroll groups or, more generally, with the general linear
group, deserves further investigation.

Computing the asymptotic charges was the next enterprise and possibly the original
motivation of this work. This was performed in the first place in the metric approach. For
a generic Cartan frame — be it Lorentz or Carroll, i.e. for asymptotically anti-de Sitter or
flat spacetimes — the charges are neither integrable nor conserved. This is not a pathology,
but rather a distinctive feature of the solution space, reflecting among others the gauge
choice. When the boundary frame is tuned to the conformal gauge, the surface charges
become however integrable. For the presymplectic potential admitting a smooth flat limit,
Weyl transformations are uncharged, as opposed to Lorentz/Carroll transformations, which
provide integrable but non-conserved charges. Their non-conservation is yet another avatar
of the associated anomaly.

The first-order Chern-Simons formulation is the last side of our analysis. Its main
advantages are the absence of holographic renormalization and the option of a Chern-Simons
connection that fits naturally the Lorentz/Carroll presymplectic potential found in the
metric approach. Its indisputable added value in this work is the concrete determination of
the boundary term in the action required to obtain the specific presymplectic potential in use.

The achievements we have presented here compose a wide picture that embraces
several previous works on asymptotic symmetries in anti-de Sitter or flat three-dimensional
spacetimes and completes the analysis initiated in [21–23]. We have made a rewarding step
beyond the standard complete gauge fixing; whether this is to be considered as the “most
general” remains unclear.

We would like to terminate by highlighting some aspects of our results that we think
deserve further study. As explained at length, relaxing the Bondi gauge and making
a specific choice of presymplectic potential leads to a new boundary degree of freedom,
which corresponds to rotations of the boundary dyad, at the expense of gauging the Weyl
factor of the boundary metric. Therefore the total number of physical degrees of freedom
remains unaltered. This phenomenon would have been hard to guess prior to computing
the presymplectic potential explicitly. However it is in agreement with some counting
arguments [12, 109] predicting that the maximal number of boundary degrees of freedom
in three dimensions is equal to three, corresponding here to the number of generators of
boundary diffeomorphisms and rotations of the dyad. It would be of general interest for
the asymptotic-symmetry program to handle the conditions under which no extra degrees
of freedom emerge from a gauge relaxation. These conditions might be the requirement
of a finite presymplectic potential, vanishing under Dirichlet boundary conditions. This
might also be related to recent developments in the corner proposal [63, 64, 95, 96, 110–116],
where the so-called asymptotic corner symmetry group gives a maximal number of degrees
of freedom that a theory of gravity can have. In this context, it is the Weyl symmetry that
contributes to the asymptotic corner symmetry group, and understanding how this symmetry
generator is intertwined with the local Lorentz generator can have important repercussions,
especially in the coadjoint orbit method. It would be also interesting, following [117, 118],
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to connect the results on Carrollian holography discussed in this paper with the celestial
holography proposal (see, e.g., [119–121] for reviews).

Another feature, illustrated here and expected to hold more generally, is the relation
between presymplectic potentials descending from the same bulk action and cohomological
classes of anomalies. In anti-de Sitter, an appropriate prescription for the ambiguous terms
in the potential triggers a switch of the anomalous symmetry from Weyl to Lorentz. This is
well-known to occur in field theory, see e.g. the two-dimensional analysis of [122], where
a change in the path-integral measure leads to a displacement of the anomaly from the
Weyl symmetry to the diffeomorphisms. Our example points to the existence of general
rules relating holographically this boundary displacement to a modification of the bulk
symplectic structure.

Last, we would like to comment on the aforementioned extension to higher dimensions,
where the Weyl and Lorentz groups are no longer isomorphic. In bulk dimension four, for
instance, the former is still parameterized by one function of the boundary coordinates, while
the latter contains three functions: one rotation and two boosts. The strict parallelism that
was drawn in the present work between Weyl and Lorentz is disrupted. Although we expect
a relaxation of the Bondi/Newmann-Unti gauge to persist giving rise to a physical Cartan
frame on the boundary, the absence of Weyl anomaly blurs the three-dimensional pattern.
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A Classification of Weyl-Lorentz anomalies in two dimensions

In this appendix, we explain how to obtain the anomaly structure (2.43) applying BRST
methods to field theories with Weyl-Lorentz symmetry. The first-order formulation of the
problem is the core of a forthcoming paper, [67], from which these results are taken. Since
the BRST tools employed in the classification are standard, we focus here on the novelty,
which is their application to field theories with Weyl-Lorentz symmetries, referring the
reader to [68] for more details on the techniques (see also [69, 70] for examples of their
usage in similar contexts).

In the BRST formulation, each field theory is associated with a BRST bicomplex, with
exterior derivative

d̂ = d + s , (A.1)

where d is the de Rham exterior derivative and s the BRST operator. We use the notation
(p, q) for the bigrading, where p is the (vertical) ghost number and q the (horizontal) de
Rham number. A Weyl-Lorentz structure can be seen as a G-structure in the frame bundle
given by the total connection

Ωa
b = ωa

b + A δab = ω εab + A δab . (A.2)

In two dimensions, the skew-symmetric Lorentz connection ωa
b has one independent

component ω, and A denotes the Weyl connection. This is extended to the full bicomplex
by adding the Lorentz ghost λ and Weyl ghost z,

Ω̂a
b = ω̂ εab + Â δab = (ω+ λ) εab + (A + z) δab , (A.3)

such that ω̂ has degree 1, ω degree (0, 1), λ degree (1, 0), and similarly for Â, A, and z.
The total curvature is d̂Ω̂a

b. As a consequence of the Darboux-Maurer-Cartan-Ehresmann
(DMCE) condition, it is required to be totally horizontal, that is, to contain only (0, 2)
terms. This gives, as usual, the BRST transformations of the fields.

Anomalies are extracted from the cohomology of the space of local functionals that
are top forms in spacetime with ghost number one, i.e., of degree (1, 2). For that purpose,
one constructs the most general functional of total degree 3, called â(3), and solves the
cohomology

d̂ â(3) = 0, â(3) 6= d̂ b̂(2)
, (A.4)

where b̂(2) is a co-boundary, i.e., a functional of total degree 2. The (1, 2) term inside the
bicomplex decomposition of â(3) gives all possible anomalies and central charges of a theory
with these symmetries.

In our specific case, setting F̂ = d̂Â and R̂ = d̂ω̂, the most general 3-form is

â(3) = c1 ω̂ R̂ + c2 Â F̂ + γ3 Â R̂ + γ4 ω̂ F̂ , (A.5)

where {c1, c2, γ3, γ4} are the potential central charges. Solving its cohomology, we first note
that

d̂â(3) = c1 F̂ R̂ + c2 F̂ F̂ + γ3 F̂ R̂ + γ4 R̂ F̂ = c1 FR + c2 FF + γ3 FR + γ4 RF = 0 , (A.6)
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where we used d̂2 = 0 and the DMCE condition. The functional is thus closed and it
remains to remove d̂-exact terms (co-boundaries) in â(3). This involves notably the mixed
contributions

γ3 Â R̂ + γ4 ω̂ F̂ = γ3 Â R̂− γ4 d̂
(
ω̂ Â

)
+ γ4 Â R̂ = (γ3 + γ4) Â R̂− γ4 d̂

(
ω̂ Â

)
. (A.7)

This instructs us that γ3 and γ4 are not independent central charges. Furthermore, it shows
that for the horizontal quantities (using again the DMCE condition), zR and λF are two
representatives in the same cohomology class. Calling γ3 + γ4 = c3

12π , and expanding in the
horizontal and vertical fields, we can extract the final anomaly structure

a(1,2) = c1 λR + c2 z F + c3
12π zR , (A.8)

where the last term is shown to be cohomologically equivalent to c3
12πλF. This equation,

derived in [67], is the starting point in section 2 to match with the holographic result, upon
performing the identification λ = η and z = σ, and taking the Hodge dual of the curvatures,
which gives

∗ F = F, ∗R = R

2 , (A.9)

where F and R (the Ricci scalar) are defined in (2.23).
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